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‡SUPÉLEC, 91192 Gif sur Yvette, France, Email: {romain.couillet, merouane.debbah}@supelec.fr

Abstract—This paper considers a large multi-user time-division
duplex (TDD) system, where the base station (BS) acquires
channel state information via pilot signaling from the users.
In the downlink the BS employs zero-forcing (ZF) and reg-
ularized zero-forcing (RZF) precoding. We derive the optimal
sum rate maximizing amount of channel training using sum rate
approximations from the large system analysis of MISO downlink
channels under (R)ZF precoding. Moreover, in the regime of high
signal-to-noise ratio (SNR), we derive approximate solutions of
the optimal amount of training for both schemes that are of
closed-form. By comparing the two schemes, we find that RZF
requires less training than ZF, but the training interval of both
schemes is equal for asymptotically high SNR. Furthermore,
simulations are carried out which demonstrate the accuracy of
our approximate solutions.

I. INTRODUCTION

It is well known that the capacity region of the multiple-

input single-output (MISO) broadcast channel is achieved by

dirty-paper coding (DPC) [1]. Although optimal, DPC has a

high computational complexity. Therefore, attention has been

drawn away from DPC toward more practical schemes such as

zero-forcing (ZF) or regularized ZF (RZF) precoding. How-

ever, the achievable sum rate under all precoding strategies is

heavily dependent on the channel state information available

at the transmitter (CSIT). In practical systems, the channel is

approximately constant over a finite amount of channel uses

and thus, the CSIT is always imperfect. Consequently, it is

important to study the impact of limited channel coherence

interval on the achievable system throughput.

In this contribution, we focus on time-division duplex

(TDD) multi-user systems, where uplink (UL) and downlink

(DL) channels are assumed perfectly reciprocal. In a TDD

system, CSIT is usually obtained from pilot signaling in the

UL and is subsequently used to pre-process the data streams by

applying ZF or RZF precoding. Since channel acquisition and

data transmission are carried out within one channel coherence

interval, there exists a non-trivial trade-off in the allocation of

resources between channel training and data transmission.

Previous work has primarily focused on describing this

trade-off under ZF precoding for an equal number of users K
and transmit antennas M [2]–[6], using bounds on the sum-

rate gap between perfect CSIT and imperfect CSIT. In this

work we use a different approach. Instead of bounds on the

sum rate for all (K,M) we provide deterministic approxima-

tions that are asymptotically accurate as (K,M) grow large at

a constant rate β,M/K. These approximations are referred

to as deterministic equivalents. More precisely, we make use

of deterministic equivalents of the signal-to-interference plus

noise ratio (SINR) under ZF precoding for M>K and RZF

precoding for M≥K [7] to characterize the optimal trade-off

between channel training and data transmission. Moreover, we

derive closed-form expressions for the sum rate maximizing

amount of training in the high signal-to-noise ratio (SNR)

regime.

The contributions of this paper are (i) the application of

large system approximations to compute the optimal (sum rate

maximizing) amount of channel training, (ii) the comparison

of the optimal channel training under ZF precoding (β>1) and

RZF precoding (β≥ 1), and (iii) novel closed-form solutions

of the optimal training for both schemes at high SNR.

Notation: In the following boldface lower-case and upper-

case characters denote vectors and matrices, respectively. The

operators (·)H, tr(·) and E[·] denote conjugate transpose, trace

and expectation, respectively. The N×N identity matrix is IN

and log(·) is the logarithm to base e.

II. SYSTEM MODEL

Consider a MISO downlink channel where an M -antenna

base station (BS) transmits to K single-antenna mobile users.

At a given time instant the signal yk received by user kth is

yk = hH

kx + nk, k = 1, 2, . . . ,K, (1)

where hH

k ∈C
1×M is the channel of user k with independent

and identical distributed (i.i.d.) complex Gaussian entries of

zero mean and unit variance, x∈C
M×1 is the transmit vector

and the n1, n2, . . . , nK are i.i.d. complex Gaussian additive

noise terms with zero mean and variance σ2. The transmit

vector x is subject to an average power constraint

E[‖x‖2] ≤ P. (2)

Therefore the (downlink) SNR ρdl at each user is ρdl , P/σ2.

We assume a block-fading channel HH =[h1,h2, . . . ,hK ]∈
C

M×K , i.e. the channel H remains constant over a block of



T channel uses before changing independently from block to

block. Due to the finite coherence interval T , only Ĥ, an

imperfect estimate of the true channel matrix H, is available

at the BS. We model Ĥ as

Ĥ =
√

1 − τ2H + τQ, (3)

where Q∈C
K×M is the matrix of channel estimation errors

containing i.i.d. entries of zero mean and unit variance, and

τ ∈ [0, 1]. The parameter τ reflects the amount of distortion

in the channel estimate Ĥ. Furthermore, we suppose that H

and Q are mutually independent as well as independent of

the information symbols sk and the noise terms nk. A similar

model for the imperfect CSIT has been used in [8]–[10].

Following [4]–[6], we constrain the user terminals to trans-

mit at a peak power of Pul per channel use. The UL noise is

assumed to be white complex Gaussian with variance σ2.1

III. TRANSMISSION SCHEME

We consider a TDD system where UL and DL share the

same channel at different times. Therefore, it is possible for

the BS to estimate the channel from known pilot signaling

from the users. The channel coherence interval T is divided

into Tt channel uses for UL training and T −Tt channel uses

for coherent transmission in the DL. Note that in order to

coherently decode the information symbols, the users need

to know their effective (precoded) channels. This is usually

accomplished by a common training phase in the DL prior to

the data transmission. As shown in [11], a minimal amount

of training (at most one pilot symbol) is sufficient when data

and pilots are processed jointly. Therefore, we assume that the

users have perfect knowledge of their effective channels and

we neglect the overhead associated with common training.

In a TDD system, the imperfections in the CSIT are

caused by (i) channel estimation errors, (ii) imperfect channel

reciprocity due to different hardware in the transmitter and

receiver and (iii) the channel coherence interval T . In what

follows we assume that the channel is perfectly reciprocal and

we study the joint impact of (i) and (iii).

A. Uplink Training Phase

In our setup, the distortion τ2 in the CSIT is solely caused

by an imperfect channel estimation at the BS and is identical

for all entries of H. To acquire CSIT, each user transmits Tt≥
K orthogonal pilot symbols over the UL channel to the BS.

Subsequently the BS estimates all K channels simultaneously.

At the BS, the signal rk received from user k is given by

rk =
√

TtPulhk + nk, (4)

where we assumed perfect reciprocity of UL and DL channels.

That is, the UL and DL channel coefficients are equal and

the UL noise terms nk = [n1, n2, . . . , nM ]T are statistically

equivalent to their respective DL analog. Subsequently the BS

performs a minimum mean square error (MMSE) estimation

1The assumption of equal noise power in UL and DL might not hold in
practice, since the sources of noise are different for UL and DL and it is
likely that they have different variances.

of each channel coefficient hij (i= 1, . . . ,K, j= 1, . . . ,M ).

Due to the orthogonality property of the MMSE estimation

[12], the estimates ĥij of hij and the corresponding estimation

errors h̃ij are i.i.d. complex Gaussian distributed and we can

write

ĥij =
√

1 − τ2hij + τqij , (5)

where both hij and qij have zero mean unit variance. The

variance τ2 of the estimation error h̃ij is given by [4]

τ2 =
1

1 + Ttρul

, (6)

where we define the uplink SNR ρul as ρul ,Pul/σ
2.

B. Data Transmission Phase

We focus on equal power allocation among the users. The

information symbols sk of the kth user are i.i.d. complex

Gaussian sk ∼CN (0, 1). Since Tt channel uses have already

been consumed to train the BS about the user channels, there

remains an interval of length T −Tt for DL data transmission.

Prior to the transmission, the symbols sk are linearly

precoded to form the transmit signal

x =

K
∑

k=1

gksk, (7)

where gk ∈C
M×1 is the beamforming (BF) vector of user k.

The BF vectors are not of unit norm but set to fulfill the power

constraint (2), i.e. denoting G , [g1,g2, . . . ,gK ] ∈ C
M×K ,

from (2) we obtain tr(GGH) ≤ P .

Under a sum power constraint, the optimal ZF precoder Gzf

[13] and RZF precoder Grzf take the form

Gzf = ξĤH

(

ĤĤH

)−1

, (8)

Grzf = ξ
(

ĤHĤ +MαIM

)−1

ĤH, (9)

where the scaling factor ξ is set to fulfill the power constraint

tr(GGH) ≤ P and the regularization scalar α > 0 in (9)

is scaled by M to ensure that, as (K,M) grow large, both

trĤHĤ and trMαIM grow with the same order of magnitude.

IV. PERFORMANCE METRIC AND LARGE SYSTEM

APPROXIMATION

In this section we introduce the ergodic sum rate as our

performance measure and briefly review a large system ap-

proximation of the SINR of ZF and RZF precoding.

A. Ergodic Sum Rate

We measure the performance of the system in terms of

ergodic sum rate Rsum, defined as

Rsum =
T − Tt

T

K
∑

k=1

EH log (1 + γk) , (10)



where the factor (T −Tt)/T appears since data is transmitted

in the reduced interval T−Tt and the SINR γk of user k reads

γk =
|hH

kgk|2
K
∑

j=1,j 6=k

|hH

kgj |2 + σ2

. (11)

B. Large System Approximation of the SINR

To gain valuable insight into the system behavior, several

bounds of the sum rate (10) have been proposed in e.g. [4]–

[6]. Here we utilize an approximation of the sum rate derived

for large (K,M) but bounded ratio β=M/K [7].

We define a deterministic equivalent of the SINR γk as any

γ◦k , such that

γk − γ◦k
M→∞−→ 0, (12)

almost surely. Thus, γ◦k is an approximation of γk for all SNR

and its accuracy increases as (K,M) grow large. We use γ◦k
to approximate the sum rate as

R◦
sum =

T − Tt

T

K
∑

k=1

log (1 + γ◦k) . (13)

In [7], we present numerical results showing that R◦
sum is an

accurate approximation of Rsum even for not so large (K,M).
Now, we briefly review the results for γ◦k under ZF and RZF

precoding.

1) Zero-forcing Precoding: In [7, Corollary 2], for β > 1,

the SINR γzf of ZF precoding can be approximated by

γ◦zf =
1 − τ2

τ2 + 1
ρdl

(β − 1). (14)

2) Regularized Zero-forcing Precoding: In [7, Corollary

1], for β ≥ 1, the SINR γrzf of RZF precoding can be

approximated by

γ◦rzf =
β(1 − α⋆◦) − 1 + d(α⋆◦, β)

2α⋆◦β
, with (15)

d(α⋆◦, β) =
√

β2(α⋆◦)2 + 2α⋆◦β(1 + β) + (1 − β)2, (16)

α⋆◦ =

(

1 + τ2ρdl

1 − τ2

)

1

βρdl

. (17)

Notice that both γ◦zf and γ◦rzf are independent of the particular

user k.

V. OPTIMIZATION OF CHANNEL TRAINING

The approximation (13) is very accurate and can be used to

optimize the training length Tt. By substituting γ◦zf into (13),

the approximated sum rate R◦,zf
sum of ZF precoding takes the

form

R◦,zf
sum = K

(

1 − Tt,zf

T

)

log

(

1 +
1 − τ2

τ2 + 1
ρdl

(β − 1)

)

. (18)

Similarly, for RZF the approximated sum rate R◦,rzf
sum is

R◦,rzf
sum = K

(

1 − Tt,rzf

T

)

log (1 + γ◦rzf) , (19)

where γ◦rzf is given in (15).

The distortion τ2 in the CSIT is solely caused by an

imperfect channel estimation at the BS and is identical for

all entries of H. Substituting (6) into (18) and (19), we obtain

R◦,zf
sum = K

(

1 − Tt,zf

T

)

log

(

1 +
Tt,zfρul(β − 1)

1 + Tt,zf
ρul

ρdl
+ 1

ρdl

)

,

(20)

R◦,rzf
sum = K

(

1 − Tt,rzf

T

)

log

(

1

2
+

1

2
wρdl(β − 1) +

d(w)

2

)

,

(21)

d(w) =
√

(1 − β)2w2ρ2
dl + 2wρdl(1 + β) + 1, (22)

w =
Tt,rzfρul

1 + Tt,rzfρul + ρdl

. (23)

For β>1 under ZF precoding and β≥1 for RZF precoding, it

is easy to verify that the functions R◦,zf
sum and R◦,rzf

sum are strictly

concave in Tt,zf and Tt,rzf in the interval [K,T ], respectively,

where K is the minimum amount of training required, due

to the orthogonality of the pilot sequences. Therefore we can

apply standard convex optimization algorithms [14] to evaluate

T ⋆◦
t,zf = arg max

K≤Tt,zf≤T

R◦,zf
sum, (24)

T ⋆◦
t,rzf = arg max

K≤Tt,rzf≤T

R◦,rzf
sum . (25)

In the following we derive approximate closed-form solutions

to (24) and (25) for high SNR. We distinguish two cases, (i)

ρdl, ρul →∞, c, ρdl/ρul finite and (ii) ρdl →∞, ρul finite.

In contrast to case (i), the system in case (ii) is interference-

limited due to the finite transmit power of the users.

A. Case 1: ρdl, ρul→∞ with finite ratio ρdl/ρul

We derive approximate, but explicit, solutions for the opti-

mal training intervals T ⋆◦
t,zf , T

⋆◦
t,rzf in the high SNR regime and

derive their limiting values for asymptotically low SNR.

1) High SNR Regime: The sum rate R◦
sum can be written

as a function of the per-user rate under perfect CSIT R̄◦ and

the per-user rate gap ∆R◦ as

R◦
sum = K

(

1 − Tt

T

)

[

R̄◦ − ∆R◦
]

, (26)

where for ZF and RZF we have R̄◦
zf =log(1+ρdl(β−1)) and

R̄◦
rzf =

1
2 + 1

2ρdl(β − 1) + d(1)
2 , respectively, and

∆R◦
zf = log

(

(β − 1)(ρdl + 1)

1 + 1
ρdl

+ Tt,zf [
1
c

+ ρul(β − 1)]

)

(27)

∆R◦
rzf = log

(

1 + ρdl(β − 1) + d(1)

1 + wρdl(β − 1) + d(w)

)

. (28)



Denoting ψ,1 + 1
ρdl

+ Tt,zf [
1
c

+ ρul(β − 1)], the derivatives

take the form

∂R◦,zf
sum

∂Tt,zf
= − K

T
(R̄◦

zf − ∆R◦
zf) +K

(

1 − Tt,zf

T

)

× (β − 1)(ρdl + 1)[1
c

+ ρul(β − 1)]

ψ2 + (β − 1)(ρdl + 1)ψ
, (29)

∂R◦,rzf
sum

∂Tt,rzf
= − K

T
(R̄◦

rzf − ∆R◦
rzf)

+K

(

1 − Tt,rzf

T

)

w′ρdl(β − 1) + d′

1 + wρdl(β − 1) + d
, (30)

where w′=∂w/∂Tt,rzf =(1/ρul +c)/(Tt,rzf +1/ρul +c)
2 and

d′ =∂d/∂Tt,rzf =[(β − 1)2ww′ρ2
dl + w′ρdl(1 + β) + 1]/d. In

(29) and (30) the per-user rate-gap ∆R◦
zf and ∆R◦

rzf can be

neglected since ∆R◦
zf ≪ R̄◦

zf and ∆R◦
rzf ≪ R̄◦

rzf , respectively.

For ρdl, ρul → ∞ and c=ρdl/ρul finite, solving (29) and (30)

for Tt,zf and Tt,rzf , respectively, we obtain

T ⋆◦
t,zf = max

[

c

2

√

1 + 2
2T + c

cR̄◦
zf

− c

2
,K

]

, (31)

T ⋆◦
t,rzf =







max
[

c
2

√

1 + 2T+c
cR̄◦

rzf

− c
2 ,K

]

if β = 1,

max
[

c
2

√

1 + 2 2T+c
cR̄◦

rzf

− c
2 ,K

]

if β > 1.
(32)

Thus, the optimal training intervals scale as T ⋆◦
t,zf , T

⋆◦
t,rzf ∼

√
T

and T ⋆◦
t,zf , T

⋆◦
t,rzf ∼1/

√

log(ρdl). Under ZF precoding the same

scaling has been reported in [2], [3], [6].

From (31) and (32) it is clear that as ρdl → ∞ both

T ⋆◦
t,zf , T

⋆◦
t,rzf tend to K, the minimum amount of training.

Moreover, for β > 1, R̄◦
rzf ≥ R̄◦

zf with equality if ρdl →∞.

Therefore, RZF requires less training than ZF, but the training

interval of both schemes is equal for asymptotically high SNR.

In case of full system loading (β = 1), RZF requires less

training compared to the scenario where β>1.

2) Low SNR Regime: For asymptotically low SNR

ρdl, ρul→0 with constant ratio c=ρdl/ρul, applying a second

order Taylor expansion around ρdl =0, equations (20) and (21)

take the form

R◦,zf
sum = K

(

1 − Tt,zf

T

)

Tt,zf(β − 1)

c
ρ2

dl + o(1), (33)

R◦,rzf
sum = K

(

1 − Tt,rzf

T

)

Tt,rzfβ

c
ρ2

dl + o(1). (34)

Maximizing equations (33) and (36) with respect to Tt,zf

and Tt,rzf , respectively, yields T ⋆◦
t,zf = T ⋆◦

t,rzf = T/2. For ZF

precoding, the limit has also been reported in [5].

B. Case 2: ρdl → ∞ with finite ρul

For ZF precoding and ρdl →∞, the sum rate (20) can be

approximated as

R◦,zf
sum ≈ K

(

1 − Tt,zf

T

)

log (1 + Tt,zfρul(β − 1)) . (35)

Setting the derivative of (35) with respect to Tt,zf to zero,

yields

log(a/ω(Tt,zf)) = ω(Tt,zf) − 1, (36)
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Fig. 1. ZF and RZF, optimal amount of training with β =2, ρdl =20 dB,
ρul =10 dB, RZF is indicated by circle marks.

where a,ρulT (β−1)+1 and ω(Tt,zf),(Ta)/[T +Tt,zf(a−
1)]. Equation (36) can be written as

ω(Tt,zf)e
ω(Tt,zf ) = ae. (37)

Notice that ω(Tt,zf)=W(ae), where W(z) is the Lambert W-

function, defined as the unique solution to z=W(z)eW(z), z∈
R. Solving ω(Tt,zf)=W(ae) for Tt,zf yields

T ⋆◦
t,zf =

1

ρul(β − 1)

(

a

W(ae)
− 1

)

. (38)

For asymptotically low ρul we obtain limρul→0 T
⋆◦
t,zf =T/2.

For RZF, no accurate closed-form solution to Tt,rzf can be

obtained.

VI. NUMERICAL RESULTS

In this section we present simulation results that verify our

theoretical derivations.

The accuracy of the SINR approximations (14) and (15)

of ZF and RZF, respectively, has been established in [7]

and needs no further justification. In Figure 1, we compare

the approximated optimal training intervals T ⋆◦
t,zf , T

⋆◦
t,rzf to

T ⋆
t,zf , T

⋆
t,rzf computed via exhaustive search and averaged over

1,000 independent channel realizations. The regularization

term α is computed using the large system approximation

α⋆◦ in (17). Figure 1 shows that the approximate solutions

T ⋆◦
t,zf , T

⋆◦
t,rzf are starting to become very accurate for K = 16.

Moreover, it can be observed that the approximations in (31)

and (32) match very well. Further notice that for β = 2, ZF

and RZF need approximately the same amount of training, as

predicted by equations (31) and (32).

Figure 2 depicts the optimal relative amount of training

T ⋆◦
t /T for ZF and RZF precoding. We observe that T ⋆◦

t /T
decreases with increasing SNR as O(1/

√

log(ρdl)). That is,

for increasing SNR the estimation becomes more accurate

and resources for channel training are reallocated to data
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transmission. Furthermore, T ⋆◦
t /T saturates at K/T due to the

orthogonality constraint on the pilot sequences. Furthermore,

as expected from (31) and (32), we observe that the optimal

amount of training is less for RZF than for ZF precoding.

Moreover, the relative amount of training T ⋆◦
t /T for both ZF

and RZF converges at low SNR to 1/2 and at high SNR to the

minimum amount of training K, as predicted by the theoretical

analysis.

Figure 3 shows the ergodic sum rate under ZF precoding

with fixed UL SNR ρul =5 dB for various training intervals.

We observe (i) no significant difference in the performance

of the schemes employing either optimal training T ⋆
t,zf com-

puted via exhaustive search or T ⋆◦
t,zf obtained from a convex

optimization of the large system approximation (20), (ii) a

small performance loss at low and medium SNR of the (high-

SNR) approximation of T ⋆◦
t,zf in (38) and (iii) a significant

performance loss if the minimum training interval K is used

for all SNR. We conclude that our approximation in (38)

achieves very good performance and can therefore be utilized

to compute Tt,zf very efficiently.

VII. CONCLUSION

This paper analyzed the optimal trade-off between channel

training and data transmission for a given channel coher-

ence interval in a TDD multi-user system under ZF and

RZF precoding in the downlink. Based on a large system

approximation of the sum rate we derive novel closed-form

approximations of the optimal training interval that maximizes

the system sum rate. The results help the system designer to

easily determine the optimal amount of pilot signaling as a

function of the basic system parameters.
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