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Discrete approximation to solution flows of
Tanaka’s SDE related to Walsh Brownian
motion

Hatem Hajri

Abstract In a previous work, we have defined a Tanaka's SDE related tsh/Va
Brownian motion which depends on kernels. It was shown thextet are only one
Wiener solution and only one flow of mappings solving thisapn. In the termi-
nology of Le Jan and Raimond, these are respectively thaggraand the weaker
among all solutions. In this paper, we obtain these solatias limits of discrete
models.

1 Introduction and main results

Consider Tanaka'’s equation:
t
Bt =+ [ sgrigsu(9)dW, s<txe R, ®
S

where sgix) = 1.0} — Lix<o}, W = Worlji-0p — Wholgi<op and (Wee,s < t) is a
real white noise on a probability spat@, <7, P) (see Definition 1.10 [6]). This is
an example of a stochastic differential equation which aslmiweak solution but
has no strong solution. K is a stochastic flow of kernels (see Section 2.1 [5]) and
W is a real white noise, then by definitiofi{,W) is a solution of Tanaka'’s SDE if
foralls<t,xeR, f e C3(R) (f isC?> onR andf’, {” are bounded),

Kot F () = () + /S t Ks,u(f'sgn)(x)W(duH% /S ‘Keuf"(9du as  (2)

WhenK = ¢y is a flow of mappingsK solves (2) if and only iy solves (1) by Itd’s
formula. In [7], Le Jan and Raimond have constructed theusftpw of mappings
associated to (1). It was shown also that
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2 Hatem Hajri

KZ¥( X) = Oyt sgrixWa; Lit<tsx} + (iN+ + 67W§>1{I>Tsx}’ s<t,xeR,
is the uniqueZ"V adapted solution (Wiener flow) of (2) where

Tox = iNf{r >s:Ws; = —[x|}, Wi :=Wk; — inf Wk,
' ' © uglst]

In [5], an extension of (2) in the case of Walsh Brownian motweas defined as
follows

Definition 1 Fix N € N*, ay,---,an > 0 such thatzI i =1 and consider the

graph G consisting of N half line®;)1<j<n emanating fronD (see Figure 1).

Fig. 1 GraphG.

Let e be a vector of modulus such that D= {he,h > 0} and define for all
z€ G, e(z) =g if z€ Dj,z# 0 (conventione(0) = ey). Define the following dis-
tance on G:

VPR / 2
aveurie) - {170, R R
=j,(h,n") e Re.
For x € G, we will use the simplified notatidr| := d(x,0).
We equip G with its Boret-field (G) and set G = G\ {0}. Let GZ(G*) be the
space of all f: G— R such that f is continuous on G and has bounded first and
second derivatives (fand ') on G* (here f(z) is the derivative of f at z in the
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directione(z) for all z # 0), bothlim,_,0 zcp; 220 f'(2) andlim,_,0 2cp; 220 f”(2) exist
foralli € [1,N]. Define

N
— 2(3%\ - ' : 15—
Plas o) {f <Gl i;al ZﬁO,lzlenI’]Di,Béof @ 0} '

Now, Tanaka’'s SDE on G extended to kernels is the followieg Remarks 3 (1) in
[5] for a discussion of its origin).

Tanaka's equation on G. On a probability spacéQ, o7, P), let W be a real white
noise and K be a stochastic flow of kernels on G. We say(KaW) solves(T) if
foralls<t,f € D(as,---,0n),XE G,

Kst f(X) = (X +/ Ksuf' (X)W (du) + = /KSU f”(x)du as.

If K = &y is a solution of(T ), we just say thatg, W) solves(T).

Equation(T) is a particular case of an equati¢i) studied in [5] (it corresponds
to € = 1 with the notations of [5]). It was shown (see Corollary 2 fBiat if (K, W)
solves(T), thena(W) C o(K) and therefore one can just say tKasolves(T). We
also recall

Theorem 1.[5] There exists a unique Wiener flow'K(resp. flow of mappingg)
which solvegT).

As described in Theorem 1 [5], the unique Wiener solutiofilgfis simply

N
K&t (%) = St epowg Lt<ran + Z 0 Gy Lit> 15} - 3)
i=

where
Tsx = INf{r > s: X+ e(X)Ws = 0} = inf{r > s: W5, = —|X|}. 4)

However, the construction of the unique flow of mappifigsssociated téT ) relies

on flipping Brownian excursions and is more complicated. tAroconstruction of

¢ using Kolmogorov extension theorem can be derived fromi@edt.1 [7] simi-
larly to Tanaka’s equation. Here, we restrict our attentmdiscrete models.

The one point motion associated to any solutiofiTof is the Walsh Brownian mo-
tionW(as,---,an) onG (see Proposition 3 [5]) which we define as a strong Markov
process with cadlag paths, state sp&cand Feller semigrouph )i>o as given in
Section 2.2 [5]. WheiN = 2, it corresponds to the famous skew Brownian motion
[4].

Our first result is the following Donsker approximationwfay, - - -, an)

Proposition 1 Let M= (Mp)n>0 be a Markov chain on G started 8twith stochas-
tic matrix Q given by:
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1
Q(0.&) =ai, Q(ne,(n+1)a)=Q(ne.(n-1)g) =7 vic[LN.,neN" (5)
Let t—— M(t) be the linear interpolation ofMp)n>0 and M' = %M(nt),n > 1.
Then |

(M)t=0 & (Z)r=0

in C([0,+oo[,G) where Z is an Wa4,--- , an) started at0.

This result extends that of [2] who treated the cage---- = ay = % and of course
the Donsker theorem for the skew Brownian motion (see [1¢f@mple). We show
in fact that Proposition 1 can be deduced immediately froenctmseN = 2.

In this paper we study the approximation of flows associai€d j. Among recent
papers on the approximation of flows, let us mention [8] whileesauthor construct
an approximation for the Harris flow and the Arratia flow.

LetGy = {x€ G;|x| € N} andZ(G) (resp.#(Gy)) be the space of all probability
measures ofs (resp.Gy). We now come to the discrete description(¢fK") and
introduce

Definition 2 (Discrete flows) We say that a procegsq(X) (resp. Nyq(x)) indexed
by {p < g€ Z,x e Gy} with values in G (resp. #(Gy)) is a discrete flow of
mappings (resp. kernels) onG:

(i) The family{ ¢ j+1;i € Z} (resp.{Ni;+1;i € Z}) is independent.

(iVp € Z,x € Gy, Wp py2(X) = Ypr1,pr2(Wp,pra(X))

(resp. Ny, pt+2(X) = Np p+1Np1,p+2(X)) @.s. where

Np.p+1Np+1,p2(X,A) == Np+1,p+2(Y, A)Np p+1(X,{y}) for all A C Gy.
yeby

We call (i), the cocycle or flow property.

The main difficulty in the construction of the flogr associated to (1) [7] is that it
has to keep the consistency of the flow. This problem doesrisat i discrete time.
Starting from the following two remarks,

(1) Pst(X) = X+sgnx)We; if s<t < 154,
(ii) |§st (0)| = W5t and sgiigst (0)) is independent ofV for all s<t,

one can easily expect the discrete analogoug at follows: consider an original
random walkSand a family of signgn;) which are independent. Then

(i) a particle at timek and positiom # 0, just follows what the5, 1 — S tells him
(goeston+1if S —S=21andton—1if S 1 — S =-1),

(i)a particle at 0 at timé& does not move i, 1 — Sc = —1, and moves according
to My if Sep1— Sc=1.

The situation on a finite half-lines is very close. [S2t (Sy)nez be a simple random

walk onZ, that is(Sh)neny @and(S-n)nen are two independent simple random walks
N

onZ and(ni)icz be a sequence of i.i.d random variables with z\/\aiéa which is
i=
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independent 08. Forp < n, set

Sn=S-S Sn=S- min S = Spn— min S

he[p.,n

and forp € Z,x € Gy, define

Wppr1(X) =x+€X)Sppi1if x7#0,Wpp.1(0) =npS) 1

N
Kp.p+1(X) = Stexs, g If X7 0,Kpp+1(0) = i;ai O e

In particular, we hav&p p,1(X) =E[dy ., |0(S)]. Now we extend this definition

forall p<neZ,x e Gy by setting

l'IJD,n(X) = Xl{ p=n} + LPn—l,n © qJn—z,n—l ©--+0 LPp,erl(X) 1{ p>n}s

Kpn(X) = 5x1{ p=n} T Kpps1-- Kn—2n-1Kn-1,n(X) 1{ p>n}-

We equipZ(G) with the following topology of weak convergence:

B 1909 —9(y)l _
B(P.Q) = sup{l/gdP—/gdq, HgHooJriiw <1,9(0) = 0} :

In this paper, starting frort¥, K), we constructg,K") and in particular show the
following

Theorem 2.(1) W (resp. K) is a discrete flow of mappings (resp. kernels) gn G
(2) There exists a joint realizatiofy,N, ¢,K") on a common probability space
(Q,./,P) such that

() (.N) = (W.K).

(i) (¢, W) (resp.(KW,W)) is the unique flow of mappings (resp. Wiener flow) which
solves(T).

(i) Foralls e R, T > 0,x€ G,xp € %GN such thalimp_,. Xn = X, we have

. 1
lim sup |ﬁwmsj,tntj (\/ﬁxn) - ¢s,t(x)| =0as

N=®gct<stT

and
lim  sup_B(King,[ny) (vX0) (vN),KY{ (x)) =0 as. 6)

N—=0gct<st T
This theorem implies also the following

Corollary 1 For all s € R,x € Gy, let t — W(t) be the linear interpolation of

(Wing k(¥),k > [ns]) and W, (x) := %w(”t)v Kt (X) = E[dwn,x[0(9)],t = s,n>

1 Forall1<p<aq,(X)i<i<qC G, letx' e %GN such thalimp_. X' = x;. Define
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Y= (W5 (V). W (V). KD (VI 1), KD (VD))

Then
q

Y —)Y in C 3 +°° C([Sa+°°[7'gz(G))
n—+e l_l Jlll J

where
¥ = (Bs (). B O0p) KE,, (6p10), - KE ) )

Our proof of Theorem 2 is based on a remarkable transformatiwoduced by

Csaki and Vincze [9] which is strongly linked with TanakaBE. LetShe a simple

random walk orZ (SRW) ande be a Bernoulli random variable independentof
(just one!). Then there exists a SRWsuch that

oM)=a(e,S

and moreover

1 1
R nt). —
( ﬁS( ); NG
wheret — S(t) (resp.M(t)) is the linear interpolation d& (resp.M) andB,W are
two Brownian motions satisying Tanaka’s equation

dW = sgn(\W )dB

We will study this transformation with more details in Secti2 and then extend
the result of Csaki and Vincze to Walsh Brownian motion (Psifion 2); Let
S= (Si)neny be a SRW and associate ®the proces®;, = S, — QlinS(, flip in-

n

dependently every “excursion "of to each rayD; with probability a;, then the
resulting process is not far from a random walk®mvhose law is given by (5). In
Section 3, we prove Proposition 1 and study the scalingdiofit!, K.

M(nt))e>0 nf%) (Br,W)e=0 in C([0, o[, R?).

2 Csaki-Vincze transformation and consequences.

In this section, we review a relevant result of Csaki and ¥&and then derive some
useful consequences offering a better understanding @keesequation.

2.1 Csaki-Vincze transformation.

Theorem 3.([9] page 109) Let S= (Sy)n>0 be a SRW. Then, there exists a SRW
S= (S))n>0 Such that:
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Yni= T<a>é<—§n:> Yn—|Sh|| <2 VneN.
<n

Sketch of the proof.Here, we just give the expression®fith some useful com-
ments (see also the figures below). Weist that a careful reading of the pages 109
and 110 [9] is recommended for the sequel. Ket § — §_1,i > 1 and define

7 =min{i >0:5.1S:1 <0}, 11 =min{i > 1 :S5-1S;1 <0} VI > 1.

Forj > 1, set B
Xj= %(_1)|+1X1XJ'+11{T|+1§J§T|+1}'
>
Let =0, S =X1+--+Xj, j > 1. Then, the theorem holds f& We call
T(S) = Sthe Csaki-Vincze transformation &f

IS
u

IN)
wn!

Fig. 2 SandS.

Note thatT is an even function, that i§(S) = T(—S). As a consequence §iii )
and(iv) [9] (page 110), we have

T =min{n>0%=21}v >1 (7)
This entails the following

Corollary 2 (1) Let S be a SRW and defi@e- T(S). Then
(i) Foralln >0, we haves(S;,j <n)Vvo(S)=0(S,j <n+1).
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0 i1 1Y) &}

Fig. 3 | andY.

(i) Spisindependentofi(S).
(2) LetS= (S)k>0 be a SRW. Then
(i) There exists a SRW S such that:

Yh = r|1(1<a><_5kf§né Yn—|S|| <2 VneN.
<n

(i) T~1{S} is reduced to exactly two elements S an8 where S is obtained by
adding information tcs.

Proof. (1) We retain the notations just before the corollary. (ipfove the inclusion
C, we only need to check thdt; + 1< j < 111} € 0(S,h < n+1) for a fixed
i <n. This is clear sincg1i = m} € 0(S,,h < m-+1) for all I,me N. For all
1< j<n wehaveXj 1 =350(—1) XX Lg1<jer, - BY D {1 +1<j <
Tiy1} € 0(S,h < j—1) and so the inclusiom holds. (i) We may write

Tp=min{i > 1:X1S§_1X1S411 <0}, fpa=min{i > 1 : X4§_1%1S4+1 <0} VI > 1.
This shows thaBis o(X1Xj+ 1, j > 0)-measurable and (ii) is proved.

(2) (i) SetX; =Sj—Sj_1,j > 1andy =min{n> 0,5, =2l} forall | > 1. Lete be
a random variable independent®$uch that:

Define
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Xj1=€lj—op + <%(_1)|+18Y1 1{n+1sjsml}> L=y

>

Thensets=0,S; = X1 +---Xj,j > 1. Itis not hard to see that the sequence of the
random timest; (S),i > 1 defined fromS as in Theorem 3 is exactly,i > 1 and
thereforeT (S) = S. (i) Let Ssuch thafl (S) = S By (1), 0(S) v o(S) = a(S) and

S is independent o® which proves (ii).

2.2 Thelink with Tanaka's equation.

Let Sbe a SRWS= —T(S) andt — S(t) (resp.St)) be the linear interpolation of
S(resp.9 onR. Define for alin > 1, §" = %S(nt),_én) = %Qnt). Then, it can
be easily checked (see Proposition 2.4 in [3] page 107) that

§",8" )20 > (B Wrzo in C((0, 0], R?).

+oo

In particularB andW are two standard Brownian motions. On the other h¥id -
|Shl| €2Vne Nwith Y, :=§,— rlllinék by Theorem 3 which impliegM| = B, —
n

Omin B,. Tanaka’s formula for local time gives
<u<t

1
W[ = [ sartwh)aV, + Lu(W) = B — min B,

o<u<t

whereL; (W) is the local time at 0 0¥V and so
dW, = sgn(W)dBy. 8)

We deduce that for each SR8the coupleg—T(S),S), suitably normalized and
time scaled converges in law towar@B,W) satisfying (8). Finally, remark that
~T(S) =S= —T(-9) = Sis the analogue dlVsolves(8) = —Wsolves(8). We
have seen how to construct solutions to (8) by meanB.dh the sequel, we will
use this approach to construct a stochastic flow of mappigshwsolves equation
(T) in general.

2.3 Extensions.

Let S= (Sy)n>0 be a SRW and séf, := rp<a>6kf S For 0< p < g, we say that
n

E = [p,q] is an excursion fol if the foIIO\_/ving conditions are satisfied (with the
conventiony_; = 0):
oYp=Yp_1=Yg=Yq+1=0.
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eVp<j<qYj=0=Yj;1=1

For example in Figure 32,14],[16,18] are excursions foY. If E = [p,q] is an
excursion fory, definee(E) :=p, f(E) :=q.

Let (Ei)i>1 be the random set of all excursions Yfordered such thae(E;) <
e(E;) Vi < j. From now on, we calE; theith excursion off. Then, we have

Proposition 2 On a probability spacéQ, <7, P), consider the following jointly in-
dependent processes:

e 1 = (Ni)i>1, a sequence of i.i.d random variables distributed accaydio
N

308

e (Si)new @ SRW.
Then, on an extension 62, <7, P), there exists a Markov chaifMy, )<y Started at
0 with stochastic matrix given by (5) such that:

Yni=mas—S = |My—niYn| <2

k<n

on the ith excursion of .

Proof. Fix Se T~{S}. Then, by Corollary 2, we hay¥, — |S,|| < 2 ¥ne N. Con-
N

sider a sequendgs; )i>1 of i.i.d random variables distributed accordingZ)aicSa
i=

which is independent ofS n). Denote by(t )1 the sequence of random times
constructed in the proof of Theorem 3 frdnlt is sufficient to look to what hap-
pens at each intervé;, 1,1 (with the conventiorrg = 0).

Using (7), we see that iftj, 1,,1] there are two jumps ofk<nr1]§x; from2to2+1

(J1) and from 2+1 to 2 +2 (J,). The last jump &) occurs always at;_.1 by (7).
Consequently there are only 3 possible cases:

(i) There is no excursion of (J; andJ, occur respectively at + 1 andt + 2, see
[0, 11] in Figure 3).

(ii) There is just one excursion &f (se€[11, o] in Figure 3).

(iii) There are 2 excursions &f (see[T, T3] in Figure 3).

Note that:Yy = Yq,, = S; = S;,, = 0. In the case (i), we have necessarily
T4 =T +2.SetMy = B1.|S\| Vne[n,144]. B

To treat other cases, the following remarks may be usefuifthe expression @&,

we havevl >0

@Ifke[n4+211), S 1=2+1+= S=0. B
(b)Ifke [n,1111), Yx=0=|S1]| € {0,1} andS 1 =0=Y(=0.

In the case (i), leE! be the unique excursion &f in the interval[t, 7,4]. Then,
we have two subcases:

(i1) f(EY) = 141 — 2 (J1 occurs atr 1 — 1).

If 1 +2<k< f(E!)+1, thenk—1< f(EL), and saS._; # 2| + 1. Using (a), we
get:S # 0. Thus, in this case the first zero®&ftert is 1y ;. Set:M,, = r/N(Ell) ISl
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whereN(E) is the number of the excursidh

(ii2) f (Ell) = 7141 — 1 (Jy occurs atr; + 1 and soY 4,1 = 0)). In this case, using (b)
and the figure below we see that the first zgtrof Saftert ise(E!) + 1= 1 + 2.

B

Possible values for |S| %
L]

T T4+1

Fig. 4 The case (ii2).

Set
Bi.|S] if neln, " —1]
Mn: . *
’7N(E|1)-|Sn| if nelr, 1

In the case (iii), IeE|1 and E|2 denote respectively the first and 2nd excursiol of
in [1,741]. We haveq +2< k< e(E?) = k—1<eE?) — 1= f(El) = S 1 #
2l + 1= S # 0 by (a). Hence, the first zero Saftery is 1" := e(E|2) + 1 using
Yk =0=|S1| € {0,1} in (b). Set:

Mo — ’7N(E|1)-|Sn| ifnen, i —1]
n— .

Nnez)- 1Sl ifne [, 1)
Let (Mn)nen be the process constructed above. Then cleéibly- niYq| < 2 on the
ith excursion ofY.
To complete the proof, it suffices to show that the law(Mdf) < is given by (5).
The only point to verify iSP(Mp1 = &|Mn = 0) = a;. For this, consider on another
probability space the jointly independent proces$&y,A) such thatSis a SRW
andy,A have the same law ap. Let (7));>1 be the sequence of random times de-
fined fromSas in Theorem 3. For alle N, denote byr;" the first zero oS after
and set

Ve — Y-S if ne(n, i —1]
n— .
ALS ] if ne [T, 144]

Itis clear, by construction, thai '3y We can write:

{TOaTSaTl;TI;TZa"'}:{TOaTlvTZa"'} WIthT0:0<T1<T2<
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N
For allk > 0, let{y := Z)ej 1{V‘[Tk-Tk+11€Di}' Obviously,Sand {y are independent
=

N
anddy law Zlai g . Furthermore

1t
PVhi1=6(Va=0) = mkzop(vml =6,S=0,n¢e [Tk, Tks1)
S
= mk;)]?@k =6,S=0,n¢e [Tk, Tksa)
= q

This completes the proof of the proposition.

Remark 1 With the notations of Proposition 2, Ié4.Y) be the Markov chain de-
fined by(n.Y)n = niYn on the ith excursion of and(n.Y), = 0if Y, = 0. Then the
stochastic Matrix ofn.Y) is given by

i 1.
M(0,0)==,M(0,e) = %,M(ne,(n+1)a) =M(ne,(n—1)g) = >l € [1,N], ne N*.

(9)

NI =

3 Proof of main results.

3.1 Proof of Proposition 1.

Let (Z )10 be aW(ay,---,an) on G started at 0. For ali € [1,N], definez] =
1Z[1zep) — 1Z Lz g0, ThenZi = &' (z;) whered (x) = [XLep,) — X Lo}
Let Q' be the semigroup of the skew Brownian motion of parametéSBMa;))
(see [10] page 87). Then the following relation is easy takh@ (f o ®') = Qi f o '
for all bounded measurable functibmefined orR. This shows thaZ' is aSBM a;)
started at 0. Fon > 1,i € [1,N], define

1

Ton - O, TkrlLl - Inf{l’ Z O . d(Zr,ZTkn) =
/n

1,k> 0.

. , o 1
T =0 T™ =inf{r>0:1Z -Z' ;| = —=}.k>0.
0 ) k+1 n {r— |I’ ZTkn.| \/ﬁ}a =

Remark thafly,, = T, =inf{r > 0:(|Z| - Zp|| = J5}. Furthermore i € D;,
then obvioushyd(Z;, Zs) = |Z — Z.| for all s> 0 and consequently
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N . .
Az.2)< 3 A2 (10)

law

Now definezy = \/_ZTn Zk = \/_Z' ni- Then(Zy,k > 0) = M (see the proof of
Proposition 2 in [5]). For all > 0, We have

sup d(Z;, ZLntJ )< Z sup |Zl — — Lnt | T 0 in probability
te[0,T] te[0,T]

by Lemma 4.4 [1] which proves our result.

Remarks 1 (1) By (10), a.s. = Z; is continuous. We will always suppose that
Walsh Brownian motion is continuous.

(2) By combining the two propositions 1 and 2, we deduce thaf) rescales as
Walsh Brownian motion in the space of continuous functitiris.also possible to
prove this result by showing that the family of laws is tightlaéhat any limit process
along a subsequence is the Walsh Brownian motion.

3.2 Scaling limitsof (W,K).

Setnpn=e&Wpn) forall p < nwhereW,, = Wp,(0).

Proposition 3(i) Forall p <n, Wyl =S5,
(i) Forallp <n<aq,

P(Np.a = NnalMiMe(pSh = MithengS) =1
and
P(Npn= nD,Q|minne[p,n]S1 = mirhG[p,q]S‘lv%j >0Vje€nq)=
(i) SetTox=inf{g> p: §—Sp=—|x/}. Thenfor all p< n, xe Gy,

Won(X) = (X+eX)Spn)Lins 1oy} + Pondin=Ty.
N
Kp,n(x) = E[dpp‘n(x) |G(S)] = 5x+e(x)sp,n 1{n§Tp‘x} + .Zai 65;%3 1{n>Tp‘x}-
i=

Proof. (i) We takep = 0 and prove the result by induction onForn = 0, this is
clear. Suppose the result holds foif Wy, € G*, then%ﬁn >0andso mine[o,n]sh =

MiNhe (o041 Sh- Moreover¥o o1 = Yo+ NonSint1 = (Se1— Mihejon Sh)Non =
%*ermn If Won=0, then%*n =0 and|Woni1| = S%H But Minyc(oni1Sh =
mMin(Minke(o,n Sh, Shi1) = min(Sy, Shi1) smce%n = 0 which proves (i).
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(i) Let p < n < g. If minpeipqSh = Minpein g Sh, thenSFjq = Snfq. When%q =0,
we havern pq = Nng = év by convention. Suppose thsg,q > 0, then clearly

J:=sup{j<q:S;; =0} =supj<q:§; =0}

By the flow property ot, we have¥ q = Wh g = W3 4. The second assertion of (ii)
is also clear.

(iii) By (i), we haveWpn = Wpn(x) = 0 if n=Tpx and soW;_(X) is given byW
after Tpx using the cocyle property. The last claim is easy to establis

For all s€ R, let ds (resp.d.) be the distance of uniform convergence on every
compact subset @(][s, +o[,G) (resp.C(R,R)). Denote byD = {s,,n € N} the set
+o0

of all dyadic numbers oR and defineC = C(R,R) x |'LC([$1,+°°[, G) equipped
Nn=

with the metric:
R

d(X,y) = d°°(xlvy>+ %? Inf(la dSn(Xnvyn)) wherex = (lexsov' o )ay: ()/;ySO; o )
n=

Lett — S(t) be the linear interpolation SonR and definésm) =-L1gnt),n>1.
If u<0, we defindu| = —|—u|. Then, we have

e

S(n) S‘UFO(%), with S1 = %SWU'

Let W2, = W2, (0) (defined in Corollary 1). TheHJgP = %w[nsj,[ntj +o(1)and

n

we have the following

Lemma 1. Let P, be the law of Z = (S™, (W),cy) in C. Then(Pa,n > 1) is
tight.

Proof. By Donsker theorerty, — Pw in C(R,RR) asn — o wherePyy is the law

of any Brownian motion oiR. LetPz, be the law of anyV(ay,- -, an) started at 0
at times. Plainly, the law of¥, . . is given by (9) and so by Propositions 1 and 2,
foralli € N, P m — Pz in C([s,+[,G) asn — . Now the lemma holds using

Proposition 2.4 [3] (page 107).

Fix a sequencény,k € N) such thatz k'&> Z in C. In the next paragraph,
— +0

we will describe the law oZ. Notice that(W,n)p<n andS can be recovered from
(Z™)en. Using Skorokhod representation theorem, we may assunmé tisade-
fined on the original probability space and the precedingeqyence holds almost
surely. WriteZ = (W, s, ., s, ,--- ). Then,(W )ier is a Brownian motion ofR and
(Pst)t=sis anW(ay,--- ,an) started at O for al € D.
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3.2.1 Description of the limit process.
Setyst = &(Ust),s € D,s <t and define migy = min¢yy W, u<ve R. Then, we
have
Proposition 4 (i) Foralls <t,se D, [(Jst| = Ws}.
(i) Foralls <t,u<v, ssueD,
P(yst = yuy|minge = minyy) = 1if P(minsg = minyy) > 0.

Proof. (i) is immediate from the convergence & towardsZ and Proposition 3
(). (i) We first prove that for als < t < u,

P(Vs,u - Vt’u|mins,u - mlnt.u) - 1 |f S,t c ID) (11)

and

Fix s<t < uwith s;t € D and let show that a.s.
{minsy=minu} C {FKo, Nnys).(neul = Nnit), [nu) for allk > Ko} (13)

We have{minsy, = min y} = {mins; < min;,} a.s. By uniform convergence the
last set is contained in

{3ko min  § < min  Sjforall k>ko}

s << |net] Int) <j<[neu)
which is a subset of

{3ko Sy= min Sjforallk>ko}.

) mln ) :
[ns| <j<[ngu] [yt ] <j<[meu]

This gives (13) using Proposition 3 (ii). Singe— e(x) is continuous orG*, on
{mingy = min; , }, we have
. 1 . 1
Ysu = I!me(ﬁwmksj,[nkuj) = dme(ﬁw[nktj,[nkuj) = Ytu as.
which proves (11). IE€ D,t > s and miry = minsy, thens andt are in the same

excursion interval of\;" and sowg} > 0 for all r € [t,u]. As preceded{mins; =
minsy} is a.s. included in

{3ko, min §= min §.S

sl <i<ing) sl <i<lna) U

of.j > OVie[[nd], [l k> ko}.

Now it is easy to deduce (12) using Proposition 3 (ii). To grdi), suppose that
s < u,ming; = minyy. There are two cases to discuss, aj u<v <t, (b)s<
u <t <v(in any other cas®(mins; = min,y) = 0). In case (a), we have min=
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mingy = miny: and soyst = yut = Yuv by (11) and (12). Similarly in case (b), we
haveyst = Yut = Yuv-

Proposition 5 Fix s< t,se D,n> 1 and {(s,t);1 <i <n} with § <tj,5 € D.
Then

() yst is independent ofi(W).
(i) Foralli € [1,N], he [1,n], we have

E[L{yg=e}|(Vst)1<icn, W] = 1y —q} ON{Ming; = ming, 1, }.

N
(i) The law of ys; knowing(ys 1 )1<i<n @nd W is given b)Zaiéq when mig; ¢
i=
{ming +;1<i<n}.

This entirely describes the law 6V, Y., s € D) in C independently ofiny, k € N)
law . X
and consequently"Zﬁ ZinC.

Proof. (i) is clear. (ii) is a consequence of Proposition 4 (ii)) iVrite {s,t,s,t,1 <

i <n}={r,1<k<m}withrj<rj;qforall1<j<m-—1. Suppose tha=
ri,t =rn with i < h. Then a.s.{minrj’rj“,i < j <h-—1} are distinct and it will
be sufficient to show thats; is independent o0& ((ys  )1<i<n, W) conditionally to
A= {mins; = miny; r;,,, Minsg # ming ;, forall 1 <i <n} for j € [i,h—1J. OnA,
we haveyst = Vi r;,,, {Ming g, 1 <i<n} C {miny . k# j} and so{ys 5,1 <

i <N} C{Vrerien, K7 J}- SINCEY 1 rp0 -+, Vi 1.rm: W @re independent, it is now easy
to conclude.

In the sequel, we still assume that all processes are defimdtecsame probability
space and tha&" % ZinC. In particularvs € D, T > 0,
— +o0

1
lim sup |—=W¥ — =0 as 14
T +°°s5tgspw| Tk skl Wst| (14)

3.2.2 Extension of the limit process.

For a fixeds < t, ming; is attained irfjs,t[ a.s. By Proposition 4 (ii), on a measurable

setQs; with probability 1,  lim  yy; exists. Defingsy =  lim  yy; on Qs
dostded ' dostded

and give an arbitrary value tesy on Qgt. Now, let ¢st = Ssthft . Then for all
seD,t >s, (&st,¢Pst) is a modification of(yst, Ysy). Forallse R, t > s, ¢st =

rllmj Ps,t @S, wheres, = %ﬁfl and thereforégs; )i>sis anW(ay, - -- , an) started
at 0. Again, Proposition 4 (i) yields

Vs <t,u<v, P(&st = &yy|Minsg = minyy) = 1 if P(minsgy = mingy) > 0. (15)

Define:
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Pst(X) = (X+ e(X)Wst) Lit<rg,) + Pstlitore,) S LXE G,
whereWs; =W —Ws and sy is given by (4).
Proposition 6 Let xe G, x, € %GN, lIMpoewXy =X, s€ R, T > 0. Then, we have
lim su |1KP (VNX) — 9t (X)| =0 a.s
na+ws§t§£T [ st (V) = Pt T =17 &S

Proof. Lets be a dyadic number such that s < s+ T. By (15), fort > s”:

{minsy =ming} C {¢st = ¢s;} as.

and so, a.s.
vt > s, teD; {minst =ming;} C {Pst = Pg}-

If t > s, minsy = ming; andt, € D,ty | t asn — oo, then miry, = miny;, which
entails thatpst, = ¢y 1, and thereforghs; = ¢g ; by lettingn — co. This shows that
a.s.

vt > s {minsy = ming;} C {¢st = g} -

As aresult a.s.
Vs e DNJs, s+ T[,vt > s; {mingg =ming } C {¢st = s} (16)

By standard properties of Brownian paths, a.s.ggifn ¢ {Ws,Ws, 1} and
. . 1. .
Vp e N¥; m|n$s+% < W, m|n$s+% #WH%,E!UP €ls s+ 5[: mmssﬁlj =W,

The reasoning below holds almost surely: Tgkes 1,mingg, 1 > minss;7. Let
Zp €]s,5+ %[: mins!sﬁlj =Wy, ands' be a (random) dyadic number g, .%p|.
Then mingy > ming; for allt € [}, s+ T|. By uniform convergence:

dnpeN:Vn>ng, V.5p <t <s+T, urergslr;] Sihy > ugidrh Sinyj and soW g nt) = Wins),|nt) -
Therefore fom > ng, we have

1 1 .
su —Y — = su —y — using (16
ypst;;J 77 Pinst Iy st ypst;;J 7 insl.ny ¢ | (using (16))

and so
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1 1
sup |_anLnsJ nt| ¢st| < sup | l'IJ[ns |, [nt] — ‘p&t|Jr sup |%Lp[nsj,[ntjf¢&t|

s<t<s+T S<t<.%p Sp<t<s+T
< sup W)+ sup =W ng) ) — Pl
S<t<H \/_%’IS ) (nt] st Sp<t<s+T \/_ <)Lt '
1
< sup W)+ sup [—=Wing) |ny — Dsil-
s<t<stl \/_%s (] ) s’<t§s’+T Vvin s it '

From (14), a.sVu € D, I|m su LIJ
( ) +°°u<t<uFJ)rT | \/— [nul,[nt]
~+00 and thenp go t0+oo we obtain

— ¢ut| = 0. By lettingn go to

lim sup |\/ﬁllJLnsJ7LmJ —@st| =0as. a7)

=0 st<st+T

We now show that

. 1
M =Ty = Toxas (18)
We have 1
ﬁTLnSJx/— flnf{r> S? S = —|xn|}.

Fore > 0, from

lim  sup (S~ S+ [xal) — Weu+ [x))| =

“ue [rsx.,rsx+s]

we get

lim inf (§ -+ %)= inf }(W3u+|x|)<0

N—® ye [T, Tsx+£] UE(Tsx, Tsx+E

which impIies%TLnsjyﬁ)Qq < Tsx+ € for n large. If x= 0, %TLnsj,\/ﬁm > L"—:J en-
tails obviously (18). Ifx # 0, then working in[s,7sx — €] as before and using
infucis o) (W —Ws + [X]) > O, we prove that%TLnsJ’ﬁxn < 1sx — € for n large
which establishes (18).

Now

1
SUP | = Wing) jny (VIX0) — @1 (X)| < sup Qg7+ <ts<usriTQ§’t” (19)
Ss<t<

s<t<s+T S<t<s+T

where

Qst' = | (¥ +e(xn) (§' — )1 [t <T g e} — X+ €0OWe) Lt<rgy

1
Qé’tn = |%LPLHSJ~,LmJ 1{ [Nt)>Ting), ymx} — Pst 1{t>Tsx} -
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By (17), (18) and the convergenceéﬁsm towardsw on compact sets, the right-
hand side of (19) converges to 0 when> +oo.

Remark 2 From the definition o&s; (or Proposition 6), it is obvious that
Erros & rm W are independent for allyr< --- < ry. Using (15), we eas-
ily check that (i), (ii) and (iii) of Proposition 5 are satisfil for all s< t,n >
1,{(s,t);1 <i<n}with § <t (the proof remains the same as Proposition 5).

Proposition 7 ¢ is the unique stochastic flow of mappings solutio(iTof

Proof. Fix s<t < u,x e G and let prove thads u(X) = ¢r.u o Pst(X) a.s. We follow
Lemma 4.3 [7] and denot x by 75(x). All the equalities below hold a.s.
On the even{u < 15(X) }, dst (X) = X+ €(X)Ws, Tt (Pst (X)) = Ts(X) < uand

Btuo Pst(X) = X+ €(X) (Wst +Wu) = X+ e(X)Wsu = ¢su(X).

On the event{15(x) €]t,u]}, we still haveds;(x) = X+ e(x)Wsr and 1 (@st (X)) =
75(x) < u, thus

Pruo Pst(x) = 5t,uV\4,+u = 5&quJ,L = ¢Psu(X).

since on the evertrs(x) €]t,u]}, mingy = min; y andWSju =W, —minsy = V\.ﬁ,.
On the even{1s(x) <t} N{Ti(¢st(X)) < U}, Psi(X) = fs,thJ,? and

Gruo Pst(X) = ¢t,u(gs,twsﬁ) = gt,uV\Hj = gs,uW;u = ¢su(X)
sinceWSJ,rn(%t(X)) = 0 and thus migy, = min y, which implieses, = & andWSfru =
W

On the even{1s(x) <t} N{T(Pst(X)) > u}, Pst(x) = es,twsﬁ and

Pruo Pst(X) = ¢t,u(€s,twsﬁ) = &st (W&JE +W) = fs,uW;u = ¢Psu(X).
since in this case mip = mins; which implieses,, = £st and

W&fu =W, — mingy
:V\AJ7WS+W57 minsJ
= ;t +W,u-

Thus we have, a.gsu(X) = ¢ty o @st(X) which proves the cocyle property for. It
is now easy to check thatis a stochastic flow of mappings in the sense of Definition
4[5].

Note that(¢or,t > 0) is anW(ay,---,an) started at 0 and therefore satisfies
Freidlin-Sheu formula (Theorem 3 [5]). Léte D(ay,-- - ,an), then for allt > 0,

f(gor) = f(0)+/ot f/(fl’o,u)dBqu%/ot f/(¢oy)du as.
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whereB; = |¢ot| — Li(|¢o.|) andLi(|@o, |) is the symmetric local time at 0 ofo_|.
Since|dot| =W — mings, we getB; =W. Letx € D; \ {0} andfi(r) = f(rg),r > 0.
Since limy_,0.7ep; 720 f'(2) and limy_,0 2cp; 220 £ (2) exist, we can construgtwhich
is C2 onR and coincides witt; onR ;. By Itd’s formula

t / 1 t /!
01+ W) = 9(h)+ [ (X +We)dWe-+ 5 [ () +Wejdu as

and so fort < 19(x), we have
(B0 0) = 09+ [ F(Goul)aWe+ 5 [ '(Goul)dlu as

Seta = £(0) + 5™ 1/(9ou)dWo+ 3 5% 1" (Gou)du= T(do500) = F(0) since
Wy 1y = 0- Then fort > To(x), write

hor¥) =100 =a+ [ TG0t [ " (goue
10+ [ FGout0)dmis 3 [ ' (dout)au

To(X To(X)

But £(x) + Jg ' (@o.u(x)) AW + 5[5 £ (gou(x))du= F (g 1 (X)) = F(0)
and so, foralt >0, f € D(ay,---,an),Xx€ G,

t / 1 t "
f(90u(¥) = F(¥+ [ F(fout0)dvi+5 [ #(fout0)du as  (20)
Now, let (¢, W) be a any flow of mappings solution ¢F). Lemma 6 [5] implies
Wor (X) = X+ e(x)Wo; for 0 <t < 1o x With Tox given by (4) (22)

By considering a sequendey)k>o converging toe, this shows thaio(\W) C

o(Yor(y),y € G). Therefore, we can define a Wiener stochastic flcivobtained
by filtering 8y with respect tao (W) (Lemma 3-2 (ii) in [6]) satisfying¥s <t,x €

G, K (X) = E[dy,x|0(W)] as. In particularK* solves(T) and sincekV given
by (3) is the unique Wiener solution dT), we get:vs<t,x € G, K{{(x) =

E[dys, x| (W)] a.s. (see Proposition 8 [5]). Als(‘)’f{ (0) is supported on@WOfte, 1<

i < N'}, we deduce thatlio; (0)] = Wy Combining this with (21), we see that

inf{r >0:or(X) = Wo,r(0)} = Tox.

This impliesyo (X) = Yo, (0) for all r > 19 by applying the following

Lemma 2. Forall (Xi,--- ,%n) € G", denote byPy, ... x, the law of(Wo_(X1), -, Po.(%n))
in C(R4,G"). Let T be a finite(%#) stopping time where% = o({pu,u <
t),t > 0. Then the law of( Yo T+ (X1), -, Po 1+ (X)) knowing Zt is given by

IEDl'Uo.T (x1),,Wo,T (%n) -
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Note thatWp, can be recovered out froly,” and consequentlyp_(x) is a mea-
surable function ofyp_(0) for all x € G. Therefore, for all(xy,---, %)) € G",
(Yo, (X1),---,Po.(Xn)) is unique in law sinceyq.(0) is a Walsh Brownian motion.
This completes the proof.

3.2.3 The Wiener flow.

Remark thakg{ (x) = E[8y,,(x |0(W)] which entails thak" is a stochastic flow of
kernels. By conditioning with respect (W) in (20), we easily see thakV, W)
solves(T). In order to finish the proof of Theorem 2 and Corollary 1, wedenly
check the following lemma (the proof of (6) is similar)

Lemma 3. Under the hypothesis of Proposition 6, we have

sup B(KY(x),KD (v/Nx))) —— 0 a.s.
e (Kst (%), Kst (vnxq)) ——

Proof. Letg: G — R such that|g||« +SUW <1,9(0) =0. Then,
X~y -

'/Gg(y)K )(dy) — /g K fm(dy>‘§vs}f“+vsﬁ”

where

V&lt’n = ‘g(Xn—i—e Xn S:j,t 1{[nt <Tn il T (X+e(X)WS,t)1{t§TSX} R

N
2
VE" = Y o0 [0V Lt g — OESist + O 00T |

ando, € Gis aa(S) measurable random variable such tfmat < % =9

g, St = nsJ - AS[X] —1<x<[x] +1forallxe R, we get

VSt < sup [xn+€(Xn) §‘~t —X—e(X)Wst|+ sup |g(%n+e(Xn) §‘~t )|+ sup |g(x+e(x)Ws;)]
t€lnsx t€dnsx teKnsx

with Insx =[S, Tsx V (£ + £ Tjng), /ixy))»

1 1 1 1
Jnsx = [Tsx, (= TLnsJ Vi, T ) V Tsx|, Knsx = [TsxA (HTL”SL\/HN’I - ﬁ)’ Tsx].

Using|g(y)| < |y|, we obtain

SUp (g0 +€(x) ST )|+ Sup [g(x+e(X)Wa;)| < SUP |[xn|+ 7|+ SUp ||x| + Wy

t€dn sx teKnsx t€dn.sx teKn sx
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Since rHIlJrrn %TLHSJ’ﬁXn = Tsx a.S., the right-hand side converges to 0. By dis-

cussing the cases= 0,x # 0, we easily see that lif,. sup [x,+ e(xn)Sé'P —X—

telnsx
e(x)Wst| = 0 and therefore lim sup Vs%f” = 0. By the same manner, we arrive
te[s;s+T]
atlimp_e Sup VSZ,{n = 0 which proves the lemma.

te[s;s+T]
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