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Abstract—In practical mobile communication systems, data-
aided synchronization is performed before actual data exchanges,
and synchronization methods are tailored to the pilot sequence. In
this paper, we propose a framework for initial synchronization
that works independently of the pilot sequence. We show that
classical data-aided and blind techniques are particular cases
of this general framework. We thoroughly study the specific
problem of OFDM data-aided carrier frequency offset estimation.
For the latter, we provide theoretical expressions of performance
upper-bounds. Also, a practical thin CFO estimator for OFDM is
provided under the form of a novel algorithm which is shown by
simulations to perform better than classical pilot based methods.

I. INTRODUCTION

Information theory, which originates from the pioneering

work of Shannon [1], provides a theoretical expression of

the optimum rate to which data can be reliably exchanged

between a transmitting entity A and a receiving entity B,

that is called channel capacity. This capacity is linked to the

mutual information between A and B, i.e. the amount of

respective information XA and XB that both entities share.

If XA and XB both contain all relevant synchronization

information but the transmitted data themselves, i.e. central

frequency, symbol timing, transmission channel are known

by both A and B, then the capacity is known and many

practical solutions exist which can achieve transmission data

rates close to the theoretical limit. When the synchronization

parameters are unknown though, especially to the receiver, it

is difficult to derive the capacity. This led to consider auxiliary

methods such as channel estimation, frequency offset tracking

etc. which do not follow the information theoretic framework

proposed by Shannon. In the following, we cast our attention

to initial synchronization and particularly to initial carrier

frequency offset (CFO) estimation in orthogonal frequency

division multiplexing (OFDM) systems; CFO is defined as the

frequency mismatch between the transmitter and the receiver.

In the initial synchronization phase, both transmitter and

receiver know little about the surrounding environment. To

cope with this problem, ad-hoc methods have been designed

that are insensitive to the unknown parameters. In the specific

example of CFO estimation for OFDM, the historical method,

due to Moose [2], is based on a pilot sequence designed to

this purpose. This pilot is handily made such that Moose’s

estimator is independent of the channel realization, to the

expense of a short bandwidth acquisition range. Those pilot-

based methods are often called data-aided (DA) algorithms.

Non data-aided (NDA) algorithms were also proposed which

exploit the cyclic prefix redundancy [5], [6]. However, all

those solutions originate from ad-hoc ideas and do not rely on

theoretical foundations. Advanced methods based on Bayesian

probabilities or orthodox parameter estimation already exist

[7]-[9]. In [7], synchronization is performed using the deci-

sion errors in decoded symbols. In [8], theoretical bounds

on joint channel estimation and sampling clock offset are

derived. However, those schemes are often referred to as

thin synchronization methods as they assume the a priori

knowledge of many system parameters; the problem of initial

synchronization is therefore not addressed.

Since the essential issue in initial synchronization is a

lack of information, we propose to derive an information

theoretic framework for synchronization, through the example

of CFO estimation. To cope with the problem of missing

information, we extensively refer to the information theoretic

tools that are Cox’s probability theory as extended logic [10]

and Jaynes’ maximum entropy principle [11]. Given a prior

system information I , Cox’s theory describes in probability

assignments the degree of confidence on any system parameter

θ; the inferred information about θ is denoted (θ|I) and the

assigned probability is denoted p(θ|I). If I only contains

deterministic information, p(θ|I) is computed from Bayes’

rule, while if I contains stochastic information about θ, p(θ|I)
is determined by the maximum entropy principle.

This paper is organized as follows: In Section II, we provide

the system model with CFO mismatch from which the general

Bayesian CFO estimation framework unfolds. Particular atten-

tion is then cast on the data-aided CFO estimation for OFDM

systems. From this study, a practical CFO estimation algorithm

is provided. Simulations are then proposed in Section III

which show an important gain of the Bayesian techniques

over classical DA methods. The results are then discussed in

Section IV before we provide our conclusions in Section V.

Notation: In the following, boldface lower-case symbols

represent vectors, capital boldface characters denote matrices

(IN is the N × N identity matrix). The Hermitian transpose

is denoted (·)H. The operators det(X) and tr(X) represent



the determinant and the trace of matrix X, respectively. The

symbol E[·] denotes expectation.

II. FREQUENCY OFFSET ESTIMATION

Consider a pair of transmitter and receiver communicating

through a noisy channel. The transmitter sends a data sequence

x ∈ C
N of length N which the receiver captures as a sequence

y ∈ C
N . The transmission memory channel of length L time

symbols is denoted h ∈ C
L. The noise process is an additive

white Gaussian (AWGN) sequence w ∈ C
N . The knowledge

of the receiver, prior to data transmission, is denoted I . The

receiver frequency reference is not perfectly aligned to that

of the transmitter: this introduces a frequency offset θ whose

knowledge to the receiver is summarized into the density

function p(θ|I). By inductive reasoning, we provide in the

following an expression of the optimal inference the receiver

can make on (θ|y, I) which we apply to the example of DA

CFO estimation in OFDM.

A. General communication model

From Bayes’ rule, the probability distribution p(θ|y, I) can

be broken into

p(θ|y, I) = p(y|θ, I)
p(θ|I)

p(y|I)
(1)

in which p(y|I) is independent of θ.

If θ is known to be bounded or θ is known to enjoy some

stochastic properties, the maximum entropy principle provides

a unique prior distribution p(θ|I).
Then, by marginalization over h and x, p(y|θ, I) further

reads

p(y|θ, I) =

∫

h

∫

x

p(y|θ,h,x, I)p(h, I)p(x, I)dxdh (2)

This is the most general formulation to evaluate p(y|θ, I)
and then p(θ|y, I). When both priors on h and x are rather

uniform on their definition space, i.e. not peaky around a

particular value, the resulting distribution for (θ|y, I) is also

broad and does not lead to efficient estimators. Much more

experience (through additional data transmission) is required

for such schemes to be valuable. This explains why NDA

methods, which rely on little knowledge, require lots of data

to converge to a satisfying solution.

If x is a priori known to the receiver, then I contains all

information about x and p(x|I) is a single mass in the position

of x. In this case, Equation (2) reduces to

p(y|θ, I) =

∫

h

p(y|θ,h, I)p(h, I)dh (3)

This situation is the general framework of DA methods.

The remaining problem is to assign a prior density p(h|I) to

the parameter h. It is desirable to attach to h the most non-

committal probability distribution which fulfills the constraints

gathered in the information (h|I), in order to avoid subjective

assumptions. This distribution is shown by Jaynes to be

the distribution which maximizes the entropy of h and is

consistent with I [11].

In particular, consider h is a multi-path channel. If the

receiver knows h is composed of L paths and is of average

variance E[hHh] = 1, then [14] demonstrates that the maxi-

mum entropy distribution for (h|I) is

p(h|I) =
LL

πL
e−LhHh (4)

which is the classical Gaussian i.i.d. (independent and identi-

cally distributed) channel. Interesting considerations on chan-

nel modeling through the maximum entropy principle are

discussed in [14]. In particular, if the covariance matrix

Q = E[hhH] is a priori known, then the maximum entropy

principle associates to (h|I) the more general Gaussian dis-

tribution,

p(h|I) =
1

πL det(Q)
e−hHQ−1h (5)

From Equation (4), the optimal inference on θ posterior to

data reception can then be computed. The corresponding min-

imum mean square error (MMSE) frequency offset estimator

then reads

E[θ|y, I] =

∫

R

θ · p(θ|y, I)dθ (6)

B. DA CFO estimation for OFDM

1) Inductive reasoning on (θ|y, I): Consider an OFDM

system with N subcarriers. The transmitter sends a time-

domain pilot sequence x = (x0, . . . , xN−1)
T (cyclic prefix

excluded), received as a sequence y = (y0, . . . , yN−1)
T

(cyclic prefix discarded). The transmission channel is dis-

cretized in L taps h = (h0, . . . , hL−1)
T and the AWGN noise

w = (w0, . . . , wN−1)
T has entries of variance E[|wk|

2] = σ2.

For simplicity reasons, we will not consider the information

contained in the cyclic prefixes in the rest of this study. Let θ
represent the CFO to be estimated at the receiver, normalized

to the subcarrier spacing, i.e. θ = 1 is a frequency mismatch

of one subcarrier spacing.

CFO in OFDM engenders a rotation of the time-domain

symbols xk of an angle 2πkθ/N . Denote Dθ the diagonal

matrix of main diagonal dθ = (1, e2π iθ

N , . . . , e2π
(N−1)iθ

N )T and

X the matrix

X =















x0 xN−1 · · · xN−L−1

x1 x0 · · · xN−L−2

...
...

...
...

xL−2 xL−3 · · · xN−1

xL−1 xL−2 · · · x0

...
...

...
...

xN−1 xN−2 · · · xN−L















(7)

Then at the receiver,

y = DθXh + w (8)

Assume the receiver knows the covariance matrix Q of h.



Then, from (5),

p(y|θ, I) =
1

πN+Lσ2N det(Q)

×

∫

e−
1

σ2 (Dθy−Xh)H(Dθy−Xh)e−hHQ−1hdh (9)

=
1

πN+Lσ2N det(Q)

×

∫

e−(h−h̃)
H
M(h−h̃)−C(θ)dh (10)

with 





M = 1
σ2 X

HX + Q−1

h̃ = 1
σ2 M

−1XHDθy

C(θ) = yH DH

θ Dθ
︸ ︷︷ ︸

=IN

y − h̃HMh̃
(11)

Note that if, as is almost always the case, the correlation

matrix Q is a priori unknown to the receiver but only L is

known, the maximum entropy principle states (see Equation

(4)) that h is Gaussian i.i.d. The previous study is then

still valid with Q = 1
L
IL. But again, it is rare that in the

initial synchronization step an exact value for L is known. A

marginalization of Equation (9) over all possible values for the

number of channel taps is necessary. This is further discussed

in Section IV. In the following we keep the assumption that

L (or Q) is known.

This leads to

p(y|θ, I) =
1

πNσ2N det(QM)
e−C(θ) (12)

in which only C depends on θ. Expanding C(θ) we have,

C(θ) = yH

[

I − DH

θ X
(
XHX + σ2Q−1

)−1 1

σ2
XHDθ

]

y

(13)

from which we isolate the part dependent on θ in the function

C ′,

C ′(θ) = −yHDH

θ X
(
XHX + σ2Q−1

)−1 1

σ2
XHDθy (14)

which can be rewritten, with Y = diag(y), and A =

YHX
(
XHX + σ2Q−1

)−1 1
σ2 X

HY,

C ′(θ) = −dH

θ YHX
(
XHX + σ2Q−1

)−1 1

σ2
XHYdθ (15)

= −
N∑

n=1

N∑

m=1

e−2πiθ n−m

N An,m (16)

= −2ℜ

[
N−1∑

k=1

e−2πiθ k

N ãk

]

− 2

N∑

n=1

An,n (17)

in which ãk =
∑N−k

m=1 Ak+m,m for 1 ≤ k ≤ N − 1; Equation

(17) is obtained from the Hermitian property of A.

Denote f(θ) = ℜ
[
∑N−1

k=1 e−2πiθ k

N Ãk

]

, we finally have

log (p(θ|y, I)) = α + log (p(θ|I)) + f(θ) (18)

for some constant α independent of θ.

The Bayesian inference on (θ|y, I) is then completely

determined by the prior density function p(θ|I) and f .

2) CFO estimators: The estimation of θ consists in elect-

ing, from the inferred information p(θ|y, I), the value θ̂
that optimally approximates θ. This optimal approximation

requires to minimize some cost function. Usually, MMSE

or minimum absolute error estimators are chosen but in the

context of synchronization parameter estimation, it is difficult

to decide which cost function would better suit our initial

desire: maximize the channel capacity or minimize decoding

errors given θ̂. In the following, we consider two classical

approaches: MMSE and maximum a posteriori (MAP) esti-

mations.

The MMSE estimate θ̂MMSE minimizes the mean quadratic

error E[(θ − θ̂)2] in which the expectation is taken over the

possible received signals y and over the possible CFO θ. It is

given by [15]

θ̂MMSE = E[θ|y, I] = eα

∫ +∞

−∞

θ · p(θ|I) · ef(θ)dθ (19)

Unfortunately, this integral is mathematically involved and will

stay under this analytic form.

For practical (less mathematically demanding) usage, it

seems desirable to consider the MAP estimator, which pro-

vides the most likely value for θ given y. However, particular

care is demanded to handle this estimator. As proven in [13]-

Chapter 13, the cost function that this estimator minimizes is

the limit function limx→0 E[|θ− θ̂|x]. This suggests that large

errors on the estimation of θ are as bad as small errors. In

particular, if p(θ|y, I) is not very peaky in the vicinity of the

true CFO, this estimator is expected to be very inefficient.

In our situation, the MAP estimator θ̂MAP reads

θ̂MAP = max
θ

[log (p(θ|I)) + f(θ)] (20)

In most situations, the prior knowledge upon (θ|I) is

difficult to describe in either deterministic or stochastic terms.

We consider only here the knowledge of bounds θmin and θmax

on the values for θ, such that (θ|I) is uniform on the set

[θmin, θmax] and equation (20) can be rewritten

θ̂MAP = max
θmin≤θ≤θmax

f(θ) (21)

From extensive simulations, we observe without proving it

that f is concave in the domain [− 1
2 , 1

2 ], i.e. one subcarrier

spacing, while it is not concave on the total bandwidth

[−N
2 , N

2 ]. This suggests that a thin estimation for θ can be

found by gradient descent methods in the interval [− 1
2 , 1

2 ]
while only coarse estimation can be handled on the larger

interval [−N
2 , N

2 ]. An algorithm is proposed in the following

to tackle the thin estimation problem.

C. Algorithm

Since it appears that f is concave on the space [−1/2, 1/2],
we consider in the following a steepest descent method to

perform CFO estimation. Note first that f can be rewritten as

the sum of two products,

f(θ) = ℜ

[
N−1∑

k=1

e−2πiθ k

N ãk

]

= ãT

ℜ · cθ + ãT

ℑ · sθ (22)



with






ãT

ℜ = ℜ[ã1, . . . , ãN−1]
ãT

ℑ = ℑ[ã1, . . . , ãN−1]
cT

θ = [cos(2πθ/N), . . . , cos(2π(N − 1)θ/N)]
sT

θ = [sin(2πθ/N), . . . , sin(2π(N − 1)θ/N)]

(23)

From (22), we deduce the first derivative f ′ of f as

f ′(θ) =
2π

N

(

−b̃T

ℜ · s + b̃T

ℑ · c
)

(24)

where, ∀k ∈ {1, . . . , N − 1}, b̃ℜ,k = k · ãℜ,k and b̃ℑ,k =
k · ãℑ,k.

Now the steepest descent algorithm can be described.

Assume first that p(θ|I) is uniform on [−1/2, 1/2]. Given

some termination constraint, the recursive algorithm unfolds

as follows,

1) at signal reception, compute the vectors b̃ℜ and b̃ℑ.

2) initialization: set the variables θmin = − 1
2 and θmax = 1

2 .

3) loop: while the termination constraint is not reached,

compute d = f ′([θmin + θmax]/2).

• if d > 0, set θmin = [θmin + θmax]/2.

• if d < 0, set θmax = [θmin + θmax]/2.

4) at termination, set θ̂ = [θmin + θmax]/2.

The algorithm converges to the MAP value for the CFO. If

a non-uniform prior is chosen for θ, one has to ensure that the

a posteriori (18) is concave on the set [−1/2, 1/2], in which

case the function to be maximized is f(θ)+log(p(θ|I)). Note

that, for “smooth” priors p(θ|I), even if f(θ)+ log(p(θ|I)) is

not truly concave, it is expected to behave nicely around the

exact value of θ and then the aforementioned algorithm can

be further refined.

III. SIMULATION AND RESULTS

In the following we consider an OFDM transmission with

N = 128 subcarriers. We assume perfect timing offset

alignment between the base station and the receiving terminal.

A CFO mismatch θ is introduced. The receiver only knows

that θ ∈ [−1/2, 1/2]. In Figure 1, we use as a pilot the

double-half sequence suggested by Moose [2]. The Bayesian

MAP method is compared against the Moose’s correlation

algorithm on 20, 000 channels and CFO realizations (θ is

uniformly distributed in [−1/2, 1/2]). The channel length is

set to L = 3, while the a priori on the channel length

is either considered known, i.e. Lassumed = 3, or wrongly

estimated, here Lassumed = 9. The respective performances

are analyzed in terms of average quadratic error E[(θ̂ − θ)2].
We observe a significant performance gain provided by the

Bayesian method, especially in low SNR regime. The Bayesian

estimator is indeed more able to cope with the noise impair-

ment which is more thoroughly modelled than in Moose’s

algorithm. Note also that a wrongly assigned prior p(h|I) on

the channel realization does not lead to critical performance

decay; in the high SNR region, this is almost unimportant.

In Figure 2, we analyze the performance of the steepest

descent algorithm proposed in Section II-C. The system pa-

rameters are the same as in the previous simulation, with a
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Fig. 1. Moose and Bayesian CFO estimates, MSE comparison - N = 128,
L = 3, Lassumed ∈ {3, 9}
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Fig. 2. Bayesian CFO estimation, Steepest descent algorithm - N = 128,
L = 3

correct prior Lassumed = 3 on the channel length at the receiver.

The termination constraint is simply the number of iterations

k of the inner loop, which we limit to k = 3, k = 5, k = 10
and k = 50. It is observed that saturations appear for small k,

which are explained by the systematic error introduced by the

minimal step size 2−k in the iteration loop. For k ≥ 10, the

performance plots fit the plot k = 50 in the −15 dB to 10 dB
SNR range. Note also that the saturated standard deviation

for k = 5 is around 1% of the subcarrier spacing, which

corresponds to the maximum allowable CFO mismatch in most

OFDM systems. Therefore, 5 iterations might be sufficient to

ensure a reliable estimation of the CFO.

IV. DISCUSSION

As previously mentioned, the expression p(y|θ, I) given by

equation (9) is only valid when the channel length L is known

to the receiver, i.e. it is part of the prior information I . This
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128, L = 3

would rarely be the case in the initial synchronization step

of classical OFDM systems. Instead, one should consider the

prior I0 which contains some statistical information about L,

and therefore one has,

p(y|θ, I0) =

∫

L

p(y|θ, L, I0) · p(L|I0)dL (25)

In the OFDM case, L is usually taken as an integer, and

therefore one can write

p(y|θ, I0) =

NCP∑

L=1

p(y|θ, L, I0) · p(L|I0) (26)

where NCP is the cyclic prefix length.

The computation is no more involved but is computationally

demanding in practice when NCP is large. As we observed

previously that an error in the a priori for L does not lead to

a significant CFO estimation error, p(y|θ, I0) can be in general

well approximated by Equation (9). If not, the sum (26) can

be restricted to a subset of {1, . . . , NCP}.

Concerning the choice of the MAP estimator, we mentioned

earlier that this estimator might turn out hazardous as large

errors in the sense of absolute difference are as good as small

errors. However, when the posterior distribution p(θ|y, I)
is very peaky in the vicinity of the true value for θ, any

classical estimator is alike. In particular, the only relevant

integrands of the MMSE estimator (19) are those located

around the distribution peak, which tends to a single mass in

the high SNR region; as a consequence, the MMSE estimate

asymptotically corresponds to the MAP estimator. Figure 3

provides a comparison between MMSE and MAP which shows

equal performance for SNR > 5 dB; the MMSE estimator

was computed from formula (19) in which the integrals were

approximated by discrete sums with step 1/256.

Note also that we provided a general framework for ini-

tial synchronization which considers fixed channels and a

limited amount of input data x. However, dynamics in the

channel as well as updated prior information are not taken

into account. Therefore, successive parameter estimates enjoy

the same performance. Ideally, the estimate of a parameter

θt0 at time t0 should take into account all the additional

information provided at time t < t0. Updating Bayesian

probabilities is treated in [12], which allows to infer on θt0

given the prior information I , the previous estimate θt0−1 and

some information on the system dynamics. These probability

updates are performed thanks to the so-called ME method.

V. CONCLUSION

In this work, an information theoretic framework for initial

synchronization is provided. The case study of carrier fre-

quency offset estimation in OFDM systems is developed and

expressions for performance upper-bounds are provided. Novel

data-aided estimators are also proposed, which are shown

to perform better than classical techniques. This gives birth

to a practical thin CFO algorithm. Simulations are carried

out which analyze the behaviour and confirm the gain in

performance of this new algorithm.
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