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Abstract—In this paper, we revisit the philosophical founda-
tions of the field of channel estimation. Our main intention
is to come up with a partial answer to the question: “given
some available sensed signals, how should cognitive radios ideally
perform channel estimation?”. We specifically introduce a general
framework to provide optimal channel estimates under any prior
knowledge at the sensing device. Our discussion is articulated as
a top-down approach, introducing successively (i) a discussion on
the philosophical foundations of channel estimation as a simplifi-
cation means for the general problem of wireless detection, (ii) an
information theoretically optimal approach to channel detection
assuming the sensing device has infinite memory, and (iii) a
derived optimal approach when limited memory size is accounted
for. The key mathematical tools used in this discussion emerge
from Bayesian probability theory and are known as the maximum
entropy principle and the minimum update principle. Derivations
are carried out for the particular case of channel estimation
in orthogonal frequency division multiplexing (OFDM) systems.
While some theoretical results will be proven to match already
known techniques, such as Kalman filters, another set of novel
results will be shown by simulations to perform better than
known channel estimation schemes.

I. INTRODUCTION

Channel estimation, along with most synchronization pro-

cedures, is itself a major and historical field of research in

the realm of wireless communications . As such, thousands

of novel channel estimators are proposed and compared to

previous estimators every year. One of the obvious reasons for

such an activity around channel estimation is that there does

not exist a universal measure of performance to rate any given

scheme with respect to any other; instead, several different

selection criteria are considered, such as computational com-

plexity, mean square error of the estimate, robustness against

outage channel conditions, required processing memory etc.

In this work, we wish to propose a framework to encompass

the aforementioned selection conditions into a unique channel

estimation framework. In some cases, we shall generate the

optimal channel estimators for this framework. The sought

for a general framework for channel estimation is motivated

by the recent trend towards cognitive radios, and in particular

by the trend towards developing terminal-centered intelligence

in future wireless flexible networks. In the framework of

cognitive radios, terminals are required to learn from their

environment and take optimal decisions based on a constantly

updated knowledge: performing optimal channel estimation

from limited side information is part of the requirements

demanded of cognitive radios.

The prior requirement for channel estimators is to help

signal decoders as best as possible. The decision to consider

a particular measure of performance for a given channel

estimators should only reflect the subsequent effects on the

eventual signal decoding process. For instance, minimizing

the mean square error of channel estimators has no theoret-

ical ground; it is merely a convenient mathematical way to

compare estimators. In Section II, we shall briefly remind the

foundations of signal decoding and channel estimation, which

we shall review on a cognitive radio viewpoint. This study

naturally follows the theoretical ideas introduced in [5], in

which the authors introduce a new look on cognitive radios,

and in [6], where the specific problem of blind source detection

is addressed. Section II will conclude that today’s theoretical

and technological advances does not yet allow smart devices to

perform optimal signal decoding without considering channel

estimation as an independent entity.

In Section IV, we shall therefore treat channel estimation as

a self-contained process, independent of the problem of signal

detection, as is conventionally the case. We shall introduce

a complete framework to derive optimal channel estimators

under any prior state of knowledge at the signal receiver.

While the conventional approach is to treat specific channel

models and develop estimators for those models, we shall

here instead consider prior knowledge about the environment

at the receiver, and develop consistent estimators for this

knowledge. We wish indeed to insist on the fact that smart

devices should be able to come up with an ideal channel

estimator for any given prior information on the channel. The

approach addressed here is based on conventional Bayesian

probability theory and on the maximum entropy principle

[8]. In this section, we shall essentially remind the results

originally derived in [7]. However, the practical finite memory

size of the processing devices will not be taken into account

in this section.

To answer the problem of optimal channel estimation under

finite memory-size constraint, we shall subsequently introduce

a novel aspect of the maximum entropy principle, known as the

minimal update principle [9]. The major difference between



both is the fact that the maximum entropy principle assumes

an initial starting point and performs optimal decisions for

data collected from this starting point on, while the minimal

update principle assumes that one might be oblivious of old

data and performs optimal decisions for a finite window of

“remembrance”. In our specific channel estimation consid-

erations, this means that estimation based on the maximum

entropy principle assume infinite memory at the receiving

device, while the minimal update principle does only assume

finite-time data recollection. From this novel approach, we

derive optimal decisions, which will be shown in simulations

to be often as good as those provided by the infinite memory

size process.

Indeed, while Shannon [10] allows us to derive the capacity

of a channel for which all synchronization parameters, plus

the noise variance, are perfectly known, no such theory exists

when the knowledge of some of these parameters is missing.

More precisely, for a scalar communication y = hx+n, x ∈ X,

for some codebook X, if h is unknown, then the maximum a

posteriori estimate for x is

x̂ = argmax
x∈X

∫

h

∫

n

p(x|h, n)p(h)p(n)dhdn (1)

which requires to have an a priori p(h) for h. But this a priori

is too impractical to obtain and would require to know all

possible channel realizations and their respective probability.

As a consequence to this strong difficulty, most contributions

in the synchronization field have provided various empirical

models based on field observations in order either to give

an expression to p(h) or, more practically, to propose good

channel estimators ĥ to h. Among those solutions, we mention

[1] [2] [3] [4].

The difficulty of handling estimation problems when little

side information is available is treated by Jaynes, through the

Bayesian probability field, thanks to the maximum entropy

principle [8]. However MaxEnt does not allow to perform

updates of probability when new information, such as new

pilots in the channel estimation problem, is available. In this

case, the complete set of past symbols along with a prior

distribution for the channel h0 at time t = 0. This question was

treated in [12] for the OFDM framework, when the channel

delay spread, the channel time correlation and the signal-to-

noise ratio (SNR) are alternatively known or unknown. When

these parameters are not perfectly known, MaxEnt provides

channel estimates minimizing the estimate mean square error

(MMSE estimates) that outperform classical estimates which

use empirical (often erroneous) models. Recent contributions

in the Bayesian probability field enable one to perform prob-

ability updates, in particular based minimum cross entropy

considerations [9]. In this work, we will then provide a channel

estimation method, using the ME principle, which allows

to assign probability distributions for the channel, when the

estimator only knows the last past inferred channel distribution

and the new received pilot symbols.

The remainder of this article unfolds as follows: in Section

II, we discuss the foundations of channel estimation under

a Bayesian point of view; in Section III, we introduce the

OFDM model that shall be used as a toy example to illustrate

in practice the theoretical ideas elaborated in the following

sections. In Section IV, we discuss optimal infinite memory

channel estimation, while in Section V, we introduce the

minimal update principle and extend the previous optimality

framework to finite-time memory channel estimation; also in

this section, technical comparison is made against classical

techniques. In Section VI, simulation and results are pro-

posed, which compare the new method to the aforementioned

classical algorithms. Finally, in Section VII, we draw our

conclusions.

Notations: In the following, boldface lower case symbols

represent vectors, capital boldface characters denote matrices

(IN is the N×N identity matrix). The transposition operation

is denoted (·)T. The Hermitian transpose is denoted (·)H. The

operator diag(x) turns the vector x into a diagonal matrix.

The symbol det(X) is the determinant of matrix X. The

symbol E[·] denotes expectation. The Kronecker delta function

is denoted δx that equals 1 if x = 0 and equals 0 otherwise.

II. FOUNDATIONS OF CHANNEL ESTIMATION

In 1948, Shannon [10] provided the expression for the

capacity of a communication channel between a transmitter

and a receiver, modelled as

y = x+ n (2)

where x ∈ X is the input signal sent by the transmitter, which

the receiver aims at recovering, n some additive noise process

and y the effective signal captured by the receiver. In the

conventional case when n and x are random variables with

zero mean Gaussian distributions, the rate C to which the

sequence of x can be decoded with infinitely low decoding

error takes the simple form

C = log

(

1 +
E[|x|2]
E[|n|2]

)

(3)

but Shannon does not provide any way to achieve such a

decoding rate. Although, for appropriate coding schemes, it

is possible to get an estimate x̂ of x with as low decoding

error rate as desired. The estimate x̂ is based on the posterior

probability p(x|y) of any candidate x ∈ X given the output y,

p(x|y, I) =
∫

n

p(x|y, n, I)p(n|I)dn (4)

where we denote by I all prior information known by the

receiver at the moment it receives y.

In particular, we often take x̂ to be the maximum likelihood

estimator for x,

x̂ = argmax
x∈X

∫

n

p(x|y, n, I)p(n|I)dn (5)

which is easily derived for Gaussian n and I bringing no

information to n, as

x̂ = argmin
x∈X

‖y − x‖2 (6)



When the signal x is filtered by a channel h, i.e. y = hx+n,

the previous derivation is still valid, and we get the posterior

probability p(x|I) as,

p(x|y, I) =
∫

h

∫

n

p(x|y, n, h, I)p(n|I)p(h|I)dndh (7)

If h is known, this boils down to a scaled version of the

previous scenario, and the maximum likelihood estimator for

Gaussian n and uninformative I becomes

x̂ = argmin
x∈X

‖y − hx‖2 (8)

However, one rarely has access to the exact value for h and

then the true maximum likelihood estimate for x is simply

x̂ = argmax
x∈X

∫

h

∫

n

p(x|y, n, h, I)p(n|I)p(h|I)dndh (9)

When one performs channel estimation, one gets some

estimate ĥ of the true channel h from previously received

pilots, gathered in the information I . Classically, this estimate

is then directly used in (9) by replacing the term p(h|I)
by δ(h − ĥ). This substitution however constitutes a major

mathematical flaw, unless some (possibly malevolent) genie

ensured the receiver that the true channel is ĥ with probability

one. As such, the whole field of channel estimation has

no information theoretical grounds. However, solving (9) in

general is an extremely involved problem, which requires

integration over all possible h channels. Note by the way that

h might be a multi-dimensional vector channel, so that the

integration over h might in truth be a multi-variate integral. It

seems therefore natural to approximate the integration (9) by

substituting ĥ to p(h|I). Or, more exactly, it seems natural to

approximate (9) by replacing the function h 7→ p(h|I) by

h 7→
∑n

i=1 p(hi|I)1h=hi
(h)

∑n
i=1 p(hi|I)

(10)

for a finite set of n candidates h1, . . . , hn with high probabil-

ity.

The question of the choice of n and h1, . . . , hn is a rather

involved problem, which, to the authors’ knowledge has not

yet been addressed. This is however not the purpose of the

current work. Instead, we shall focus on the case n = 1,

where h1 is an estimate of the true channel h, based on

cogent information provided from pilots and previous data,

all captured in I . The question that now arises is: what

measure should the channel estimator minimize? What are the

grounds for performing minimum mean square error (MMSE),

maximum likelihood (ML) estimation? The correct estimator

for h should be that estimator ĥ, which is such that the

posterior probability p(x|y, h, I) when h is known is “close” to

p(x|y, ĥ, I) when h is unknown. Taking the classical Kullback-

Liebler distance to compare distances between probability

distributions, we may then consider

ĥ = argmin
h1

p(x|y, h1, I) log
p(x|y, h, I)
p(x|y, h1, I)

(11)

The computational difficulty of the above expression how-

ever leads one to consider more tractable channel estimate

minimization functionals, such as MMSE or ML channel esti-

mators. The other difficulty arises from a consistent evaluation

of p(h|I) when I encompasses pilots, prior data and overall

prior information about the channel at the receiver. It is indeed

rather intricate to provide a mathematically sound description

of I . The purpose of the subsequent sections will be to

cast some light on a general Bayesian framework to evaluate

p(h|I), applied to the concrete case of channel estimators for

OFDM systems based on pilots. The next section is dedicated

to introducing the model for OFDM transmission channels.

III. CASE STUDY: OFDM CHANNEL MODEL

Consider a single cell OFDM system with N subcarriers.

The cyclic prefix (CP) length is NCP samples. In the time-

frequency OFDM symbol grid, pilots are found in the symbol

positions indexed by the function φt(n) ∈ {0, 1} which equals

1 if a pilot symbol is present at subcarrier n, at symbol time

index t, and 0 otherwise. We further denote Pt ∈ R
N×N

a diagonal matrix with (i, i) entry Pt,ii = φt(i). The time-

frequency grid is depicted in Figure 1. Both data and pilots at

time t are modeled by the frequency-domain vector st ∈ C
N

with pilot entries of zero mean and amplitude |st,k|2 = 1. The

transmission channel is denoted ht ∈ C
N in the frequency-

domain and is known only to have overall power 1. The

additive noise is denoted nt ∈ C
N with entries known to

have total variance σ2. The time-domain representation of ht

is denoted νt ∈ C
L with L the channel length, i.e. the channel

delay spread expressed in OFDM-sample unit. The frequency-

domain received signal yt ∈ C
N is then

yt = diag(ht)st + nt (12)

We will also denote, ∀k ∈ {1, . . . , N}, h′

k = yk/sk = hk +
nk/sk and h′ = (h′

1, . . . , h
′

N )T (here, the time index t is

implicit).

The channel ht evolves in time with coherence time func-

tion λ(τ) such that, independently of the channel delay spread

index

E[νi,tν
∗

i,t+τ ] =
λ(τ)

L
(13)

Along this study, we might consider the different system

parameters, such as λ(τ) to be either exactly known at the

receiver (and then fully part of the prior information I) or only

partially known. In the following section, we establish, under

partial or total knowledge of the different system parameters,

an optimal framework for channel estimation. For the OFDM

example, this section mainly recalls the results of [7].

IV. MAXIMUM ENTROPY CHANNEL ESTIMATION

The essential derivations of this section will consist in

establishing, at time t, the posterior probability

p(ht|yt,yt−1, . . . ,y1, I) (14)

For readability we only treat the case t = 2, the general case

being a trivial extension. Assume only pilots are transmitted
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or, at least, that the information about I carried by the non-

pilot signals are rather uninformative. Discarding the terms I
for readability, we have in that case

p(h2|y2,y1, I)

= p(h2|h′

2,h
′

1, I) (15)

=
p(h2)p(h

′

2|h2)p(h
′

1|h2)

p(h′

1h
′

2)
(16)

=
p(h2)p(h

′

2|h2)
∫

h1
p(h′

1|h1)p(h1|h2)dh1

p(h′

1h
′

2)
(17)

When the exact time evolution model for ht is known,

p(h1|h2) has an explicit expression which allows then to

perform the above calculus. In practice however, it is rarely the

case that such a time-evolution model be perfectly known. One

then needs here an automatic method to provide a consistent

expression for p(h1|h2, I) when little is known about the

interaction between h1 and h2. The method we shall use here

is referred to as the maximum entropy principle [8].

Consider a given parameter x, whose knowledge is limited

to the information contained in I . The maximum entropy

principle allows one to assign a unique probability distribution

p(x|I) as follows,

1) among the set of all probability distributions, consider

those distributions that satisfy the constraints about x
given in I . This is, we exclude all distributions that do

not satisfy the prior information I . The remaining set of

probability distributions is denoted Q.

2) in this remaining set of acceptable distributions Q,

p(x|I) is assign the distribution which has maximum

entropy, i.e.

p(x|I) = argmax
q∈Q

−
∫

q(y) log q(y)dy (18)

Choosing the distribution that has maximum entropy allows

one not to make undesired assumptions on the unknown

system variables, and as such allows one to remain neutral with

regard to unaccessible information; see [11] for further details

on the maximum entropy principle. In the model described

in Section III, since only the total power is known about

both the channel delay profile and the additive noise, both are

assigned Gaussian distributions with zero mean and variance

consistent with prior knowledge, as required by the maximum

entropy principle. We then have nt ∼ CN(0, σ2IN ) and

νt ∼ CN(0, 1
LIL), which in the frequency domain, applying

Fourier transform, translates into ht ∼ CN(0,Q), with Q

defined as

Qnm = E

[

L−1
∑

k=0

L−1
∑

l=0

νkν
∗

l e
−2πi kn−lm

N

]

=
1

L

L−1
∑

k=0

e−2πik n−m
N

(19)

Note that Q is singular, since L < N as OFDM requires.

If the coherence time function λ(τ) is perfectly known,

the maximum entropy principle then assign to p(ht|ht+τ ) a

Gaussian distribution of mean λ(τ)ht+τ and variance

E[hth
H

t+τ ] = (1− λ(τ)2)Q (20)

In the problem with t = 2, we denote λ = λ(1). We then find

that p(h1|h2, I) is Gaussian and satisfies

p(h1|h2) = lim
Φ̃→Φ

1

πN det(Φ̃)
e−(h1−λh2)

HΦ̃−1(h1−λh2) (21)

for {Φ̃} any sequence converging to Φ. This allows then to

compute the full expression of p(h2|y2,y1, I) and a closed-

form expression of some conventional estimators. In particular,

the MMSE estimator ĥ
(MMSE)
2 for h2, defined as

ĥ
(MMSE)
2 = E [h2|y] (22)

in this case expresses as [7]

ĥ
(MMSE)
2 = M−1

2

(

P2h
′

2

σ2
+ (IN +

1− λ2

σ2
P1Q)−1 λ

σ2
P1h

′

1

)

(23)

with M2 satisfying

QM2 =
IN

1− λ2
− λ2

1− λ2
(IN +

1− λ2

σ2
QP1)

−1 +
QP2

σ2

(24)

This expression generalizes to t ≥ 1, for which we have the

MMSE estimator ĥ
(MMSE)
t given in Equation (25).

However it often occurs that the assumption that L and

λ(1), λ(2), . . . are known a priori at the receiver is not

realistic. In truth, rather limited information is known a priori

on these parameters. We may then reconsider (17) to include

the uncertainty on L and/or λ(1), λ(2), . . .. In the previous

t = 2 setup, we have in particular

ĥ
(MMSE)
2 = E[h2|y2,y1, I] (26)

=

∫

λ

p(λ|I)p(L|I)E[h2|y2,y1, λ, L, I]dλdL (27)

which leads to yet other expressions derived thoroughly in [7].

Through the OFDM example, we therefore developed a

rather automatic method to derive consistent estimators under



ĥ
(MMSE)
t

=

((

1 +

t
∑

k=1

λ(k)2

1− λ(k)2

)

IN −

t
∑

k=1

λ(k)2

1− λ(k)2

(

IN +
1− λ(k)2

σ2
QPk

)−1
)−1

Q

(

t
∑

k=1

λ(k)

(

IN +
1− λ(k)2

σ2
PkQ

)−1
1

σ2
Pkh

′

k

)

(25)

any prior knowledge at the receiver which we claim optimal

on an information theoretic viewpoint, i.e. those estimators are

taking into consideration all prior information I and are made

such that no ad-hoc assumption is taken regarding imperfectly

known parameters, while being compliant with the Bayesian

principles.

However, an underlying assumption of the previous ap-

proach is that infinite storage is available at the receiver.

Indeed, for large t, we still need to consider all events from

time instants 1 to t; if we decide to discard the oldest data,

we then depart from the optimality of the proposed scheme.

We then need to reconsider the whole framework to include

an additional feature: the receiver is oblivious to part of the

past events. The natural way to handle this modification of the

current maximum entropy framework is to consider updated

distribution assignments for posterior probabilities instead of

absolute distribution assignments. This is the topic of the next

and our main section.

V. MINIMAL CHANNEL ESTIMATION UPDATE

A. Introduction to Bayesian minimal update

When it comes to update probability assignments, Caticha

proposes an extension of the maximum entropy principle,

namely the minimum cross entropy principle (ME) [9]. When

p(ht|I1) has been assigned for some side information I1, and

new cogent information I2 is later available, then the ME

principle consists in assigning to p(ht|I2) the distribution

p(ht|I2) = argmin
q

S[q, p(ht|I1)] (28)

where

S[q, p] =

∫

q(x) log

(

p(x)

q(x)

)

dx (29)

The functional S[q, p] is referred to as the cross-entropy

between the probability distributions q and p.

This method is based on a minimal update requirement,

which in essence assigns to p(ht|I2) the unique distribution

which minimizes the changes brought to p(ht|I1) while sat-

isfying the new constraints given by I2. In the following,

additional side information on ht (which possibly varies

over time) will come from new available pilots at later time

positions.

B. Perfect system parameters knowledge

We assume here that channel estimation is performed at

different time instants t = 1, 2, . . .. Denote Ik the knowledge

at time k. Since memory restrictions impose to discard past

received data, we decide here only to consider at time k the

last received pilot data symbols, the last assigned probability

p(hk|Ik−1), and the supposedly known time correlation λ =

λ(1) between the current channel hk and the past channel

hk−1.

Assume prior assigned distribution p(hk−1|Ik−1) at time

index k − 1. We have in general

p(hk|yk, Ik) (30)

=
p(yk|hk, Ik) · p(hk|Ik)

p(yk|Ik)
(31)

=
p(yk|hk, Ik) ·

∫

p(hk|hk−1, Ik) · p(hk−1|Ik)dhk−1

p(yk|Ik)
(32)

We use Caticha’s ME principle [9] and set p(hk−1|Ik) to the

previous p(hk−1|yk−1, Ik−1). The reason lies in the minimal

update principle: if no additional information is given in Ik,

compared to Ik−1, then p(hk−1|yk−1, Ik−1) is the distribution

q that minimizes the cross-entropy S[q, p(hk−1|yk−1, Ik−1)]
1.

Let us now perform a recursive reasoning over the

channel estimates at time indexes k ∈ N. Assume that

p(hk−1|yk−1, Ik−1) is Gaussian CN(kk−1,Mk−1). We will

show that this implies p(hk|yk, Ik) is still Gaussian. This will

therefore be denoted CN(kk,M
−1
k ). We have

p(hk|yk, Ik) (33)

= α1p(yk|hk, Ik) ·
∫

p(hk|hk−1, Ik) · p(hk−1, Ik)dhk−1

(34)

= lim
Q̃→Q

e(hk−h′

k)
H Pk

σ2 (hk−h′

k)

∫

e
(hk−λhk−1)

H Q̃−1

1−λ2 (hk−λhk−1)

× α2e
(hk−1−kk−1)

HM
−1
k−1(hk−1−kk−1)dhk−1 (35)

where the Q̃’s are taken from a set of invertible matrices in

the neighborhood of Q, and the αi’s are constants.

First we need to write the exponents of the Gaussian

products in the integrand in a single Gaussian exponent form

of the vector hk−1 times a constant independent of hk−1. By

expansion and simplification, this is

(hk − λhk−1)
H

Q̃−1

1− λ2
(hk − λhk−1)

+ (hk−1 − kk−1)
HM−1

k−1(hk−1 − kk−1)

= (hk−1 − l)HN(hk−1 − l) + C(hk) (36)

1if new statistical information comes in, the minimum cross-entropy distri-
bution with p(hk−1|Ik) satisfying those new constraints should be computed
and used instead.
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N = λ2Q̃−1

1−λ2 +M−1
k−1

l = N−1( λ
1−λ2 Q̃

−1hk +M−1
k−1kk−1)

C = hH

k
Q̃−1

1−λ2hk + kH

k−1M
−1
k−1kk−1−

(hk + 1−λ2

λ Q̃M−1
k−1kk−1)

H λ2

(1−λ2)2 Q̃
−1

(

λ2Q̃−1

1−λ2 +M−1
k−1

)−1

Q̃−1(hk + 1−λ2

λ Q̃M−1
k−1kk−1)

The integral (35) is then a constant times eC , which depends

on hk. The term C must then be written again into a quadratic

expression of hk. This is

C = (hk − j)HR(hk − j) +B (37)

with










R =
(

λ2Mk−1 + (1− λ2)Q̃
)−1

j = λkk−1

B = 0

(38)

Together with the term outside the integral (35), this is

p(hk|yk, Ik) = α · e(hk−kk)
HM

−1
k

(hk−kk) (39)

with α = (
∫

p(hk|yk, Ik)dhk)
−1. Finally, after some arith-

metic derivation, in the limit Q̃ → Q,














Mk = λ2
(

Mk−1 +
1−λ2

λ2 Q
)

×
(

λ2

σ2Pk(Mk−1 +
1−λ2

λ2 Q) + IN

)−1

kk = λkk−1 +
1
σ2MkPk(h

′

k − λkk−1)

(40)

And the MMSE estimator ĥk for the channel at time index k
is the first order moment of a Gaussian distribution centered

in kk, which is ĥk = kk. At initial time instant t0, if nothing

but the channel delay spread L is known, M0 = Q from the

maximum entropy principle, as shown in [12], and k0 = 0.

Therefore, we prove by the above recursion that, under this

state of initial knowledge, for all k ∈ N, p(hk|Ik) is Gaussian

with mean kk and variance Mk, and ĥk = kk. Note that, while

regularized inverses of Q were used along the derivations, the

final formulas are properly conditioned with respect to Q.

Note that the solution in (40) coincides with the classical

structure of adaptive filters [16] such as the Kalman filter

[15], for the problem of dynamic estimation of hk from the

observed yk, when hk is assumed to evolve in time as an

order-1 auto-regressive model. As such, Kalman filters are

compliant with our current framework and are developped in

section V-D for the sake of comparison. However, when some

system parameters are not perfectly known, Kalman filters

depart from our general minimal update framework as it will

be further detailed.

C. Imperfect system parameter knowledge

In practical applications, contrary to what was stated in

Section V-B, the different parameters λ, σ2 and L especially,

are not perfectly known. For simplicity we assume those

parameters are constant over the duration of the channel

estimation process. Following the maximum entropy principle,

these parameters must be assigned an a priori distribution. Let

us focus on the time correlation λ, which is typically the most

difficult parameter to track. In this respect, one has

p(hk|yk, Ik) =

∫

p(hk|yk, λ, Ik)p(λ|yk, Ik)dλ (41)

Since yk cannot bring alone any cogent information on λ,

p(λ|yk, Ik) = p(λ|Ik). The probability p(hk|yk, λ, Ik) was

computed in Section V-B and is given by the right-hand side

of Equation (39), in which α depends on λ and must therefore

be made explicit.

Further computation leads to

p(hk|yk, Ik) =

∫

p(λ|Ik)α(λ)e(hk−k
(λ)
k

)H(M
(λ)
k

)−1(hk−k
(λ)
k

)dλ

(42)

with M
(λ)
k and k

(λ)
k given by Equation (40) for the λ in

question and

α(λ) = βe−x(λ) det[X(λ)] (43)

with






X(λ) =
(

I+ Pk

σ2 (λ
2M

(λ)
k−1 + (1− λ2)Q)

)−1

x(λ) = (λk
(λ)
k−1 − h′

k)
HX(λ)Pk

σ2 (λk
(λ)
k−1 − h′

k)
(44)

and β = (
∫

p(hk|yk, Ik)dhk)
−1, independent of λ.

In particular, the conventional MMSE estimate ĥ
(MMSE)
k is

then the weighted sum

ĥ
(MMSE)
k =

∫

p(λ|Ik)e−x(λ) det[X(λ)]k
(λ)
k dλ

∫

p(λ|Ik)e−x(λ) det[X(λ)]dλ
(45)

This integral is however very involved. In practice, it must

be broken into a finite sum over a set of potential values for λ.

Denoting S this set and |S| its cardinality, the recursive algo-

rithm that provides the successive estimates ĥk, k = 1, . . . ,K,

requires that at every step, the values for M
(λ)
k and k

(λ)
k , λ ∈ S

are kept in memory.

Note that the MMSE estimator (45) is no longer linear in

h′

k and, as such, does no longer enter the conventional linear

Kalman filters. In the next section, we propose simulation

results for the proposed minimum update channel estimators,

and compare them to maximum entropy channel estimators

derived in [7]. We study hereafter classical approaches and

show how they differ from or are special cases of our derived

techniques.

D. Comparison with classical channel estimation techniques

The channel estimation problem is related to the channel

model assumed, mainly determined by the electromagnetic

propagation characteristics of the wireless transmission such as

transmission bandwidth, carrier frequency, relative speed and

spatial configuration of the propagation environment which

itself rules the multipath.

These conditions characterize the channel correlation func-

tion in a two-dimensional space comprising frequency and

time domains. In the general case, each multipath channel



component can experience different but related spatial scat-

tering conditions leading to a full bi-dimensional correlation

function across these domains.

Nevertheless, classical Clarke and Jakes derivations [18]

[19] are based on the assumption that the physical scattering

environment is chaotic and therefore the angle of arrival of the

electromagnetic wave at the receiver is a uniformly distributed

random variable in the angular domain. As a consequence, the

time-correlation function is strictly real-valued and governed

by the well known expression rν(∆t) = J0(2πfd∆t) where

J0 is the zeroth-order Bessel function. In addition, the Doppler

spectrum is symmetric and interestingly there is a delay-

temporal separability property in the general bi-dimensional

scattering function.

Under this light, the Wide-Sense Stationary Uncorrelated

Scattering (WSSUS) channel model has been proposed [17]

and commonly employed for the multipath channels experi-

enced in mobile communications.

This framework might be suboptimal in general. For exam-

ple, when the mobile is moving in a fixed and known direction,

as for example in rural or suburban areas, the WSSUS model

would be non applicable. Instead, it can be considered to be

separable when the direction of motion averages out because

each multipath component is the result of omnidirectional

scattering from objects surrounding the mobile, as one would

expect in urban and indoor propagation scenarios. Separability

is a very important assumption for reducing the complexity of

channel estimation, allowing the problem to be separated into

two one-dimensional operations.

Hence, for the sake of comparison with the methods pro-

posed in previous paragraphs and which do not make the

separability assumption, the channel can be estimated using

a two step approach. First, pilot sub-carriers are used to es-

timate the whole channel impulse response (CIR) performing

frequency-smoothing on each OFDM symbol where pilots are

present. Secondly, the smoothed impulse response functions

corresponding to a set of of OFDM symbols is used in order

to improve the channel transfer (CTF) function estimate at the

symbol of interest.

Even-though TD filtering could be applied remaining in the

frequency domain to CTF estimates rather than to the CIR in

the time domain because of the linearity relationship between

the two, we prefer this option to limit the complexity of the

operation.

Thus, for the first step, the Frequency-Domain (FD) optimal

MMSE estimator under the assumption of uniform channel

power delay profile of known length L is linear and given by

ν̂
(FD)
k = (FH

LP
H

kPkFL + σ2IL)
−1FH

LP
H

kh
′

k (46)

For the second step, Time-Domain (TD) filtering to exploit

time correlation with the channel at previous OFDM symbols

containing pilots can be approximated in the form of a finite

impulse response filter.

The channel CIR at the lth tap position and at time instant

k is estimated as

ν̂l,k = wH

l ν̂
M
l,k (47)

where we exploit the vector ν̂
M
l,k = [ν̂

(FD)
l,k , . . . , ν̂

(FD)
l,k−M+1]

T

of length M of l-th tap estimates across M time instants.

Finite length filter approximation seems reasonable as the

correlation between consecutive symbols decreases as the

terminal speed increases. The fact that the TD correlation is

inversely proportional to the terminal speed sets a limit on the

possibilities for TD filtering in high-mobility conditions.

The statistical TD filter which is optimal in terms of Mean

Square Error (MSE) [16] is the M × 1 vector wl given by

wl = (Rνk
+ σ2I)−1rνk

(48)

where Rνk
= E[νM

l,k(ν
M
l,k)

H] is the lth channel tap M × M

correlation matrix and rνk
= E[νM

l ν∗l,n] the M×1 correlation

vector between the lth tap of the current channel tap realization

and M previous realizations including the current one.

In practical cases, the FIR filter length M is dimensioned

according to a performance-complexity trade-off as a function

of the terminal speed.

As an alternative to FIR TD-MMSE channel smoothing

coefficient computation, an adaptive estimation approach can

be considered which does not require knowledge of second-

order statistics of both channel and noise. A feasible solution

is the Normalized Least-Mean-Square (NLMS) estimator.

It can be expressed exactly as in Equation (47) but with the

M × 1 vector of filter coefficients w updated according to

wl,k = wl,k−1 + ul,k−1el,k (49)

where M here denotes the NLMS filter order. The M × 1
update gain vector is computed according to the well-known

NLMS adaption

ul,k =
µ

‖ν̂M
l,k‖2

ν̂
M
l,k (50)

where µ is an appropriately-chosen step adaptation and

el,k = ν̂l,k − ν̂l,k−1 (51)

It can be observed that the TD-NLMS estimator requires

much lower complexity compared to TD-MMSE as no matrix

inversion is required, as well as not requiring any a priori

statistical knowledge.

Finally, using both MMSE or NLMS approaches, the CTF

channel estimate at kth symbol can then be retrieved by

ĥk = FLν̂k (52)

When the channel hk is modelled in a similar manner as

previous paragraph, i.e. the channel evolution across time is

expressed by the following state-space model

hk = λhk−1 +
√
1− λ2wk

h′

k = hk + nk
(53)

where wk ∼ CN(0,Q) is known as the channel innovation

term and nk ∼ CN(0, σ2IN ) is the additive white Gaussian

noise on pilot (and data) symbols. It is to be noted that this 1st

order auto-regressive model still complies with the statistical

assumption on hk ∼ CN(0,Q) made so far.



Under these assumptions, one can easily come up with the

expression of a channel estimator according to the classical

Kalman form [15]. In fact, letting (FL)nm = e−2πinm
N with

0 ≤ n ≤ N− 1 and 0 ≤ m ≤ L− 1, this can be written as



























Mk = FL

(

λ2Ck−1 +
1−λ2

L IL

)

FH
LP

H

k

×
(

PkFL

(

λ2Ck−1 +
1−λ2

L IL

)

FH
LP

H

k + σ2IN

)−1

kk = λkk−1 +MkPk(h
′

k − λkk−1)

Ck = (IL −KkPkFL)
(

λ2Ck−1 +
1−λ2

L IL

)

(54)

Interestingly, as previously pointed out in Section V-B, Equa-

tion (54) is somewhat consistent with (40) derived using

the minimal update approach. Nevertheless, both expressions

differ in the adaption mechanism which, in the case of the

Kalman estimation algorithm, relies on the Kalman-gain Mk

and the error estimate covariance matrix Ck update. Notice

importantly that the estimation process assumes the knowledge

of noise statistics σ2 and the channel length L. In case the

latter is not provided, it would be necessary to assume L
as the largest channel length allowed by the OFDM system

parameters in use. Therefore in practice, one should dimension

it as L = ⌊N/M⌋ [2] in case of imperfect knowledge. In

spite of these limitations, the Kalman estimator is often chosen

because of the well know robustness against non-stationarity

of the signal statistics via the adaptation of the estimate

covariance matrix. In order to counter the intrinsic need of

parameter knowledge, one could think of using Expectation

Maximization in conjunction with Kalman or plain MMSE

techniques. Indeed, with an additional complexity cost, any

of such channel estimator can be coupled with parameter

estimation (speed or channel length) in an iterative fashion.

Nevertheless, contrary to the original methods presented based

on Maximum Entropy principle and then constructed to be

robust with respect to parameter knowledge, they would need

the necessary amount of data to converge to construct the

correct a-priori information. Such methods are then well suited

only in those cases where the channel is stationary.

Note that other classical adaptive estimators such as (nor-

malized) least mean squares and recursive least squares, that

discard most a priori knowledge, perform much less accurately

than optimal 2-D MMSE optimal filter [16].

VI. SIMULATION AND RESULTS

In this section, we provide simulation plots to compare,

at time t, the minimal channel estimation update method

against (i) the one-dimensional MMSE [3], [2], taken at time

t, which takes only into account the last past pilot symbols

and uses a fixed empirical covariance matrix, (ii) the optimum

two-dimensional MMSE provided in [12], (iii) the 1D+1D

optimum MMSE, (iii) the 1D+NLMS and (v) the Kalman

provided as reference in the section of classical channel

estimation techniques, with K = 4 pilot time indexes. The

OFDM DFT size is N = 64, the channel length L = 6 is

known to the receiver, the vehicular speed is v = 120 km/h,

pilot sequences are transmitted every 0.29 ms (as in 3GPP-

LTE [14]), and the induced Jake’s time correlation λ be-

tween t and the past pilot sequence arrival time is known

to the receiver. In scenario (ii), all K past received pilot

sequences and time correlations are perfectly known. The

channel time correlation model is a K-order autoregressive

model following [13]. A performance comparison is proposed

in Figure 2. We notice here that the minimal update algorithm

does not show significant performance decay compared to

the optimal two-dimensional MMSE estimator, while the one-

dimensional MMSE estimator, also relying on the last past

pilot sequence, shows large performance impairment. Kalman

estimation shows to be comparable in performance only when

the channel length parameter is perfectly known but heavily

impaired when the maximum channel length assumption is

taken instead. The 1D+1D MMSE shows to behave exactly

as optimal 2D as well, only when perfect knowledge of

parameters is assumed. Interestingly, the NLMS method shows

to fail because of the extremely little adaptation lag used in

this comparison. Anyway, results not presented here show that

NLMS can only be useful if allowed to train over long periods

of hundreds of symbols.

In Figure 3, with the same assumptions as previously, we

consider the hypothesis where the vehicular speed v is a priori

known to be (with equal probabilities) either 5, 50, 120 km/h.

The performance is compared against the optimal 2-D al-

gorithm where v is known but erroneously estimated (v =
5, 50, 100 km/h). It is observed that, again, even when λ,

or equivalently v, is a priori unknown, the Bayesian minimal

update framework manages to ideally recover the channel with

no performance decay. On the opposite, when λ is erroneously

estimated, the performance decay of the optimal estimator

might be dramatic.

In Figure 4, we show the Block Error Rate (BLER) perfor-

mance comparison of a realistic LTE OFDM setup with Turbo

Codes and actual signal detection and channel decoding. The

BLER plots are obtained for classical OFDM detection per-

formed using the minimal update and Kalman (with imperfect

knowledge of channel length parameter) channel estimation.

The case where detection is performed using ideal channel

knowledge is also presented for the sake of completeness. The

minimal update channel estimation provides performances that

lies in between the other two cases. Moreover, it shows to

offer the same performance as for the optimal 2D estimation

although the plot has been omitted for clarity. Hence, the

robust minimal update estimation method reveals to be an

excellent choice with respect to a method of similar structure

and complexity such as Kalman but avoiding the bargain of

estimating side information.

VII. CONCLUSION

In this paper, we proposed a novel framework to channel

estimation, applied to OFDM-based systems. We successively

discussed the fundamental nature of channel estimation, un-

der a Bayesian point of view. This approach allowed us

to redefine channel estimation as a technique allowing one
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to infer the posterior probability distribution p(h|y, I) of a

channel h given some input data y and prior information

I . Assuming the receiver is allowed to store as much past

information as desired, we then discussed optimal channel

estimators under various levels of prior information at the

receiver; the optimality emerges from a systematic usage of

the maximum entropy principle. Then we proposed a novel

approach to extend the maximum entropy setup when the

receiver is oblivious of past received data. In a particular case,

the latter was shown to be equivalent to the classical Kalman

filter. Simulations suggest that the proposed novel technique

is indistinguishable in performance from the optimal infinite

time maximum entropy approach.
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