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Abstract

In this paper, we investigate the theoretical guarantees of penalized ℓ1-minimization (also
called Basis Pursuit Denoising or Lasso) in terms of sparsity pattern recovery (support and
sign consistency) from noisy measurements with non-necessarily random noise, when the
sensing operator belongs to the Gaussian ensemble (i.e. random design matrix with i.i.d.
Gaussian entries). More precisely, we derive sharp non-asymptotic bounds on the sparsity
level and (minimal) signal-to-noise ratio that ensure support identification for most signals
and most Gaussian sensing matrices by solving the Lasso with an appropriately chosen
regularization parameter.

Our first purpose is to establish conditions allowing exact sparsity pattern recovery
when the signal is strictly sparse. Then, these conditions are extended to cover the com-
pressible or nearly sparse case. In these two results, the role of the minimal signal-to-noise
ratio is crucial. Our third main result gets rid of this assumption in the strictly sparse
case, but this time, the Lasso allows only partial recovery of the support. We also provide
in this case a sharp ℓ2-consistency result on the coefficient vector.

The results of the present work have several distinctive features compared to previous
ones. One of them is that the leading constants involved in all the bounds are sharp
and explicit. This is illustrated by some numerical experiments where it is indeed shown
that the sharp sparsity level threshold identified by our theoretical results below which
sparsistency of the Lasso solution is guaranteed meets the one empirically observed.

Key words: Compressed sensing, ℓ1 minimization, sparsistency, consistency.

1. Introduction

1.1. Problem setup

The conventional wisdom in digital signal processing is the Shannon sampling theorem
valid for bandlimited signals. However, such a sampling scheme excludes many signals of
interest that are not necessarily bandlimited but can still be explained either exactly or
accurately by a small number of degrees of freedom. Such signals are termed sparse signals.
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In fact we distinguish two types of sparsity: strict and weak sparsity (the latter is also
termed compressibility). A signal x, considered as a vector in a finite dimensional subspace
of Rp, is strictly or exactly sparse if all but a few of its entries vanish; i.e., if its support
I(x) = supp (x) = {1 ≤ i ≤ p | x[i] 6= 0} is of cardinality k ≪ p. A k-sparse signal is
a signal where exactly k samples have a non-zero value. Signals and images of practical
interest may be compressible or weakly sparse in the sense that the sorted magnitudes
|xsorted[i]| decay quickly. Thus x can be well-approximated as k-sparse up to an error term
(this property will be used when we will tackle compressible signals). If a signal is not
sparse in its original domain, it may be sparsified in an appropriate orthobasis Φ (hence
the importance of the point of view of computational harmonic analysis and approximation
theory). Without loss of generality, we assume throughout that Φ is the standard basis.

The compressed sensing/sampling [1, 2, 3] asserts that sparse or compressible signals can
be reconstructed with theoretical guarantees from far fewer measurements than the ambient
dimension of the signal. Furthermore, the reconstruction is stable if the measurements are
corrupted by an additive bounded noise. The encoding (or sampling) step is very fast since
it gathers n non-adaptive linear measurements that preserve the structure of the signal x0:

y = Ax0 + w ∈ R
n, (1)

where A ∈ R
n×p is a rectangular measurement matrix, i.e., n < p, and w accounts for

possible noise with bounded ℓ2 norm. In this work, we do not need w to be random and
we consider that A is drawn from the Gaussian matrix ensemble1, i.e., the entries of A are
independent and identically distributed (i.i.d.) N (0, 1/n). The columns of A are denoted
ai, for i = 1, · · · , p. In the sequel, the sub-matrix AI is the restriction of A to the columns
indexed by I(x). To lighten the notation, the dependence of I on x is dropped and should
be understood from the context.

The signal is reconstructed from this underdetermined system of linear equations by
solving a convex program of the form:

x ∈ argmin
x∈Rp

‖x‖1 such that Ax− y ∈ C , (2)

where C is an appropriate closed convex set, and ‖x‖q := (
∑

i |x[i]|q)1/q, q ≥ 1 is the ℓq-
norm of a vector with the usual adaptation for q = ∞: ‖x‖∞ = maxi |x[i]|. We also denote
‖x‖0 as the ℓ0 pseudo-norm which counts the number of non-zero entries of x. Obviously,
‖x‖0 = |I(x)|. For any vector x, the notation x ∈ R

|I(x)| means the restriction of x to its
support.

Typically, if C = {0} (no noise), we end up with the so-called Basis Pursuit [4] problem

min
x∈Rp

‖x‖1 such that y = Ax . (BP)

Taking C as the ℓ2 ball of radius ǫ, we have a noise-aware variant of BP

min
x∈Rp

‖x‖1 such that ‖Ax− y‖2 ≤ ǫ (ℓ1-constrained)

where the parameter ǫ > 0 depends on the noise level ‖w‖2. This constrained form can
also be shown to be equivalent to the ℓ1-penalized optimization problem, which goes by
the name of Basis Pursuit DeNoising [4] or Lasso in the statistics community after [5]:

min
x∈Rp

1

2
‖y −Ax‖22 + γ ‖x‖1 , (Lasso)

1In a statistical linear regression setting, we would speak of a random Gaussian design.
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where γ is the regularization parameter. (ℓ1-constrained) and (Lasso) are equivalent in the
sense that there is a bijection between γ and ǫ such that both problems share the same set
of solutions. However, this bijection is unknown explicitly and depends on y and A, so that
in practice, one needs to use different algorithms to solve each problem, and theoretical
results are stated using one formulation or the other. In this paper, we focus on the Lasso
formulation. It is worth noting that the Dantzig selector [6, 7] is also a special instance of
(2) when C = {z ∈ R

p
∣

∣

∥

∥ATz
∥

∥

∞ ≤ γ}.
The convex problems of the form (ℓ1-constrained) and (Lasso) are computationally

tractable and many algorithms have been developed to solve them, and we only mention
here a few representatives. Homotopy continuation algorithms [8, 9, 10] track the whole
regularization path. Many first-order algorithms originating from convex non-smooth op-
timization theory have been proposed to solve (Lasso). These include one-step iterative
thresholding algorithms [11, 12, 13, 14], or accelerated variants [15, 16], multi-step schemes
such as [17] or [18]. The Douglas-Rachford algorithm [19, 20] is a first-order scheme that
can be used to solve (ℓ1-constrained). A more comprehensive account can be found in [21,
Chapter 7].

1.2. Theoretical performance measures of the Lasso

These last years, we have witnessed a flurry of research activity where efforts have been
made to investigate the theoretical guarantees of ℓ1 minimization by solving the Lasso for
sparse recovery from noisy measurements in the underdetermined case n < p. Overall, the
derived conditions hinge on strong assumptions on the structure and interaction between
the variables in A as indexed by x0. An overview of the literature pertaining to our work
will be covered in Section 1.3 after notions are introduced so that the discussions are clearer.

Let x0 be the original vector as defined in (1), f0 = Ax0 the noiseless measurements,
x(γ) a minimizer of the Lasso problem and f(γ) = Ax(γ).

Consistency. ℓq-consistency on the signal x means that the ℓq-error ‖x0 − x(γ)‖q, for typ-
ically q = 1, 2 or ∞, between the unknown vector x0 and a solution x(γ) of either (Lasso)
or (ℓ1-constrained) comes within a factor of the noise level.

Sparsistency. Sparsity pattern recovery (also dubbed sparsistency for short or variable
selection in the statistical language) requires that the indices and signs of the solutions
x(γ) are equal to those of x0 for a well chosen value of γ. Partial support recovery occurs
when the recovered support is included (strictly) in that of x0 with the correct sign pattern.

In general, it is not clear which of these performance measures is better to characterize
the Lasso solution. Nevertheless, in the noisy case, consistency does not tell the whole
story and there are many applications where bounds on the ℓq-error are insufficient to
characterize the accuracy of the Lasso estimate. In this case, exact or partial recovery
of the support, hence of the correct model variables, is the desirable property to have.
Among other advantages, this allows for instance to circumvent the bias of the Lasso and
thus enhance the estimation of x0 and Ax0 using a debiasing procedure: recover the support
I by solving the Lasso, followed by least-squares regression on the selected variables (ai)i∈I ;
see e.g. [6, 22]. Our work falls within this scope and focuses on exact and partial support
identification for both strictly sparse and compressible signals in the presence of noise on
Gaussian random measurements.
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1.3. Literature overview

The properties of the Lasso have been extensively studied, including consistency and
distribution of its estimates. There is of course a huge literature on the subject, and
covering it fairly is beyond the scope of this paper. In this section, we restrict our overview
to those works pertaining to ours, i.e., sparsity pattern recovery in presence of noise.

Much recent work aims at understanding the Lasso estimates from the point of view of
sparsistency. This body of work includes [22, 6, 23, 24, 25, 26, 27, 28, 29]. For the Lasso
estimates to be close to the model selection estimates when the data dimensions (n, p)
grow, all the aforementioned papers assumed a sparse model and used various conditions
that require the irrelevant variables to be not too correlated with the relevant ones.

Mutual coherence-based conditions. Several researchers have studied independently the
qualitative performance of the Lasso for either exact or partial sparsity pattern recovery of
sufficiently sparse signals under a mutual coherence condition on the measurement matrix
A; see for instance [23, 30, 26, 31] when A is deterministic, and [32] when A is Gaussian.
However, mutual coherence is known to lead to overly pessimistic sparsity bounds.

Support structure-based conditions. These sufficient recovery conditions were refined by
considering not only the cardinality of the support but also its structure, including the
signs of the non-zero elements of x0. Such criteria use the interactions between the relevant
columns of AI = (ai)i∈I and the irrelevant ones (ai)i/∈I . More precisely, we define the
following condition developed in [33] to analyze the properties of the Lasso. This condition
goes by the name of irrepresentable condition in the statistical literature; see e.g. [28, 22,
27, 34] and [35] for a detailed review.

Definition 1. Let I be the support of x0 and Ic its complement in {1, · · · , p}. The irrep-
resentable (or Fuchs) condition is fulfilled if

F (x0) :=
∥

∥AT
IcAI(A

T
I AI)

−1sign (x0)
∥

∥

∞ = max
i∈Ic

|〈ai, d(x0)〉| < 1, (3)

where d(x0) := AI(A
T
I AI)

−1sign (x0) . (4)

Condition (3) will also be the soul of our analysis in this paper.

The criterion (3) is closely related to the exact recovery coefficient (ERC) of Tropp [26]:

ERC(x0) := 1−max
i∈Ic

∥

∥(AT
I AI)

−1AT
I ai
∥

∥

1
. (5)

In [26, Corollary 13], it is established that if ERC(x0) > 0, then the support of the Lasso
solution with a large enough parameter γ is included in the one of the subset selection (i.e.,
ℓ0-minimization) optimal solution.

In [28], an asymptotic result is reported showing that (3)2 is sufficient for the Lasso
to guarantee exact support recovery and sign consistency. It is also shown that (3) is
essentially necessary for variable selection. [24] develop very similar results and use similar
requirements. [36] and [37] derive asymptotic conditions for sparsistency of the block Lasso
[38] by extending (3) and (5) to the group setting.

Reference [22] proposes a non-asymptotic analysis with a sufficient condition ensuring
exact support and sign pattern recovery of most sufficiently sparse vectors for matrices

2In fact, a slightly stronger assumption requiring that all elements in (3) are uniformly bounded away
from 1.
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satisfying a weak coherence condition (of the order (log p)−1). Their proof relies upon
(3) and a bound on norms of random sub-matrices developed in [39]. The work in [27]
considers a condition of the form (3) to ensure sparsity pattern recovery. The analysis
in that paper was conducted for both deterministic and standard Gaussian A in a high-
dimensional setting where p and the sparsity level grow with the number of measurements
n. That author also established that violation of (3) is sufficient for failure of the Lasso in
recovering the support set. In [40], the sufficient bound on the number of measurements
established in [27] for the standard Gaussian dense ensemble was shown to hold for sparse
measurement ensembles. The works of [22] and [27] are certainly the most closely related
to ours. We will elaborate more on these connections by highlighting the similarities and
differences in Section 2.4.

Variations on the Lasso. Other variations of the Lasso, such as the adaptive Lasso3 [29, 42]
or multi-stage variable selection methods [43, 44, 45, 46, 34]. For an overview of other
penalized methods that have been proposed for the purpose of variable selection, see [43].

Information-theoretic bounds. A recent line of research has developed information-theoretic
sufficient and necessary bounds to characterize fundamental limits on minimal signal-to-
noise ratio (SNR), the number of measurements n, and tolerable sparsity level k required
for exact or partial support pattern recovery of exactly sparse signals by any algorithm
including the optimal exhaustive ℓ0 decoder [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. In
most of these works, the bounds are asymptotic, i.e., they provide asymptotic scaling and
typically require that the sparsity level k varies at some rate (linearly or sub-linearly) with
the signal dimension p when n grows to infinity. It is worth mentioning that a careful
normalization is needed, for instance of the sampling matrix and noise, when comparing
these results in the literature.

The paper [47] was the first to consider the information-theoretic limits of exact spar-
sity recovery from the Gaussian measurement ensemble, explicitly identifying the minimal
SNR (or equivalently T = mini∈I(x0) |x0[i]|) as a key parameter. This analysis yielded nec-
essary and sufficient conditions on the tuples (n, p, k, T ) for asymptotically reliable sparsity
recovery. This complements the analysis of [27] by showing that in the sub-linear sparsity
regime, i.e. k = o(p), the number of measurements required by the Lasso4 n & k log(p− k)
achieves the information-theoretic necessary bound.

Subsequent work of [48, 49, 50, 51, 52, 53, 54, 55, 56, 57] has extended or strengthened
this type of analysis to other settings (e.g. partial support recovery, other matrix ensembles,
other scaling regimes, compressible case).

1.4. Contributions

Most of the results developed in the literature on sparsistency of the Lasso estimate
exhibit asymptotic scaling results in terms of the triple (n, p, k), but this does not tell the
whole story. One often needs to know explicitly the exact numerical constants involved in
the bounds, not only their dependence on key quantities such as the SNR and/or other
parameters of the signal x0. As a consequence, the majority of sufficient conditions are
more conservative than those suggested by empirical evidence.

3The adaptive Lasso as seen in the statistical literature turns out to be a two-step procedure, where
the second step is to solve a reweighted ℓ1 norm problem, with weights given by the Lasso estimate in the
first step. In fact, this is a special case of the iteratively reweighted ℓ1-minimization [41].

4The shorthand notation f & g means that g = O(f).
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In this paper, we investigate the theoretical properties of the Lasso estimate in terms
of sparsity pattern recovery (support and sign consistency) from noisy measurements –the
noise being not necessarily random– when the measurement matrix belongs to the Gaussian
ensemble. We provide precise non-asymptotic bounds, including explicit sharp leading
numerical constants, on the key quantities that come into play (sparsity level for a given
measurement budget, minimal SNR, regularization parameter) to ensure exact or partial
sparsity pattern recovery for both strictly sparse and compressible signals. Our results
have several distinctive features compared to previous closely-connected works. This will
be discussed in further details in Section 2.4. Numerical evidence are reported in Section 6
to confirm the theoretical findings.

1.5. Organization of the paper

The rest of the paper is organized as follows. We first state our main results and discuss
the connections and novelties with respect to existing work. In Section 3 and 4, we detail
the proofs for exact recovery with strictly sparse and compressible signals, before proving
the partial support recovery result in Section 5. Numerical experiments are carried out in
Section 6. Section 6 includes a final discussion and some concluding remarks.

2. Main results

Our first result Theorem 1 establishes conditions allowing exact sparsity pattern re-
covery when the signal is strictly sparse. Then, these conditions are extended to cover
the compressible case in Theorem 2. In these two results, the role of the minimal SNR
is crucial. Our third main result in Theorem 3 gets rid of this assumption in the strictly
sparse case, but this time, the Lasso allows only partial recovery of the support. We also
provide in this case a sharp ℓ2-consistency result on the Lasso estimate.

The three theorems are stated following the same structure: suppose that (x0, w) fulfill
some requirements formalized by a set Y, then with overwhelming probability (w.o.p. for
short) on the choice of A, the Lasso estimate obeys some property P. It should be noted
that these theorems imply in particular that w.o.p. on the choice of A, for most vectors
(x0, w) ∈ Y, the Lasso estimate satisfies property P, whatever the probability measure
used on the set Y.

The proof of Theorem 1 is given in Section 3. We prove its extension to compressible
signals as stated in Theorem 2 in Section 4. Both proofs capitalize on an implicit formula
of the Lasso solution. The proof of Theorem 3 given in Section 5 is quite different, since
no such implicit formula is used directly.

2.1. Exact Support Recovery with Strictly Sparse Signals

Theorem 1. Let A ∈ R
n×p be a Gaussian matrix, i.e. its entries are i.i.d. N (0, 1/n),

w ∈ R
n is such that ‖w‖2 ≤ ε, 0 ≤ α, β < 1 and p > e

1
2(1−√

β) . Suppose that x0 ∈ R
p obeys

‖x0‖0 = k ≤ αβn

2 log p
(6)

and

min
i∈I

|x0[i]| = T ≥ 5.5ε√
1− α

√

2 log p

n
. (7)
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Solve the Lasso problem from the measurements y = Ax0 + w. Then with probability
P (n, p, α, β) converging to 1 as n goes to infinity, the Lasso solution x(γ) with

γ =
ε√

1− α

√

2 log p

n
(8)

is unique and satisfies

supp (x(γ)) = supp (x0) and sign
(

x(γ)
)

= sign (x0) .

The proof (see Section 3) provides an explicit bound for P (n, p, α, β), showing in par-
ticular that P (n, p, α, β) is larger than

1− 1

2
e−0.7

√
logn − 1

2
√
π log p

− o

(

1

log p

)

− o(e−0.7
√
logn) ,

although this bound on the probability is far from optimal.

In plain words, Theorem 1 asserts that for (α, β) ∈ [0, 1) the support and the sign of
most vectors obeying (6) can be recovered using the Lasso if the non-zero coefficients of
x0 are large enough compared to noise. This bound on the sparsity of x0 turns out to be
optimal, since for any c > 1, for most vectors x0 such that ‖x0‖0 ≥ cn

2 log p , the support
cannot be recovered using the Lasso even with no noise. Indeed, [33] and [58] proved that
the Lasso solution for any γ shares the same sign and the same support as x0 when y = Ax0
if and only if

max
j /∈I

|〈aj , AI(A
T
I AI)

−1sign (x0)〉| ≤ 1 .

Note in passing the difference with the strict inequality in (3). On the other hand, if

‖x0‖0 ≥ cn
2 log p with c > 1, then w.o.p.

∥

∥AI(A
T
I AI)

−1sign (x0)
∥

∥

2

2
≥ Cn

2 log p for some C > 1

and sufficiently large p. As a result, maxj /∈I |〈aj , AI(A
T
I AI)

−1sign (x0)〉| ≥
√
C > 1. This

informal optimality discussion is consistent with the information-theoretic bounds of [47],
where it was proved that the number of measurements required by the Lasso achieves
the (asymptotic) information-theoretic necessary bound that has the scaling (6) when the
sparsity regime is sub-linear and T 2 ∼ 1/ ‖x0‖0.

An important feature of Theorem 1 is that all the constants are made explicit and are
governed by the two numerical constants α and β. The role of α is very instructive since
when lowering γ by decreasing α, the threshold on the minimal SNR is decreased to allow
smaller coefficients to be recovered, but simultaneously the probability of success gets lower
and the number of measurements required to recover the k-sparse signal increases. The
converse applies when α is increased. On the other hand, increasing β (in an appropriate
range; see Section 3.3 for details) allows a higher threshold on the sparsity level, but again
at the price of a smaller probability of success.

2.2. Support Recovery with Compressible Signals

Theorem 1 can be easily extended to weakly sparse or compressible signals. We consider
the best k-term approximation xk of x0 obtained by keeping only the k largest entries from
x0 and setting the others to zero. Obviously, k = |I(xk)|. This is equivalently defined
using a thresholding

xk[i] =

{

x0[i] if |x0[i]| ≥ T,
0 otherwise.

(9)
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A signal is generally considered as compressible if the residual xk − x0 is small. For
sparsistency to make sense in this compressible case, additional assumptions are required,
namely that the largest components xk of the signal are significantly larger than the residual
xk − x0. This is made formal in the following theorem.

Theorem 2. Let A, α, β and p as in Theorem 1. We measure y = Ax0 + w, and let xk

be the best k-term approximation of x0 where k satisfies (6). We denote

∆ =
2

√

1 + 2
√
α− 3α

√

2 log p

n
.

Suppose that

‖w‖2 + 4
∥

∥

∥x0 − xk
∥

∥

∥

2
≤ ε, (10)

T as defined in (9) is such that
T ≥ 5.5∆ε (11)

and
∥

∥

∥
x0 − xk

∥

∥

∥

∞
≤ 4

5
(1−√

α)∆ε. (12)

Then, with probability P2(n, p, α, β) converging to 1 as n goes to infinity, the solution x(γ)
of the Lasso from measurements y with

γ = ∆ε (13)

is unique and satisfies

supp (x(γ)) = supp
(

xk
)

and sign
(

x(γ)
)

= sign
(

xk
)

.

Again, all the leading constants are explicit. Conditions (11) and (12) impose compress-
ibility constraints on the signal, namely that the magnitude of the k largest components of
x0 are well above the average magnitude ε/

√
n of the residual, and that the latter is “flat”,

since the ratio of its ℓ∞ and ℓ2 norms should be small.
The proof (see Section 4) provides an explicit bound for P2(n, p, α, β), showing that

P2(n, p, α, β) is greater than

1− 1

2
e−0.7

√
logn − 1

2
√
π log p

− o

(

1

log p

)

− o(e−0.7
√
logn) ,

although once again this bound on the probability is far from optimal.

Theorem 2 encompasses the strictly sparse case, Theorem 1, which is easily recovered
by letting x0 = xk. The parameter α plays a similar role in both theorems. Furthermore,
in Theorem 2, the Lasso solution becomes more tolerant to compressibility errors x0−xk as
α decreases. This however comes at the price of a lower probability of success as indicated
in our proof.
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2.3. Partial Support Recovery with Strictly Sparse Signals

In both previous theorems, the assumption on T plays a pivotal role: if T is too small,
there is no way to distinguish the small components of x0 from the noise; see also the
discussion and literature review in Section 1.3. Nevertheless, if no assumptions are made
on T , one can nevertheless expect to partly recover the support of x0. This is formalized
in the following result.

Theorem 3. Let A, α and β as in Theorem 1. We measure y = Ax0+w, where x0 fulfills
(6). Then with probability P3(n, p, α, β) converging to 1 as n goes to infinity, the solution
x(γ) of the Lasso form measurements y with

γ =
ε√

1− α

√

2 log p

n

is unique and satisfies
supp (x(γ)) ⊂ supp (x0) .

Moreover, the Lasso solution is ℓ2-consistent:

‖x0 − x(γ)‖2 ≤
(

2 +

√

α

1− α

)

ε . (14)

The proof in Section 5 provides an explicit lower bound for P3(n, p, α, β), and shows
that P3(n, p, α, β) is larger than

1− e−
n

(

1−
√

β−
√

k
n

)2

2 − 1

2
√
π log p

.

As before, this bound on the probability is not optimal.

If γ is large enough it is clear that supp (x(γ)) ⊂ supp (x0) since for γ ≥
∥

∥ATy
∥

∥

∞,
x(γ) = 0. Theorem 3 provides a parameter γ proportional to ε that ensures a partial
support recovery without any assumption on T . It also gives a sharp upper bound on
ℓ2-error of the Lasso solution. This result remains valid under the additional hypotheses
of Theorem 1 or 2 allowing exact recovery of the support.

2.4. Connections to related works

Sparsistency. As we mentioned in Section 1.3, our work is closely related to [22, 27], but
is different in many important ways that we summarize as follows.

• Deterministic vs random measurement matrices: the work of [22] considers deter-
ministic matrices satisfying a weak incoherence condition. Our work focuses on the
classical Gaussian ensemble.

• Asymptotic vs non-asymptotic analysis: the analysis in [27] applies to high-dimensional
setting where even the sparsity level k grows with the number of measurements n.
As a result, k appears in the statements of the probabilities, which thus requires
that k → +∞. This is very different from our setting as well as that of [22] where
the probabilities depend solely on the dimensions of A. We believe that this is more
natural in many applications.
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• Random vs deterministic noise: in both previous works, the noise is stochastic (Gaus-
sian in [22] and sub-Gaussian in [27]). In our work, we handle any noise with a finite
ℓ2-norm.

• Leading numerical constants: these are not always explicit and sharp in those works.
The constant involved in the sparsity level upper-bound in [22, Theorem 1.3] is not
given, whereas (6) gives an explicit and sharp bound. The bounds (7) and (8) on T
and γ are similar to those given in [22, Theorem 1.3] once specialized for α = 3/4.
In [27, Theorem 2], the constant appearing in the lower-bound on T is not given,
whereas (7) provides an explicit expression that is shown to be reasonably good in
Section 6.

• Compressible signals: to the best of our knowledge, the compressible case has not
been covered in the literature, and Theorem 2 appears then as a distinctively novel
result of this paper.

• ℓ2-consistency: such a result is not given in those references. A bound on the ℓ2-
prediction error on Ax0 − Ax(γ) is proved in [22]. An ℓ∞-consistency is established
in [27], which is an immediate consequence of sparsistency. Our method of proof
differs significantly from the one used in [27], and in particular it naturally leads to
the ℓ2-consistency result.

• Exact and partial support recovery: in [22] the partial recovery case was not con-
sidered. In [27], exact and partial recovery are somewhat handled simultaneously,
while we give two distinct results for each case.

ℓ2-consistency. This property of the Lasso estimate has been widely studied by many
authors under various sufficient conditions. Theorem 3 may then be compared to this
literature, and we here focus on results based on the restricted isometry property (RIP)
[59] and more or less similar variants in the literature; see the discussion in [34] and the
review in [35].

The RIP results are uniform and ensure ℓ2-stability of the Lasso estimate for all suf-
ficiently sparse vectors from noisy measurements, whereas Theorem 3 guarantees that the
Lasso estimate is ℓ2-consistent for most sparse vectors and a given matrix. When A is
Gaussian, the scaling of the sparsity bound is O(n/ log(p/n)) for RIP-based results which
is better than O(n/ log p) in Theorem 3. Note that the scaling O(n) was derived in [60]
when A belongs to the uniform spherical ensemble to ensure ℓ2-stability of the Lasso esti-
mate for most matrices A, although the leading constants are not given explicitly. However,
the RIP is a worst-case analysis, and the price is that the leading constants in the sufficient
sparsity bounds are overly small. In contrast, the leading numerical constants in our spar-
sity and ℓ2-consistency upper-bounds are explicit and solely controlled by (α, β) ∈ [0, 1)2.
For instance, it can be verified from our proof that the value of the sparsity upper-bound
we provide is actually larger than the bounds obtained from the RIP for p up to e100.
Finally, the RIP is a deterministic property that turns out to be satisfied by many ensem-
bles of random matrices other than the Gaussian. Our Theorem 3 could presumably be
extended to sub-Gaussian matrices (e.g. using [61, Corollary V.2.1]), but this needs further
investigation that we leave for a future work.

3. Proof of Support Identification of Exactly Sparse Signals

This section gives the proof of Theorem 1. Recall that x̄ is the restriction of x to its
support I(x), and AI the corresponding sub-matrix. We also denote the Moore-Penrose

10



pseudo-inverse of AI as
A+

I = (AT
I AI)

−1AT
I .

3.1. Optimality Conditions for Penalized Minimization

From classical convex analysis, the first order optimality conditions show that a vector
x⋆ is a solution of the Lasso if and only if

{

AT
I (y −Ax⋆) = γsign

(

x⋆
)

∀j /∈ I, |〈aj , y −Ax⋆〉| ≤ γ,
(15)

where I = I(x⋆).
Hence if the goal pursued is to ensure that I(x⋆) = I(x0) = I and sign (x⋆) = sign (x0),

the only candidate solution of the Lasso is

x⋆ = x0 − γ(AT
I AI)

−1sign (x0) +A+
I w. (16)

Consequently, a vector x⋆ is a solution of the Lasso if and only the two following conditions
are met :

sign (x0) = sign (x⋆) (C1)

∀j /∈ I(x0), |〈aj , γd(x0) + PVI
⊥(w)〉| ≤ γ (C2)

where VI = Span(AI), PVI
⊥ is the orthogonal projection on the subspace orthogonal to VI ,

and d(x0) is defined in (4).
Sections 3.2 and 3.3 show that under the hypotheses of Theorem 1, conditions (C1)

and (C2) are in force with probability converging to 1 as n goes to infinity. This will thus
conclude the proof of Theorem 1.

3.2. Condition (C1)

To ensure that sign (x0) = sign (x⋆), it is sufficient that

∥

∥γ(AT
I AI)

−1sign (x0) +A+
I w
∥

∥

∞ ≤ T . (17)

We prove that this is indeed the case w.o.p. .

Lemma 4, whose proof is given in Appendix A.3, shows that γ = ε√
1−α

√

2 log p
n ≤ T

5.5

implies

γ
∥

∥(AT
I AI)

−1sign (x0)
∥

∥

∞ ≤ T (1 + 4
√
α)

5.5

with probability greater than 1− kp−1.28 − 2e
−nα(0.75

√
2−1)2

4 log p .
To prove (17), we will now bound

∥

∥A+
I w
∥

∥

∞. To this end, we split it as follows

∥

∥A+
I w
∥

∥

∞ = D1 ×D2 ×D3 × ‖w‖2 ,

where

D1 =

∥

∥A+
I w
∥

∥

∞
∥

∥A+
I w
∥

∥

2

, D2 =

∥

∥A+
I w
∥

∥

2
∥

∥AT
I w
∥

∥

2

, D3 =

∥

∥AT
I w
∥

∥

2

‖w‖2
.

11



Bounding D1. As A and w are independent, Lemma 5, proved in Appendix A.4, shows
that the distribution of A+

I w is invariant under orthogonal transforms on R
k. Therefore

the random variable
A+

I w
∥

∥A+
I w
∥

∥

2

is uniformly distributed on the unit ℓ2 sphere of Rk.

Using the concentration Lemma 7, detailed in Appendix B, with ǫ =
(

8 logn log k
k2

)
1
4
, it

follows that

P

(

D1 ≤
√

2

k
(2 log n log k)

1
4

)

≥ 1− 4ke−
√
2 logn log k

≥ 1−max
(

4n− 1
3 , 8e−

√
2 log(2n)

)

. (18)

One can notice that D1 ≤ 1 actually gives a better bound if k is small compared to n.
Moreover the bound on the probability is 1− 4n− 1

3 for k big.

Bounding D2. D2 is bounded by the maximum of the eigenvalue of (AT
I AI)

−1. Indeed,

owing to Lemma 3 with t = 1−
√

k
n − 2−

1
8 , we arrive at

P
(

D2 ≤ 2
1
4

)

≥ 1− e
−n

2

(

1−2−
1
8− 1√

2 log p

)2

. (19)

Bounding D3. Let’s write

D2
3 =

1

‖w‖22

∑

i∈I
|〈ai, w〉|2.

Since each 〈ai, w〉 is a zero-mean Gaussian variable with variance
‖w‖22
n , the variable

n
∥

∥AT
I w
∥

∥

2

2

‖w‖22
,

follows a χ2 distribution with k degrees of freedom. Therefore, in virtue of the concentration
Lemma 8, stated in Appendix B, applied with

1 + δ = 2

√

log n

log k

we obtain

P

(

D2
3 ≤ 2k

√
log n

n
√
log k

)

≥ 1− 1√
2πk

e
−k

(√

logn
log k

− 1
2
− log 2

2
− 1

4
log

(

log n
log k

))

≥ 1− 1

2
e−0.7

√
logn

This last bound may be pessimistic; when k is large this probability is actually much bigger.
This shows that w.o.p. ,

D3 ≤
√

2k

n

(

log n

log k

)
1
4

. (20)

Putting (18), (19) and (20), we conclude that

∥

∥A+
I w
∥

∥

∞ ≤ 2ε

√

2 log n

n
, (21)
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with probability greater than

1−1

2
e−0.7

√
logn−e

−n
2

(

1−2−
1
8 − 1√

2 log p

)2

−max
(

4n− 1
3 , 8e−

√
2 log(2n)

)

−kp−1.28−2e
−nα(0.75

√
2−1)2

4 log p

which converges to 1 as n → +∞.
In turn, the bound (21) becomes, under assumption (7) on T ,

∥

∥A+
I w
∥

∥

∞ ≤ 2T
√
1− α

5.5
.

This shows that condition (C1) is in force with probability converging to 1 as n → +∞.

3.3. Condition (C2)

Let’s introduce the following vector

u = γd(x0) + PVI
⊥(w), (22)

which depends on both x0 and w.
Clearly, to comply with (C2), we need to bound (〈aj , u〉)j /∈I w.o.p. . We will start by

bounding ‖u‖2.
Bounding ‖u‖2. As d(x0) ∈ VI , the Pythagorean theorem yields

‖u‖22 = γ2 ‖d(x0)‖22 +
∥

∥

∥PVI
⊥(w)

∥

∥

∥

2

2
. (23)

Let S = sign (x0). Then

nk

‖d(x0)‖22
=

n ‖S‖22
ST(AT

I AI)−1S
.

Since x0 and A are independent, Lemma 6, stated in Appendix B, shows that nk
‖d(x0)‖22

is

χ2-distributed with n− k+1 degrees of freedom. Thanks to Lemma 9, see Appendix B, it
follows that for all δ > 0,

P

(

nk

n− k + 1
< (1− δ) ‖d(x0)‖22

)

≤ e
(n−k+1) log(1−δ)

2 .

Since k
n ≤ 1

2 log p , we obtain for p ≥ e
1
2δ ,

P
(

k < ‖d(x0)‖22 (1− δ)2
)

≤ e
n log(1−δ)(4−δ)

8 .

Choosing δ such that (1− δ) >
√
β, we have

P

(

‖d(x0)‖22 ≤
k

β

)

≥ 1− e
n(3−√

β) log β

16 .

This shows that

‖d(x0)‖22 ≤
k

β

with probability converging to 1 as n → +∞.

It is worthy to mention that the condition p > e
1

2(1−
√

β) actually guarantees the existence
of a suitable δ.

As PVI
⊥ is an orthogonal projector, we have

∥

∥

∥PVI
⊥(w)

∥

∥

∥

2
≤ ‖w‖2 ≤ ε. Together with

(23), this shows that

P

(

‖u‖22 ≤ γ2
k

β
+ ε2

)

≥ 1− e
n(3−√

β) log β

16 . (24)
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Bounding maxj /∈I |〈u, aj〉|. For a fixed u, the random variables (〈aj , u〉)j /∈I are zero-mean

Gaussian variables with variance
‖u‖22
n .

Using the bound (24), traditional arguments from the concentration of the maximum
of Gaussian variables tell us that

max
j /∈I

|〈aj , u〉| ≤
√

2 log p

n

(

γ2
k

β
+ ε2

)

(25)

with a probability larger than

1− e
n(3−

√
β) log β

16 − 1

2
√
π log p

.

In turn, this implies that condition (C2) is in force w.o.p. if

√

2 log p

n

(

γ2
k

β
+ ε2

)

≤ γ.

This holds if
ε√

1− α

√

2 log p

n
≤ γ.

This concludes the proof of Theorem 1, and shows that overall

P (n, p, α, β) ≥ 1− 1

2
e−0.7

√
logn − e

−n
2

(

1−2−
1
8 − 1√

2 log p

)2

−max
(

4n− 1
3 , 8e−

√
2 log(2n)

)

− kp−1.28 − 2e
−nα(0.75

√
2−1)2

4 log p − e
n(3−

√
β) log β

16 − 1

2
√
π log p

.

4. Proof of Support Identification of Compressible Signals

To prove this theorem, we capitalize on the results of Section 3.1 by noting that y =
Axk +A(x0 − xk) + w := Axk +Ah+ w, and replacing x0 by xk and w by w2 = Ah+ w.
With these change of variables, it is then sufficient to check conditions (C1) and (C2) with
the notable difference that the noise w2 is not independent of A anymore. More precisely,
w2 is independent of (ai)i∈I but not of (aj)j /∈I .

Condition (C1). Since this condition only depends on AI , it is verified with probability
converging to 1 as n → +∞, as in the proof of Theorem 1, provided that T ≥ 5.5γ and

‖w2‖2 ≤ T
5.5

√

(1−α)n
2 log p . The first condition is a direct consequence of assumptions (11) and

(13). Moreover, ‖w2‖2 ≤ ‖w‖2 + ‖Ah‖2, where Ah is a zero-mean Gaussian vector, whose

entries are independent with variance
‖h‖22
n . Therefore

n‖Ah‖22
‖h‖22

has a χ2 distribution with n

degrees of freedom. We then derive from the concentration Lemma 8 that

P (‖Ah‖2 ≤ 2 ‖h‖2) ≥ 1− 1

3
√
2πn

e−0.8n .

Under assumptions (10)-(11), the last inequality implies that

‖w2‖2 ≤ ‖w‖2 + 2 ‖h‖2 ≤ ε ≤ T

5.5∆
≤ T

5.5

√

(1− α)n

2 log p
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with probability that tends to 1 as n → +∞. Condition (C1) is thus satisfied with a
probability larger than

1− 1

2
e−0.7

√
logn − e

−n
2

(

1−2−
1
8 − 1√

2 log p

)2

−max
(

4n− 1
3 , 8e−

√
2 log(2n)

)

− kp−1.28

− 2e
−nα(0.75

√
2−1)2

4 log p − 1

3
√
2πn

e−0.8n.

Condition (C2). For any j /∈ I, define the vector vj = w2 − h[j]aj . In particular, vj is
independent of aj . Condition (C2) now reads:

∀j /∈ I, |〈aj , γd(xk) + PVI
⊥(vj) + h[j]PVI

⊥(aj)〉| ≤ γ ,

where the vector d(xk) is defined replacing x0 by xk in (4).

Similarly to (24), it can be shown that w.o.p.

∥

∥

∥
γd(xk) + PVI

⊥(vj)
∥

∥

∥

2

2
≤ γ2

k

β
+ ‖vj‖22 .

On the other hand, ‖vj‖2 ≤ ‖w2‖2 + ‖h‖∞ ‖aj‖2, and n ‖aj‖22 is χ2-distributed with n
degrees of freedom. Applying Lemma 8 to bound ‖aj‖2 by 2 for all j and using similar
arguments to those leading to (25), we get

max
j /∈I

|〈aj , γd(xk) + PVI
⊥(vj)〉| ≤

√

2 log p

n

(

γ2
k

β
+ (‖w‖2 + 4 ‖h‖2)2

)

with probability larger than 1 − p+1

3
√
2πn

e−0.8n − 1
2
√
π log p

, converging to 1 as n → +∞. It

then follows from assumptions (10) and (13) that w.o.p.

max
j /∈I

|〈aj , γd(xk) + PVI
⊥(vj)〉| ≤

γ

2
(1 +

√
α) . (26)

As an orthogonal projector is a self-adjoint idempotent operator, we have for all j ≤ p,

|h[j]〈aj , PVI
⊥(aj)〉| ≤ ‖h‖∞

∥

∥

∥
PVI

⊥(aj)
∥

∥

∥

2

2
,

where
∥

∥

∥
PVI

⊥(aj)
∥

∥

∥

2

2
is the squared ℓ2-norm of the projection of a Gaussian vector on the sub-

space VI
⊥ whose dimension is n− k. As VI

⊥ is independent of aj , for j /∈ I, n
∥

∥

∥
PVI

⊥(aj)
∥

∥

∥

2

2

follows a χ2 distribution with n − k degrees of freedom. Using Lemma 8 together with
assumptions (12)-(13), the following bound holds w.o.p.

max
j /∈j

|h[j]〈aj , PVI
⊥(aj)〉| ≤ 2.5 ‖h‖∞ ≤ γ

2
(1−√

α) (27)

In summary, (26) and (27) show that (C2) is fulfilled with probability larger than
1− 1

3
√
2πn

e−0.8n − 1
3
√
2πn

e−0.3n − 1√
2π(n−k)

e−0.009n.
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5. Proof of Partial Support Recovery

To prove the first part of Theorem 3, we need to show that with w.o.p. , the extension
x1(γ) on R

p of the solution of

min
x∈R|I|

1

2
‖y1 −AIx‖22 + γ ‖x‖1 (28)

with y1 = PAI
(y), is the solution of the Lasso. By definition, the support J of this extension

is included in I.
Proving this assertion amounts to showing that x1(γ) fulfills the necessary and sufficient

optimality conditions

{

AT
J (y −Ax1(γ)) = γsign

(

x1(γ)
)

,

∀l /∈ J, |〈al, y −Ax1(γ)〉| ≤ γ.
(29)

Since y1 = PAI
(y) and J ⊂ I, AT

J (y − Ax1(γ)) = AT
J (y1 − Ax1(γ)). In addition, as x1(γ)

is the extension of the solution of (28), the optimality conditions associated to (28) yield

{

AT
J (y −Ax1(γ)) = γsign

(

x1(γ)
)

,

∀l ∈ (I ∩ Jc), |〈al, y −Ax1(γ)〉| ≤ γ.

To complete the proof, it remains now to show that w.o.p.

∀l /∈ I, |〈al, y −Ax1(γ)〉| ≤ γ. (30)

As in the proofs of Theorems 1 and 2, to bound these scalar products, the key argument
is the independence between the vectors (al)l /∈I and the residual vector y −Ax1(γ).

We first need the following intermediate lemma.

Lemma 1. Let A ∈ R
n×k such that (ATA) is invertible. Take x(γ) as a solution of the

Lasso from observations y ∈ R
n. The mapping f : R+∗ → R

+, γ 7→ f(γ) =
‖y−Ax(γ)‖2

γ is
well-defined and non-increasing.

Proof: The authors in [8] and [58] independently proved that under the assumptions
of the lemma:

• the solution x(γ) of the Lasso is unique;

• there is a finite increasing sequence (γt)t≤K with γ0 = 0 and γK =
∥

∥ATy
∥

∥

∞ such
that for all t < K, the sign and the support of x(γ) are constant on each interval
(γt, γt+1).

• x(γ) is a continuous function of γ.

Moreover x(γ) with support J satisfies

x(γ) = A+
J y − γ(AT

JAJ)
−1sign

(

x(γ)
)

, (31)

which implies that

r(γ) := y −Ax(γ) = PA⊥
J
(y)− γAJ(A

T
JAJ)

−1sign
(

x(γ)
)

.
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Therefore, on each interval (γt, γt+1), r(γ) is an affine function of γ which can be written

r(γ) = z − γv,

where z := PA⊥
J
(y) and v := AJ (A

T
JAJ)

−1sign
(

x(γ)
)

. As v ∈ VJ and z ∈ V ⊥
J , the

Pythagorean theorem allows to write for γ ∈ (γt, γt+1) that

‖r(γ)‖22
γ2

=
‖z‖22
γ2

+ ‖v‖22 . (32)

We then deduce that f(γ) =
‖r(γ)‖2

γ is a non-increasing function of γ on each interval

(γt, γt+1). By continuity of f , it follows that f is non-increasing on R
+∗.

Remark 1. If (AT
I AI) is not invertible, the Lasso may have several solutions. Nevertheless

r(γ) is always uniquely defined and the lemma should also apply.

From Lemma 1, we deduce that
‖y1−Ax1(γ)‖2

γ is a non-increasing function of γ. Because
y1 ∈ VI and AI has full column-rank, we also have

lim
γ→0

x1(γ) = x1,

where on I, the entries of x1 are those of the unique vector of R|I| such that AIx = y1.
Therefore,

x1[i] = x0[i] + (A+
I w)[i], for i ∈ I . (33)

Since AI is Gaussian and independent from x0 and w, the support of x1 is almost surely
equal to I. Hence there exists γ1 > 0 such that if γ < γ1, the support and the sign of x1(γ)
are equal to those of x1. More precisely, if γ < γ1, x1(γ) satisfies

x1(γ) = x1 − γ(AT
I AI)

−1sign (x1) and r(γ) := y1 −Ax1(γ) = γAI(A
T
I AI)

−1sign (x1) .

It then follows that for γ ∈ (0, γ1),

‖y1 −Ax1(γ)‖2
γ

=
∥

∥AI(A
T
I AI)

−1sign (x1)
∥

∥

2
.

Now, since
∥

∥AI(A
T
I AI)

−1sign (x1)
∥

∥

2

2
= 〈(AT

I AI)
−1sign (x1) , sign (x1)〉,

we deduce that for all γ > 0,

‖y1 −Ax1(γ)‖2
γ

≤
√

|I|ρ((AT
I AI)−1),

where ρ((AT
I AI)

−1) is the spectral radius of (AT
I AI)

−1. Using Lemma 3 with β <

(

1−
√

k
n

)2

then leads to

P

(

‖y1 −Ax1(γ)‖2
γ

≤
√

k

β

)

≥ 1− e−
n

(

1−√
β−
√

k
n

)2

2 . (34)
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By the Pythagorean theorem and the fact that
∥

∥

∥
PVI

⊥w
∥

∥

∥

2
≤ ε, we have

‖y −Ax1(γ)‖22 = ‖y − y1‖22 + ‖y1 −Ax1(γ)‖22
=

∥

∥

∥
PVI

⊥w
∥

∥

∥

2
+ ‖y1 −Ax1(γ)‖22

≤ ε2 + ‖y1 −Ax1(γ)‖22 .

With similar arguments as those leading to (25), it can then be deduced that

max
l /∈I

|〈al, y −Ax1(γ)〉| ≤
√

2 log p

n

(

ε2 +
γ2k

β

)

. (35)

with probability larger than 1− e−
n

(

1−√
β−
√

k
n

)2

2 − 1
2
√
π log p

,

If k ≤ αβn
2 log p and γ ≥ ε√

1−α

√

2 log p
n , then

√

2 log p
(

ε2+ γ2k
β

)

n ≤ γ, and therefore inequality

(30) is satisfied w.o.p. . This ends the proof of the first part of the theorem.

Let’s now turn to the proof of (14). To prove this inequality we notice that for large
γ, the Lasso solution x(γ) is also the extension of the solution of (28) w.o.p. and we use
the Lipschitz property of the mapping γ 7→ x1(γ).

Indeed, by the triangle inequality,

‖x0 − x1(γ)‖2 ≤ ‖x0 − x1‖2 + ‖x1 − x1(γ)‖2 . (36)

Recalling from (33) that x0 − x1 = A+
I w, it follows that

‖x0 − x1‖2 ≤ ε
√

ρ((AT
I AI)−1),

which, using again Lemma 3, leads to the bound

‖x0 − x1‖2 ≤ 2ε

with probability larger than 1− e
−n

2

(

0.5−
√

k
n

)2

.

For all γ > 0, x1(γ) obeys (31), and since limγ→0 x1(γ) = x1, we get that

‖x1 − x1(γ)‖2 ≤ γ max
J⊂I,S∈{−1,1}|J|

∥

∥(AT
JAJ )

−1S
∥

∥

2
. (37)

For all J ⊂ I, the inclusion principe tells us that ρ((AT
JAJ)

−1) ≤ ρ((AT
I AI)

−1). Further-
more, for all S ∈ {−1, 1}|J |, ‖S‖2 ≤

√
k. Using Lemma 3 once again implies that

P

(

‖x1 − x1(γ)‖2 ≤ γ

√

k

β

)

≥ 1− e
−n

2

(

1−
√
β−

√

k
n

)2

.

If γ = ε√
1−α

√

2 log p
n and k ≤ αβn

2 log p , then w.o.p.

‖x1 − x1(γ)‖2 ≤ ε

√

α

1− α
.

This concludes the proof.
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6. Numerical Illustrations

This section aims at providing empirical support of the sharpness of our bounds by
assessing experimentally the quality of the constants involved in Theorem 1. More specif-
ically, we perform a probabilistic analysis of support and sign recovery, to show that the
bounds (6), (8) and (7) are quite tight5.

In all the numerical tests, we use problems of size (n, p) = (8000, 32000) and (n, p) =
(3000, 36000), corresponding to moderate and high redundancies. These are realistic high-
dimensional settings in agreement with signal and image processing applications. We
perform a randomized analysis, where the probability of exact recovery of supports and
signs (sparsistency) are computed by Monte-Carlo sampling with respect to a probability
distribution on the measurement matrix, k-sparse signals and on the noise w. As detailed
in Section 1.1, the matrix A is drawn from the Gaussian ensemble. We assume that the
non-zero entries x[i] for i ∈ I(x) of a vector x ∈ R

p are independent realizations of a
Bernoulli variable taking equiprobable values {+T,−T}. We also assume that the noise w
is drawn from the uniform distribution on the sphere {w ∈ R

n \ ‖w‖ = ε}. Since only the
SNR matters in the bounds, we fix ε = 1 and only vary the value of T .
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Figure 1: Probability of sparsistency as a function of k and α = 0.8. The vertical lines corresponds to our

sparsistency bound kβ , from left to right, for β = 0.7, 0.8, 0.9, 1.

Challenging the sparsity bound (6). We first evaluate, for α = 0.8, and for a varying value
of k, the probability of sparsistency given that

T =
5.5ε√
1− α

√

2 log p

n
and γ =

T

5.5
(38)

which are values in accordance with the bounds (7) and (8).
In order to compute numerically this probability, for each k, we generate 1000 sparse

signals x0 with ‖x0‖0 = k, and check whether conditions (C1) and (C2) defined in Sec-
tion 3.1 are satisfied. Figure 1 shows how this probability decays when k increases. The

5The Matlab code to reproduce the figures are freely available for download from http://www.

ceremade.dauphine.fr/~peyre/codes/.
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vertical lines correspond to the critical sparsity thresholds

kβ =
αβn

2 log p
(39)

as identified by the bound (6). The estimated probability exhibits a typical phase transition
that is located precisely around the critical value kβ for β close to one. This shows that our
bound is quite sharp. We also display the same probability curve for other, less conservative,
values of γ ∈ {T/4, T/2}, which improves slightly the probability with respect to γ = T/5.5.

Challenging the regularization parameter value (8). We evaluate, for (α, β) = (0.8, 0.8),
the probability of sparsistency using a value of γ different from

γ0 =
ε√

1− α

√

2 log p

n
(40)

given in (8), for which Theorem 1 is valid. We use the critical sparsity level k = kβ defined
in (39). To study only the influence of γ, we use a SNR that is infinite, meaning that ε
is negligible in comparison with T . This implies in particular that in this regime, only
condition (C1) has to be checked to estimate the probability of sparsistency.

Figure 2 shows the increase in this probability as the ratio γ/γ0 increases. This makes
sense because the signal is large with respect to the noise so that a large threshold should
be preferred. One can see that at the critical value γ = γ0 suggested by Theorem 1, this
probability is close to 1. This again confirms that the value (8) of γ is quite sharp.
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(n, p) = (8000, 32000) (n, p) = (3000, 36000)

Figure 2: Probability of support recovery for large T as a function of γ/γ0 for k = kβ and (α, β) = (0.8, 0.8).

Challenging the signal-to-noise ratio (7). Lastly, we estimate, for (α, β) = (0.8, 0.8), the
minimal signal level T that is required to ensure the inclusion of the support, meaning that
I(x(γ)) ⊂ I(x0). We use the critical sparsity k = kβ and γ = γ0, with kβ and γ0 as defined
respetively in (39) and (40). Since we are only interested in support inclusion, it is only
needed to check condition (C2).

The bound in (7) suggests that T ≥ 5.5γ0 is enough. Figure 3 however shows that this
bound is pessimistic, and that T ≥ 2γ0 appears to be enough to guarantee the support
inclusion with high probability. A few reasons may explain this sub-optimality.

• There is no guarantee that the concentration lemmas we use are optimal.
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• The limit ratio T
ε relies mainly on Lemma 4 and especially on the bound 1 + 4

√
b in

it. This bound can be improved by at least three ways.

– Using the same proof, the bound can be slightly enhanced by decaying the
probability of success.

– The result in the lemma is non-asymptotic. The bound and the probability were
computed to be available for all α ≤ 1, β ≤ 1 and for all p ≥ 1212. With the
values used in the numerical experiments, and decaying a bit the probability of
success, the bound can turn into 1+2.7

√
b, yielding a better bound T ≥ 4.37γ0.

– In the proof of Lemma 4, the inequality ‖Bi‖2 ≤ ρ(B), is used, where ρ(B) is
the spectral radius of B. This bound is available for any matrix, but one might
perhaps do better by exploiting Gaussiannity of the measurement matrix.
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Figure 3: Probability of support inclusion as a function of T/γ0 for k = kβ and (α, β) = (0.8, 0.8).

Conclusion

This paper has presented a novel analysis of the sparsistency of the Lasso from noisy
Gaussian measurements. We derived sharp bounds on the sparsity of the signal to guarantee
sparsistency with high probability. This result is extended to handle compressible signals
and to establish sharp ℓ2-consistency. A distinctive feature of our analysis is that it provides
explicit constants for the three key parameters of the problem: the sparsity of the signal,
the minimal signal-to-noise ratio and the Lasso regularization parameter. Numerical results
support the claim that these constants are either sharp or at least reasonably well behaved.

A. Properties of Wishart Matrices

A.1. Signs of non-diagonal entries of an inverse Wishart matrix

Lemma 2. If B ∈ R
k×k is the inverse of a Wishart matrix, then for all i ≤ k, the variables

(sign (Bi,j) , j 6= i) form a Rademacher sequence, that is they are independent and uniformly
distributed on {−1, 1}. Moreover this sequence is independent of Bi,i , and of (|Bi,j|)j 6=i.

Proof: If B = (Bi,j)i≤k,j≤k ∈ R
k×k is the inverse of a Wishart matrix, then

B = (ATA)−1 where A ∈ Mn,k(R) is a Gaussian matrix. Let E ∈ Mk,k(R) be di-
agonal such that for all 1 ≤ i ≤ k, |Ei,i| = 1. Then (AE)TAE = EATAE, hence
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((AE)T(AE))−1 = E(ATA)−1E. Therefore the entries of C = ((AE)TAE)−1 are Ci,j =
Ei,iEj,jBi,j for 1 ≤ i, j ≤ k.
But A and AE have the same law, hence B and C also have the same law. Hence for all
(ǫj)j≤k,j 6=i ∈ {−1, 1}k−1, the laws of (Bi,1, . . . , Bi,k) and (ǫ1Bi,1, . . . , Bi,i, . . . , ǫkBi,k) are the
same. This implies that the variables (sign (Bi,j) , j 6= i) form a Rademacher sequence, and
this sequence is independent of Bi,i, and of (|Bi,j |)j 6=i.

A.2. Extreme eigenvalues of a Wishart matrix

The proof of the following lemma can be found in [62, page 42].

Lemma 3. If A ∈ R
n×k is a Gaussian matrix whose coefficients are centered of variance

1
n , then the maximal and minimal eigenvalues of the Wishart matrix B = ATA satisfy for
all t > 0

P



λmax(B) ≥
(

1 +

√

k

n
+ t

)2


 ≤ e−
nt2

2

and

P



λmin(B) ≤
(

1−
√

k

n
− t

)2


 ≤ e−
nt2

2

A.3. Sup-norm of a projected Rademacher sequence

Lemma 4. If C ∈ R
n×k is a Gaussian matrix, with k ≤ nb

2 log p with 0 < b ≤ 1 and if

S ∈ {−1, 1}k is drawn independently from C, then if p ≥ 1212,

P
(

∥

∥(CTC)−1S
∥

∥

∞ ≤ 1 + 4
√
b
)

≥ 1− kp−1.28 − 2e
−nb(0.75

√
2−1)2

4 log p .

Proof: We use the following splitting

(CTC)−1 = I + ((CTC)−1 − I) = I +B.

This shows that
∥

∥(CTC)−1S
∥

∥

∞ ≤ ‖S‖∞ + ‖BS‖∞ = 1 + ‖BS‖∞ .

One can then observe that (BS)[i] =
∑

j≤k |Bi,j|S[j]sign (Bi,j); one has Bi,i > 0,
and according to Lemma 2, for given i, the variables sign (Bi,j)j 6=i form a Rademacher
sequence (this means that they are independent and uniformly distributed on {−1, 1}),
and this sequence is independent of Bi,i and of (|Bi,j|)j 6=i. Hence one can apply Hoeffding’s
Lemma 10 (multiplying the line by an independent variable uniform on {−1, 1} to take
care of the fact that sign (Bi,i) is not uniformly distributed), thus getting for any i ≤ k
and any t > 0,

P





∣

∣

∣

∣

∣

∣

k
∑

j=1

Bi,jS[j]

∣

∣

∣

∣

∣

∣

≥ t ‖Bi‖2



 ≤ e−
t2

2 . (41)

Now, for all i ≤ k, ‖Bi‖2 ≤ ρ(B), where ρ(B) is the spectral radius of B. Using

Lemma 3 with t = (0.75 − 1√
2
)
√

b
log p and the fact that k

n ≤ b
2 log p , we get

P



λmin(C
TC) ≤

(

1− 0.75

√

b

log p

)2


 ≤ e−
nb(0.75

√
2−1)2)

4 log p .
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Consequently

P



λmax((C
TC)−1) ≥

(

1− 0.75

√

b

log p

)−2


 ≤ e−
(0.75

√
2−1)2bn

4 log p .

Similarly, we have

P



λmin((C
TC)−1) ≤

(

1 + 0.75

√

b

log p

)−2


 ≤ e−
(0.75

√
2−1)2bn

4 log p .

It finally follows that with probability larger than 1− 2e−
nb(0.75

√
2−1)2)

4 log p ,

ρ(B) ≤ max

(∣

∣

∣

∣

∣

(1 + 0.75

√

b

log p
)−2 − 1

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

(1− 0.75

√

b

log p
)−2 − 1

∣

∣

∣

∣

∣

)

.

In particular, taking log(p)
b ≥ 152

(17−
√
129)2

≃ 7.07 leads to ρ(B) ≤ 2.5
√

b
log p with probability

greater than 1− 2e−
nb(0.75

√
2−1)2

4 log p .
Using this bound in (41) with t = 1.6

√

log(p) yields

P
(

‖BS‖∞ ≥ 4
√
b
)

≤ P

(

‖BS‖∞ ≥ t ‖Bi‖2 and ρ(B) ≤ 2.5

√

b

log p

)

+ P

(

ρ(B) ≥ 2.5

√

b

log p

)

≤ kp−1.28 + 2e−
nb(0.75

√
2−1)2

4 log p .

If we set log(p)
b ≥ 7.08, the following holds,

P
(

∥

∥(CTC)−1S
∥

∥

∞ ≤ 1 + 4
√
b
)

≥ 1− kp−1.28 − 2e
−nb(0.75

√
2−1)2

4 log p .

Remark 2. It is worth noting that if log p
b ≥ 16.2 as in the numerical experiments (b =

0.64, p = 32000), one can adapt this proof and, by loosing a bit on the probability (i.e.
applying the concentration lemmas with smaller values of t), one can get

∥

∥(CTC)−1S
∥

∥

∞ ≤
1 + 2.7

√
b w.o.p. .

A.4. Rotation invariance

Lemma 5. If C ∈ R
n×k is a Gaussian matrix, and w ∈ R

n is independent of C, the law
of C+w is invariant under orthogonal transforms on R

k.

Proof: If C ∈ R
n×k is a Gaussian matrix, then for any orthogonal matrix U ∈ R

k×k,
D = CU and C have the same distribution. The law of D+w and C+w are thus the same.
Since for all w, one has

D+w = U−1C+w,

the law of U−1C+w is the same as that of C+w.
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A.5. Distribution of a quadratic form

The following lemma is a consequence of [63, Theorem 3.2.12].

Lemma 6. If B is a Wishart matrix as described in Lemma 3, then for all X ∈ R
k

independent of B, the random variable
n‖X‖22

XTB−1X
follows a χ2 distribution with n − k + 1

degrees of freedom.

B. Concentration inequalities

The following lemma is well known; a proof can be found in [64].

Lemma 7. Let µk denote the uniform probability on the unit sphere S
k−1 in R

k, and let

A ⊂ S
k−1 such that µk(A) ≥ 1

2 . Then µk({x ∈ S
k−1, d(x,A) ≤ ǫ}) ≥ 1 − 2e−

kǫ2

2 . As a

corollary, µk(x ∈ S
k−1, |x1| ≤ ǫ} ≥ 1− 4e−

kǫ2

2 .

The following lemma is due to Cai et Silverman, see [65].

Lemma 8. If X follows a χ2 distribution with k degrees of freedom, then for all δ > 0,

P (X > (1 + δ)k) ≤ 1√
2πkδ

e−
k
2
(δ−log(1+δ))

The following lemma is due to Hoeffding, see [66].

Lemma 9. If X follows a χ2 distribution with k degrees of freedom, then for all δ > 0,

P (X < (1− δ)k) ≤ e
k log(1−δ)

2

The following lemma can be obtained by applying the Chernoff-Hoeffding inequality.

Lemma 10. If (εi)i≤k is a Rademacher sequence, then for all a = (ai)i≤k ∈ R
k and for

all t > 0,

P

(∣

∣

∣

∣

∣

k
∑

i=1

εiai

∣

∣

∣

∣

∣

≥ t ‖a‖2

)

≤ e−
t2

2 .
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