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A Bayesian Framework for Collaborative
Multi-Source Signal Sensing

Romain Couillet, Sudent Member, IEEE, Mérouane Debbah Senior Member, IEEE

Abstract—This paper introduces a Bayesian framework to the single-input single-output (SISO) scenario, the stofly
detect multiple signals embedded in noisy observations, dm Bayesian signal detectors dates back to the work of Urkowitz
an array of sensors. For various states of knowledge on the [3] on additive white Gaussian noise (AWGN) channels. It
communication channel and the noise at the receiving sensara .
marginalization procedure based on random matrix theory tech- was Iater extended to more reall_stlc C_hannel models [4]'[5]
niques, in conjunction with the maximum entropy principle, is Urkowitz’s signal detector is optimal in the sense that his
used to compute the Neyman-Pearson hypothesis testing @iton. process performs the maximunoorrect detection rate, i.e.
Quite remarkably, although rather involved, explicit expressions the odds for an informative signal to be detected as such,
for the Bayesian detector are derived which enable to deciden for a given low false alarm rate, i.e. the odds for a pure

the presence of signal sources in a noisy wireless environmnte L tto b v declared inf ti . LT
Under the hypotheses that the true channel conditions adher noise Input to be wrongly declared an intormative signal. 10

the maximum entropy model, the proposed detector is the the authors’ knoWledge, there exists no trivial multlpleun
optimal Neyman-Pearson detector; if so, the performance ofhe multiple output (MIMO) extension of the classical energy
derived decision criteria can be used as an upper-bound forte  detector, apart from that which consists into summing up all
performance of alternative detectors. In particular, simulation powers received at the sensor array, e.g. [6]. In that chee, t
results are provided that suggest that the classical energyetector . . . . SR A

is close-to-optimal when the noise power is priori known to receiver deC|d_es that the incoming 5|g_nal carimgsrmation if .
the sensor array, especially when many sources simultanesly the total received power exceeds a given threshold; otlserwi
transmit, while the conditioning number-based detector, sed the received signal is declared pure noise. However, both
classically when the noise power is unknown, is shown to penfm  single sensor or sensor array models often assume perfect
poorly in comparison to the proposed optimal detector. priori knowledge of the background noise power and, more

generally, does not capitalize on the prior informatiorilaiée

|. INTRODUCTION at the receiver; e.g. the receiver might be aware that, given

Since a few years, the idea of smart communication deviciieless environment, it ShOl.Jld expect a strong line-ghi
has made its way through the general framework of cogniti\98mIoonent frqm the transmitter or, on the contrary, should
radio [1]. The general idea of an ideal cognitive terminahist expect the fgdmg channel to vary st_rongly. Note also _that th
of a device capable of exploring and exploiting the commun"i‘—Ssumed prior kr]owledge qf the NOISE power, or equalently
cation environment based on any prior state of knowledge [ f the egpectt_ed S|gnal-to_—n0|se ratio (.SNR)’ 'S _unrealwtnen
Such a device should be first able to turn prior information priorming signal Sensing. Alternatlve_ s_olut|ons have_rbee
the transmission channel into a mathematically tractadole f proposed that deal with the issue fpriori unl@ovyn noise
This allows then the terminal to take optimal instantaneo@§Wer- I [,7]'[8]' a method bgsed on th(_a conditioning ”‘%mber
decisions in terms of information to feed back, bandwid} the received sample covariance métmklowg t? determine
to occupy, transmission power to use etc. It should also tq%aNeyman-Pearson decision criterion that is independent of

capable of updating its knowledge to continuously adapit¢o t € noise POWer. An _ext_ens_ion of this work is four_1d in [9],
where the decision criterion is now based on the ratio betwee

dynamics of the environment. This vision of a cognitive cadi h I ; I t th ved | !
is compliant with Haykin's anticipation of “brain empowere N€ Smallest eigenvalue of the received sample covariance
matrix and its trace. This method is however not heuristic

wireless devices [2]. but is th luti £ th lized likelihood rati
One of the key features of cognitive receivers is their gbili ut is the solution of the generalized likelihood ratio test

to sense free spectrum. When the cognitive device is switche®-RT): which is another approach to deal with decisionstest

on, its prior knowledge on the environment is very limited bdg"th ur_1certa|rr]1 systen:] parametelrls. chﬁr;:ontrzlbudtlonptpx_se _
still it is requited todecide whether it receives informative 98t€ction schemes that are well suited for the determmatio

data or only thermal noise, on different frequency bands: ttP the €xact number of transmit sources, e.g. [10]-{11].ohhi

will be further referred to as thegnal sensing procedure. In extends the c;l_assmal _S|gnal Sensing procedur(_e.
In a cognitive radio context, one would like all afore-
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of informative data, the number of transmitting sources etentriesh;;. If, at time [, the transmitter emits data, denoted

This is the main focus of this work. The first barrier taas an)/-dimensional vectos® = (s, ... s(HT e CM.
break is the question of optimality under incomplete prioThe additive white Gaussian noise at the receiver is madlelle
information. Indeed, even when much is unknown about the time 7, by the vectors@® = o(6",....6\)T e CV,

environment, a transmission model still has to be found. Tghere > denotes the variance of the noise vector entries.
this end, we shall model all random parameters about tidthout generality restriction, we shall consider in thé- fo
environment using theaximum entropy principle [12], whose lowing zero mean and unit variance of the entries of both
object is to assign prior probability distributions to ugkn 9 and s®, j.e. E[|92(l>|2] =1, E[|S§l)|2] — 1. We then
parameters along the following rules: (i) the prior digitibn denotey® = (y§1)7...7y5\l[))T the N-dimensional data re-
assigned to a unknown variable should be consistent with &yed at timel. Assuming the channel coherence time is
prior information about this variable, and (ii) among thosg; |east as long ad sampling periods, we finally denote
distributions that satisfy (i) the assigned prior disttibn is v _ (y®,...,y(B)) e CVN* the matrix of the concatenated
the one with maximum entropy, i.e. the one which maximizggceive vectors.

randomness. The maximum entropy principle, as a maximizelpepending on whether the transmitter emits informative

of randomness, is mathematically justified by a Bayesiafynals, we consider the following hypotheses
definition of the uncertainty about a random variable, due

to Cox [13], and was largely applied in statistical physics,
spurred by the pioneering work from Brillouin on negentropy
[14]. In the following, we shall derive the optimal Neyman-
Pearson decision criteria for the problems of signal sensin
under various prior knowledge on the environment, spedifica
the knowledge or absence of knowledge on the noise power, Y=o [0(1) O(L)] M)
and on the number of transmitting sources. Those can {&4 under conditiotH(,

considered botloptimal in the maximum-entropy sense, when
some system variables are unknown, andly optimal, when

the true system model matches the derived maximum-entropy
model; in the latter case, the derived Neyman-Pearsorrierite
will provide performance upper-bounds to the classicariseu
tic detectors. Part of this work is dedicated to evaluateubh
simulations how close to optimal those classical detectogs

o Hy. Only background noise is received.
o H;. Informative signals plus background noise are re-
ceived.

Therefore, under conditiofi(y, we have the model,

)

W ... @
Y =[H JIN][S ° ]

o) ... @)

Under this hypothesis, we further dendkethe covariance
matrix of y(1),

This paper is structured as follows: In Section Il we for- > = EyMy®H = HH" + %Iy = UAUY,  (3)
mulate the signal sensing problem and introduce the channel ) ) ) )
model. Then in Section 11, the Bayesian signal detectoes aihereA = diag (1 +0°,..., vy + %), with v, ..., vy the

computed for various prior information on the system model gigenvalues ofTH" and U a certain unitary matrix.
the sensing device. Simulations are then presented ind®ecti The receiver is entitled to decide whether the sensors are
IV. Finally, after a short discussion in Section V on the gahe transmitting informative signals or not; this is, the reeei
framework and its limitations, we provide our conclusions imakes a decision over hypothe$i or J{;. The receiver is
Section VI. however considered to have very limited information about
Notations: In the fo"owing, boldface lowercase and upperthe transmission channel and is in partiCUlar not neCéysal’i
case characters are used for vectors and matrices, respectiaware of the exact numbet/ of sources and of the signal-
We note(-)" the Hermitian transposer(-) denotes the matrix to-noise ratio. For this reason, the maximum entropy ppileci
trace.U(N) is the set of unitary square matrices of sixe requires that all unknown variables be assigned a probabil-
The notationPx (Y) denotes the probability density functionity distribution which is both (i) consistent with the prior

of the variableX evaluated in the vicinity o”. The notation information (voluntarily discarding information violatethe
(z)4 equalsz if z > 0 and0 otherwise. Bayesian requirements) and (ii) has maximal entropy ower th

set of densities that validate (i). It is known in particulaat
the entropy maximizing probability distribution of a ramdo
vector, whose population covariance matrix is known, is a
We consider a communication system composedMpf Mmultivariate Gaussian distribution with zero mean andarare
transmitter sources, e.g. this can either béfantenna single the known population covariance matrix. If the population
transmitter orM single antenna (not necessarily uncorrelategpvariance matrix is unknown but is known to be of unit trace,
information sources, and a receiver composedvVosensors, then the entropy maximizing distribution is now multivaeia
be they the uncorrelated antennas of a single terminal oindependent Gaussian with zero mean and normalized igentit
mesh of scattered sensors. To enhance the multiple-antep@eariance matrix. Therefore, H is only known to satisfy,
(MIMO) analogy, the set of sources and the set of sensors Wil is often the case in the short terE[trHH"] = 1,
be referred to athe transmitter andthe receiver, respectively. the maximum entropy principle states that the entfigsare
The communication channel between the transmitter and thdependent and distributed ds; ~ CN(0,1/M), for all
receiver is modelled by the matrld ¢ CNV*M, with (i, j)** (i,5). For the same reason, both noi&l@ and signals'”

i

Il. SIGNAL MODEL



entries are taken independent Gaussian with zero mean &yddenotingx = (zy,...,zy)" the eigenvalues ovyY", (6)

varianceE[|6\" 2] = 1, B[|s" 2] = 1. only depends o " | =,
The Neyman-Pearson criterion for the receiver to establish
whether an informative signal was transmitted is based en th 1 _ LN
ratio C, Py|g.f0 (Y) = me o2 i=1"" (7)
Py v (Y) b) Informative signal likelihood Pys¢,: In the informa-
cY) = m (4)  tion plus noise scenarif(,, the problem is more involved.
olY The entries of the channel mati#X were previously modelled
For a given receive space-time matrK, if C(Y) > 1, as jointly uncorrelated Gaussian, withi[|h;;]?] = 1/M.

then the odds are that an informative signal was transmittetherefore, sinceV/ = 1, H € CV¥*! and X = HH" + o215
while if C(Y) < 1, it is more likely that no informative has N — 1 eigenvalues equal te2 and another distinct
signal was transmitted and therefore only background noisgenvalue\; = vy + 02 = (Z{\il |hi1|2) + o2. The density
was measured. To ensure a low probability of false alargy \, — 42 is a complexy?, distribution (which is, up to a
(or false positive), i.e. the probability to declare a putse  scaling factor2, equivalent to a reat2,, distribution). Hence
sample to carry an informative signal, a certain thresijolsl the eigenvalue distribution aE, defined onR*+",

generally set such that, whéin(Y) > &, the receiver declares

an informative signal was sent, while whénY) < ¢, the Cuo?) N
receiver declares that no informative signal was sent. The p. (A) — = () oyN-1€ 7 SO\ 2

i i . . A =— -0 — Ai—o”). (8
question of what rati@ to be set to ensure a given maximally @) N( ! )+ (N =1 g ( - @)

acceptable false alarm rate will not be treated in the fdhow
We will however provide an explicit expression of (4) for the
aforementioned model, and shall compare its performance to )
. . H —1y7H

that achieved by cI?ssmaI detectors. Py, (Y,5) = ——r —tr(YY'UATIUY) ()

Thanks to Bayes’ rule, (4) becomes mEN det(A)

P . P (Y) where I, denotes the prior informatiorft; and M = k.
CY) = 2 T YPIGA R (5) Since the channdl is unknown, we need to integrate out all
Pa, - Pyse, (Y) possible channels of the model (2) over the probability epac

with Py, the a priori probability for hypothesisk; to be of N x M matrices with Gaussian i.i.d. distribution. This is
true. We suppose that no side information allows the receivgduivalent to integrating out all possible covariance e
to think H; is more or less probable thdki,, and therefore 3 over the space of such positive definite Hermitian matrices
set Py, = Py, = 3, and thenC(Y) reduces to a maximum
likelihood criterion.

In the next section, we will derive close-form expressions
for C(Y) under the hypotheses that the valuesidf and
the SNR are either perfectly or only partially known at th

Given model (2),Y is distributed as correlated Gaussian,

PYWI(Y):/EPY‘E%(Y,E)PE(E)dE. (10)

Eventually, the Neyman-Pearson decision ratio (4) for the
gingle-input multiple-output channel takes an explicipes-

receiver. sion, given as follows,
Theorem 1. The Neyman-Pearson decision rafig;, (Y)
[1l. SIGNAL DETECTION for the presence of an informative signal under prior infarm
A. Known noise variance and number of signal sources tion I, i.e. the receiver knows ()4 = 1 signal source, (ii)

-2
1) Derivation of Py q¢, in SMO case: We first analyze the the SNRo ™%, reads

situation when the noise powef and the numbe#/ of signal

sources are known to the receiver. We also assume in this first 1 L g2(N+L-1) o+ 2k 5
scenario that/ = 1. Since it is a common assumption that C(Y) = N Z X (1 — ) In-r-1(0%,m)  (11)
the number of available samples at the receiver is larger tha =1 il ‘

tLhe> r]1\lfjr2nber of sensors themselves, we further consider t\r)\ﬁt% 21,.... 2y the empirical eigenvalues af Y™ and where
a) Pure noise likelihood Pys,: In this first scenario, oo

the noise entries9§” are Gaussian and independent. The T (z,7) :/ the—t=1 dt. (12)

distribution forY, that can be seen as a random vector with x

NL entries, is then aiv L multivariate uncorrelated complexThe main steps of the proof of Theorem 1 are provided in
Gaussian with covariance matri¢ Iy, Appendix A. Among the interesting features of (11), note tha
the Neyman-Pearson test does only depend on the eigenvalues
of YYH. This suggests that the eigenvectors ¥¥" do

not provide any information regarding the presence of an
informative signal. The essential reason is that both ufifier

2the more marginal. < N case will not be treated here for lack of spaceand H;, the eigenvectors o are isotropically distributed

1 oy y ™
Py 3¢,(Y) = (ro?)NL ¢ 7z VYT (6)



on the unitN-dimensional complex sphere; as such, a givesith (M) the ensemble of permutations ff,..., M}, b =
realization of the eigenvectors 8f does not carry any relevant(by, ..., by) andsgn(b) the signature of the permutatidn
information to the hypothesis test. The Gaussian assumptio The main steps of the proof of Theorem 2 are provided
for H brought by the maximum entropy principle is thereforthn Appendix B. Note again thaCyr,, (Y) is a function
essential here. Note however that (11) is not reduced topfithe empirical eigenvalues:,...,zx of YY" only. In
function of the sum}_, z; of the eigenvalues, as for thethe following, we extend the current signal detector to the
classical energy detector. situations wherel and o2 are nota priori known at the
On the negative side, the integrdj(z,y) does not take receiver.
a closed-form expression, but far = 0; see page 561 of
[15]. This is rather inconvenient for practical purposesces
Ji(z,y) must be evaluated every time or a rather large I00K@) Number of sources and/or noise variance unknown
table must be kept in memory. It is also difficult to get any
insight on the performance of such a detector for different 1) Unknown noise variance: Efficient signal sensing when
values ofg?, N and L, let alone marginalizing over? when the noise level is unknown is highly desirable. Indeed, & th
the latter is not perfectly known. This last point is disads noise level were exactly known, some prior noise detection
in Section I11-B1. We now turn to the more general case whénechanism would be required. The difficulty here is handily
M > 1. avoided thanks toad-hoc methods that are asymptotically
2) Derivation of Py|s, in MIMO case: In the MIMO independent of the noise level [7], [8], [9]. Instead, welkha
configurationPy4¢, remains unchanged and Equation (6) stitonsider here the prior information about the noise power.
holds. For the subsequent derivations, due to space liotitat It might happen though that the receiver has no knowledge
we only treat the situation whelW < N but the casé// > N Whatsoever on the value of the noise power. When such a
is a trivial extension. situation arises, the unknown parameter must be assigned an
In this scenario H € CN*M js a random matrix with uninformative prior [17]. Assigning uninformative priors of
independent and identically distributed central Gaussian variables defined in a continuum is however, still to this,day
tries. The variance of every row iE[Z;Vil |hij?] = 1. a controverted issue of the maximum entropy theory. The

Therefore MHH" is distributed as a null Wishart matrix, classical uninformative priors considered in the literatare
Hence, observing that — oIy is the diagonal matrix of (i) the uniform prior, i.e. every two positive values for the
the eigenvalues cHH" noise power are equi-probable, which experiences problems

of scaling invariance thoroughly discussed in [12], andl (ii
Jeffreys prior [17], i.e. the prior distribution far? takes the
Y =U-diag(ty +02,...,vp +0%,0%,...,0%) - U" (13) form o= for any deterministic choice of positive, which
is invariant under scaling but is not fully attractive. Naket
Jeffreys uninformative priors, in spite of their inhereiadfor
some hypotheses, are sometimes used in other areas of signal
processing, see e.g. [18] for the estimation of noise cavag
(N — M)IMMN Mo M3 i=o?) () — g2)N-M matrices.

for some unitary matridJ € CV*¥ | the eigenvalue distribu-
tion density of A can be derived [16]

PA(A) =

N1 J (M —)I(N —i)! To alleviate somewhat the problem of uninformative priors,
u N =1 we shall consider that the noise powet is known at least
4 N2 . 9 to be bounded both from under and from above, &é.c
X 1_[()‘Z =) H O(Ai =), (14) [c2, 03], and we shall consider the “desirable” assumption

< =M of uniform prior for o2 over the sefo?, o%].
From Equations (13) and (14) above, the MIMO equivalent This therefore leads to
result to Theorem 1 unfolds as follows,
Theorem 2: The Neyman-Pearson decision rafig,,, (Y) 1 7+ N
for the presence of informative signal under prior inforimat Py, (Y) = 02 —o2 /02 Py\o2,1, (Y, 0%)do™  (16)
I, i.e. when the receiver is aware of ()Y < N signal -

sources, (i) the noise power”, reads with I, the information 4(;, M = k ando? € [02,02]".
The latter results in the updated decisions of the form,

C(Y) = )
Mo o , 2 2
o2M(N+L—M) (N — M)!el\/fzaz e% C(Y) = fng PY\02,IM (Y,0%)do (17
NIMM-1=20)M/2 T ) L I T @ar = 5) 72" Pyjg2.9¢,(Y, 0%)do?
ai j#ai
j#ai The computational difficulty raised by the integrallgz, y)

M does not allow for any satisfying closed-form formulas fb8)

x oy (eI TN p gy (Mo®, Maa,) (15) 5o that only numerical integrations can be performed at this
beP(M) =1 point.
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C. Unknown number of sources M

In practical cases, the number of transmitting sources

only known to be finite and discrete. If only an upper bound

value My, on M is known, a uniform prior is assigned to
positive M (which is here fully compliant with the maximum
entropy principle for discrete random processes). The pro
ability distribution of Y under hypothesidy ="o2 known,
M > 1 unknown”, reads

M
| Mo

Py, (Y) = VA Z Py pr=in 1,(Y), (18)
i=1

max

which does not meet any computational difficulty.
Assuming again equal probability for hypotheskgs and
H;, this leads to the decision ratio,
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C(Y) = (19)

Note now that it is possible to make a decision test on th
number of sources itself in a rather straightforward extems

e

of the previous formula. Indeed, given a space-time matri¢

realization Y, the probability for the number of transmit
antennas to beéis, from Bayes’ rule,

Pyjspr=in (Y) Penr=i
Par—ev(¥) = S @
Zj:() Py spr=jr (Y)Pepg=jnr

where all the quantities of interest here were derived in th
previous sections and appendixes. The multiple hypothests
on M is then based on a comparison of thtels O(“M = i")

for the events‘M =", for all i € {0, ..., My }. The odds
for the event“M = " is defined as

 Paympy(Y)
= — ,
225=0" Perr—jr v (Y)

O(“M =i") (21)

-
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IV. SIMULATION AND RESULTS the hypothesid/ = 1 is naturally selected against hypotheses

In the following, we present results obtained for the afor&f larger M. The same remark holds true for the case when
mentioned SIMO and MIMO scenarios, using Theorems 1 afef SNR isa priori unknown, discussed hereafter.
2 respectively. In the simulations, the hypotheses coriogrn  Consider the scenario when the noise vanaa&e_s a
incoming data, channel aspect and noise figure are th&%iori known to belong to the intervalo?,0%]. This is
presented in the model of Section II, i.e. the channel, sigrffesented in Figure 5 which demonstrates the effect of an
and noise matrix entries are i.i.d. Gaussian with zero meH}ccurate knowledge of the noise power in terms of CDR
and respective variances/M, 1 and 1. Therefore, under @d FAR. In this simulationM =1, N = 4, L = 8 and
this setting, the Neyman-Pearson decision criteria dérine SNR = 0 dB.® Comparison is made between the cases of exact
Theorems 1 and 2 are optimal. If the noise varianées a SNR knowledge, short SNR range? , o | = [-2.5,2.5] dB,
priori known at the sensing device, the results are compar@§ge SNR rangéo? 03] = [-5,5] dB and very large range
against the classical energy detector [3]. If the noiseavme is [0~,0%1] = [—9,9] dB. Observe that the short SNR range
a priori unknown at the receiver, our results will be comparggfovides already a strong performance decay compared to the
against both the conditioning number method of [7]-[8] anigieal scenario, which is particularly noticeable in ternfs o
the GLRT approach of [9]. CDR p_erformance at low FAR. Larger SNR ranges are then

In our first example, we consider a SIMO channel wit®nly slightly worse than the short range scenario and seem
N = 4 antennas at the receivel, = 8 sampling instants {0 converge to a ‘worst-case limit’; this can be interpretbgd
and a signal to noise rat6NR = —3 dB. To compare the fact that the additional hypotheses, i.e. very strongeoy
the performances of the different methods, we provide thdiffle noise power, are automatically discarded as the emlu
respective operating characteristic curves (ROC), i.e.afd Of Pyjo2,1;(Y,0?) and Py,2 ¢, (Y, 0?) become negligible
discussed methods, we compare simulation results in tefmd@ unrealistic values o#?. Additional simulations for larger
rates of false positives (or false alarm rates (FAR)) againd\NR ranges were carried out that visually confirm that the
rates of true positives (correct detection rate (CDR))ufdg FAR and CDR plots are identical here as longeds < —5
1 presents the respective ROC curves for the Bayesian e9f ando? > 5 dB. Therefore, simulations suggest that the
mator of Theorem 1 against the classical energy detector [BjoP0Osed Bayesian signal detector is able to cope even with
obtained fromi00, 000 Monte Carlo realizations of the model.totally unknown SNR, which is obviously not the case of
We remind that the energy detector decision criterion igbasthe classical energy detector that relies on an SNR-depende

on the test decision threshold.
1 1 & We now consider totally unknown SNR value, which we
Cenergy (Y) = 7—5 > i (22)  demonstrated above to be equivalent as takingahgiori
i=1

informationo? < o? < o2, with 02 < —5 dB ando? > 5

Figure 1 suggests that as much ak)& increase in detection dB. The performance, already provided in Figure 5, is now
ability is obtained by the Bayesian detector and that thie gacompared in Figure 6 against the conditioning number method
increases along with smaller FAR. This tendency is confirmélde GLRT method and the Bayesian approach with Jeffreys
by Figure 2 in which the performance of the Bayesian signptior P,:(c?) = 072 anda = 1. We recall briefly those

detector with respect to the energy detector for differékRF methods. The conditioning number method is an heuristic

is presented against the SNR. method, independent of the SNR, which considers the decisio
In Figure 3, we takeV =4, L =8 andSNR = -3 dB as ratio

before but consider now/ = 1 to M = 3 signal sources; we Coona(Y) = M (23)

then use Theorem 2 here. In this scenario the energy detector min; (2;)

closes in the gap with the Bayesian detector, with a sur@isibetween the largest and the smallest eigenvalue of the empir
behaviour: the energy detector performs betterdbe {2,3} jcal YY" matrix. The GLRT method considers instead the
than for M = 1, while the opposite tendency is observegatio [9]
for the Bayesian detector. A possible interpretation comes
as follows: for the energy detector, due to MIMO channely 1 (Y) =
hardening effect [19], the variance of the receive signal is sup,2 Py ,02(Y)
smaller with increasingV/, reducing then the false positive N—1 N-1
rates; on the contrary, the performance decay of the Bayesia (1 _ i) max; (x;) (1 - maxi(xi))

) . . N 15N N
estimator may be attributed to the increased number of degre N Qi1 Ti D et Ti
of freedom in the MIMO channeH for larger M, which (25)
makes it more difficult to matcks, v (Y) againstPy, v (Y)
from single-shot simulations oY matrices. In Figure 4,
we assume that the numbéfr = 1 of signal sources ia
priori known only to be in the seM € {1,..., M.}, for
Mmnax € {1,2,3}. We observe that, while perfect knowledg(%n
of M leads to some non-negligible gain with respect to the

_Cases whenl/ is unknown’ 'ncreas'anaX does not really  syne specific choices of signal-to-noise ratios were madhk that the ROC
impact performance. This might be interpreted by the faat thcurves do not lead to trivial all zeros or all ones CDR at lowRFA

Supgy,,2 P, v 1,02 (Y)

(24)

We observe first that the intuitive, though naive, condiion
ing number approach is greatly outperformed by the GLRT
method, by more thar0% of correction detection perfor-
ance for low FAR. In turn the Bayesian detector appears
outperform the GLRT method, but only for large FAR.
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0.8 - = L B SNR = 0 dB. For the Bayesian method, both uniform and Jeffreys prior,
-1 with exponenta = 1, are provided.
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£ 06 -~ . coherency issue of our source detection framework. Alse, th
£ )/ mathematical tools to derive maximum entropy distribugion
T 05|/ . e.g. Lagrangian multipliers, only cope with statisticalopr
8 ) knowledge, such as the moments of the underlying density
= i . T
S o4yt [0 9.9 dB || functions, and are rarely able to treat d_etermln_lstlc kreolge.
— [-5,5] dB Note however that the advances in the field of random
0.3 --- [-2.5,2.5] dB [ matrix theory provide new answers to problems of high dimen-
------------ 0 dB sionality, even for finiteV, L values. Those problems, such as
0.2 — : : he present maximum-likelih multi-sensor signal i
107 5103 102 5 10-2 the present maximu elihood multi-sensor signal sems

are often considered intractable and suffer in practicenfro
the so-callecturse of dimensionality. The current study relies
Fig. 5. FAR, CDR and associated ROC curve for differentpriori nonetheles_s on the 'mport‘f"m prOpertY that the transnmissio
information on the SNR: exact SNR knowledge ¢B), short range SNR channelH is modelled as i.i.d. Gaussian; H were more
([—2.5,2.5] dB) and large range SNR-5,5] dB) SNR,M =1, N =4, structured, it would have been more difficult to obtain an
L =8, trueSNR =0 dB integral expression similar to (45) and the final resultsthesy
derivable, would implicate not only the eigenvalues bubals

eigenvectors oY Y. Recent mathematical advances [20],
ﬂi] provide some hope though that integration over Gaunssia
matrices with non trivial correlation models may actually b
feasible.

More importantly, the proposed Bayesian framework allows
one to answer a wider scope of problems than just the present
In the previous framework, we relied on the maximurtulti-source signal sensing. In particular, we discussed i

entropy principle in order to derive uniqua priori dis- the introduction the somewhat different problem of coumtin
tributions for the various unknown system parameters. Tiige number of transmitting sources. Lately, the problem of
provided Bayesian solutions, derived from the channeéstlt identifying the transmit power of the individual sourcessha
knowledge available at the receiver, were claimed conisteyso received a lot of interest in the random matrix comnyunit

in the proposed probability framework. This framework is iRee e.g. [22], [23] and [24].

particular extensible to whatever prior knowledge the irere
might have on the transmission environment. However, some
limitations can be raised. First, as stated in 111-B1, uomfia-

tive priors modeling is still an incomplete and controvarsi In this work, we introduced a general Bayesian framework
theory, for which no definite answer is available to this dajor multi-source detection from an array of sensors. This
When such a prior information is to be treated, the proposédmework is based on a consistent treatment of the infor-
signal sensing framework is not capable of singling out mation about the transmission channel available at thérgens
proper maximum entropy model; this constitutes a majaievice. The resulting Bayesian estimators were provemabti

False alarm rate

This seems to suggest that the computationally simple GL
approach seems to be extremely adequate and close-toabpti
for low FAR constraints.

V. DISCUSSION

VI. CONCLUSION



with respect to the Neyman-Pearson detection criteriore Th
performance of these novel multi-source detectors is coatpa
in simulations against (i) the classical energy detect@mthe Py |7, (Y)

signal-to-noise ratio is perfectly known, (ii) recent tagdues 602(71)%’“ HN’lj!

from the field of random matrix theory when the signal-to— lim A 2L(N—1)J:|1

noise ratio is unknown. ROC curve comparisons suggested*2-—-Av—=o*  T70 Nt

that the energy detector performs close-to-optimallyeewgly det <{ei] } )

when the number of transmit sources increases. We ai%oi()\ — g N-leh VAN (30)
observed that the recently proposed GLRT detector wh A ! A(X)A(ATD) !

the noise power is priori unknown performs also close-to- 0’ H Ll

optimally, especially when the tolerated rates of falserata = lim =L

. ; . o2 TLN g2L(N—-1) NI
is low. We finally showed that this general framework can A2y AN miN g2V N

be easily extended to problems such as number of sources_ N1 det ({ %; } )
identification or source power inference. M=) 5 e (AN i) g,
o2 AP AX)A(A)
(31)
APPENDIXA
PROOF OFTHEOREM 1
y e UQ(N 1)(N—-L-1) HN 1 5!
We start by noticing thaH is Gaussian and therefore the /\2,...,1)\%—@2 7N NI

joint density of its entries is invariant by left and rightitamy o
products. As a consequence, the distribution of the matrix too S N1 det { ! }m
HH" + o1 is unitarily invariant, i.e. for any unitary matrix | A1 (M —0) T em ™ AXIAA) dAy
V, VXV has the same joint density &5 The latter density 7 (32)
does not as a consequence dependJoim its singular value
decomposition (3). This allows us to write, similarly as#7], in which X andz, ...,zy respectively correspond fY"

and its eigenvalues. The equality (31) comes from the faatt th

A(ATY) = (~)N N2 e

PYIJ‘f1 (Y) = / PY|273‘f1 (Y’ 2>PE (2>dz (26) By denotingy = (y1, s s YN— A yN) = (>‘27 c AN, >‘1>

a and the functionsf(z;,y;) = e T and fi(y;) = f(xi,y5),
= /u(N) . Py ¢, (Y, 2) Py, (M)dUdA\1. - we can perform a similar derivation as in [25] to obtain
X

(27)
Equation (27) leads then to _ det ({GA" }i j>
o TTAXIAA) (33)
Py (Y e (rTuA ) A 2\N—1 I V- det ({fi(x])}z’]) 34
)= [ o Ty 0o R ey X6 TN VI
e—(/\1—02) N , YN — A1
X [I60x = o*)dUdn, ... dxy. (28)
=2 _
_ a8t @), e [, fi00]
To go further, we utilize the Harish-Chandra identity [26] [Tic;(@i —zj) (A1 — 0?)N 1 H el
(35)
R (AUBUY) 1y The change of variables led to a switch of one column and
U(N) explains the(—1)¥—! factor when computing the resulting
4 determinant. The partial derivatives ¢f along the second
N1 det ({e_A“BJ}léiZJX[) variable is
= 1| NIN-1)/2 1<5< 2
<Hn>f£ A(A)A(B) (29)
n=1 i
0 —1)ktm k—1)! _a
in which, for a matrix X with eigenvalueszi,...,zy, —‘i(a,b) = Z ( ; ) —Cr' ( ) ame”t  (36)
. . Oy bm+ (m—1)!
A(X) = [I;~;(@: — z;) is the Vandermonde determinant. m=1
In order to avoid divisions by zero when applying (29), we 2 ki (a,b)e” %, (37)
movel,, ..., Ay away fromo?, in such a way thaPy;, (Y)

writes Back to the full expression aPy s, (Y), we then have



which finally gives

Py, (Y)
0.2 _ T, fe'e) 172—L N, ZTq N 1(o
- l)/ (~1)N AN LT Pe (¥) = S e
N;TLNI 2 2 oy s 1 YL N#LNg2(N-1)(L-1) ~ Ht;%(xl—xl) .
det | f; s Ji s - , fi(A ’
et [£i(0?), fi(0?). ., fN20?), filh)] ) o (44)
Hz<](x mJ)
I e e Iy (1) NI AN- BT with Jy(z,y) = f;oo ?ke—t—%dt, and we finally have the
T ONALNTLL (s — ) Joo 1 1 desired decision criterion.
1<\ o
et CeTx
% det : : (nj(:ci,cﬂ)e‘ﬁ) e : : _ APPENDIXB
_Iy 1I<G<N-2 | N PROOF OFTHEOREM 2
e o e 1

(39) SinceH is still unitarily invariant in the casé/ > 1,
Before going further, we need the following result,

1<j<N-1 i<j

Lemma 1: Given a family {ai,...,an} € RY, N > 2, ~ ~
andb € R*, we have Py, (Y) = / . Pyi=.,, (Y, ) Px (A)dUdA,
U(N) xR+
(45)
1
S 1 which, using the same technique as previously, furtherldeve
det | 1 (kj(ai,b) 1<isy | = mH(ajfai). ops into

|

1
(40)
This identity follows from the observation that coluninof Py ;,, (Y)
the _matrix abovg is a polynomial of order Since summations (N — M)!MMNeMzgzUQ(N_M)(N_L_U(_1)MN_ M(M+1)
of linear combinations of the columns do not affect the=

determinant, each polynomial can be replaced by the mono- Nl NE HM1IJ'
mial of higher order, i.eb=2(k=1gk. Extracting the product +oo too M 1. O ) .
1-b72...p2(N=1) = p=(N=1N from the determinant, what ></ / HA Nobmtted o e M X
remains is the determinant of a Vandermonde matrix based on Hz<a< x])
the vectoray,...,ay. .

By factorizing every row of the matrix by =% and ey vy ey
developing the determinant on the last column, one obtains e L © Moo oe

x det D1 Rz, 0?)e o
ay ! ! N IN
Py, (Y) e e u e

(46)

e’ 0'2(N D(N-L-1) /J’_OO )\Nfol “\ 721],\]:21wi
= e e o
LN . .
Nm Hi<j(x1 - ;) Jo

2( in which the term(—1)MN-*“7* originates from theM/
- o2 exchanges between thé”" column and the(N — k + 1)t
N-1 N+le - .

x (=1) Z - F2(N—1)(N-2) H i — xj)d\ column, k¥ € [1,M]. By factorizing the determinant by

’;{ e~ o7 Lic1 i developing along thé/ last columns, we have
J# from Lemma 1,
(41)
_z ! S _Zx1
_ ea 2 21 1% Z +oo )\N—L—le—)\l e o2 : ) : e M . e 1
NmLNg2(N=1)(L-1) b2 ! det Do k(v 0t)eT R :
_oy ! b an _an
e-u(——c%» et TR e
X A (42) (47)
Hz<l( — 1) Hi>l(ml — ;) .
2 . N £ o~ il (LfL) DS Kl N
e I A | b )
T NgLNg2(N-1)(L-1) = Hi]\il(xl _ xl) N og2(N=M—-1)(N-M) H H]§Z - ](Zal :C]-)'
- 1#£l ’
+o0 - (48)
></ AlN—L—le*( 5 g, (43) _
o2 Together, this becomes,



Py, (Y)

N o
(N — MM ==

= NIMM—-2L-1)M/2NL52(N—-M)(L-M) HJA/iII 41

=M g, N N
== L oo 00
<« 3 e / /
aC[1,N] Haqr ng{ah,,,,ai}(xai - Z]) Mo? Mo?
Maa,\ M M
o T (i )HAZ-N‘L‘IH(M —Xj)dA; ... dAy.
i=1 i<j
(49)
Remind now the Vandermonde determinant identity
M M
[[eG-x)= > sex®[[x7" (50
i<j beP(M) i=1

whereP (k) is the ensemble of permutations lofandsgn(b)
designs the signature of the permutatienWe finally obtain

N .
(N — M)IMEL-M1)M/2 M0 - Eimg
Py 1, (Y) = NInNLg2(N—2D) (L) [TV 1 7]
InNLg [[= J!
M, e
e 7;12 i
« Z (71)sgn(b)+M
ac[1,N] H H (Ta; — ) beP(M)
a; j#ai
j#a;
M
X H JN—L—2+bL (MUQ, Ml‘axq,)7 (51)
=1
which completes the proof.
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