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351, cours de la Libération F-33405 Talence cedex, France
bIMB Université Bordeaux 1,
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Place du Maréchal De Lattre De Tassigny, 75775 Paris Cedex 16, France
dGREYC, CNRS-ENSICAEN-Université Caen,

6 Bd du Maréchal Juin 14050 Caen Cedex, France

Abstract

In this paper, we investigate the theoretical guarantees of penalized ℓ1 minimization (also
called Basis Pursuit Denoising or Lasso) in terms of sparsity pattern recovery (support and
sign consistency) from noisy measurements with non-necessarily random noise, when the
sensing operator belongs to the Gaussian ensemble (i.e. random design matrix with i.i.d.
Gaussian entries). More precisely, we derive sharp non-asymptotic bounds on the sparsity
level and (minimal) signal-to-noise ratio that ensure support identification for most signals
and most Gaussian sensing matrices by solving the Lasso problem with an appropriately
chosen regularization parameter.

Our first purpose is to establish conditions allowing exact sparsity pattern recovery
when the signal is strictly sparse. Then, these conditions are extended to cover the com-
pressible or nearly sparse case. In these two results, the role of the minimal signal-to-noise
ratio is crucial. Our third main result gets rid of this assumption in the strictly sparse
case, but this time, the Lasso allows only partial recovery of the support. We also provide
in this case a sharp ℓ2-consistency result on the coefficient vector.

The results of the present work have several distinctive features compared to previous
ones. One of them is that the leading constants involved in all the bounds are sharp
and explicit. This is illustrated by some numerical experiments where it is indeed shown
that the sharp sparsity level threshold identified by our theoretical results below which
sparsistency of the Lasso is guaranteed meets that empirically observed. 1

Key words: Compressed sensing, ℓ1 minimization, sparsistency, consistency.

1. Introduction

1.1. Problem setup

The conventional wisdom in digital signal processing is the Shannon sampling theorem
valid for bandlimited signals. However, such a sampling scheme excludes many signals
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of interest that are not necessarily bandlimited but can still be explained either exactly
or accurately by a small number of degrees of freedom. Such signals are termed sparse
signals.

In fact we distinguish two types of sparsity: strict and weak sparsity (the latter is
also termed compressibility). A signal x, considered as a vector in a finite dimensional
subspace of Rp, is strictly or exactly sparse if most of its entries vanish; i.e. if its support
I(x) = supp (x) = {1 ≤ i ≤ p | x(i) 6= 0} is of cardinality k ≪ p. A k-sparse signal is
a signal where exactly k samples have a non-zero value. Signals and images of practical
interest may be compressible or weakly sparse in the sense that the sorted magnitudes
|xsorted(i)| decay quickly. Thus x can be well-approximated as k-sparse up to an error
term (this property will be used when we will tackle compressible signals). If a signal is
not sparse in its original domain, it may be sparsified in an appropriate orthobasis Φ (hence
the importance of the point of view of computational harmonic analysis and approximation
theory). Without loss of generality, we assume throughout that Φ is the standard basis.

The compressed/ive sensing/sampling [1, 2, 3] asserts that sparse or compressible sig-
nals can be reconstructed with theoretical guarantees from far few measurements than the
ambient dimension of the signal. Furthermore, the reconstruction is stable if the measure-
ments are corrupted by an additive bounded noise. The encoding (or sampling) step is
very fast since it gathers n non-adaptive linear measurements that preserve the structure
of the signal x0:

y = Ax0 + w ∈ R
n, (1)

where A ∈ R
n×p is a rectangular measurement matrix, i.e. n < p, and w accounts for

possible noise with bounded ℓ2 norm. In this work, there is no need that w is random and
we consider that A is drawn from the Gaussian matrix ensemble2, i.e. the entries of A are
independent and identically distributed (i.i.d.) N (0, 1/n). The columns of A are denoted
ai, for i = 1, · · · , p. In the sequel, the sub-matrix AI is the restriction of A to the columns
indexed by I(x0). The latter is denoted I unless understood otherwise from the context.

The signal is reconstructed from this underdetermined system of linear equations by
solving a convex program of the form:

x(γ) ∈ argmin
x∈Rp

‖x‖1 such that Ax− y ∈ C , (2)

where C is a closed convex set, and ‖x‖p := (
∑

i |x(i)|p)1/p, p ≥ 1 is the ℓp-norm of a vector
with the usual adaptation for p = ∞: ‖x‖∞ = maxi |x(i)|. We also denote ‖x‖0 as the ℓ0
pseudo-norm which counts the number of non-zero entries of x. Obviously, ‖x‖0 = |I(x)|.
For all x ∈ R

p, the notation x ∈ R
|I(x)| means the restriction of x to its support I(x).

Typically, if C = {0} (no noise), we end up with the so-called Basis Pursuit [4] problem

min
x∈Rp

‖x‖1 such that y = Ax . (BP)

Taking C as the ℓ2 ball of radius ǫ, we have a noise-aware variant of BP

min
x∈Rp

‖x‖1 such that ‖Ax− y‖2 ≤ ǫ (ℓ1-constrained)

where the parameter ǫ > 0 depends on the noise level ‖w‖2. This constrained form can
also be shown to be equivalent to the penalized form, which goes by the name of Basis

2In a statistical linear regression setting, we would speak of a random Gaussian design.
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Pursuit DeNoising [4] or Lasso in the statistics community after [5]:

min
x∈Rp

1

2
‖y −Ax‖22 + γ ‖x‖1 , (Lasso)

where γ is the regularization parameter. (ℓ1-constrained) and (Lasso) are equivalent in
the sense that there is a bijection between γ and ǫ such that both problems share the
same set of solutions. However, this bijection is unknown explicitly and depends on y and
A, so that in practice, one needs to use different algorithms to solve each problem, and
theoretical results are stated using one formulation or the other. In this paper, we focus on
the Lasso formulation. It is worth noting that the Dantzig selector [6, 7] is also a special
instance of (2) when C = {z ∈ R

p
∣

∣

∥

∥ATz
∥

∥

∞ ≤ γ}.
The convex problems of the form (ℓ1-constrained) and (Lasso) are computationally

tractable and many algorithms have been developed to solve them, and we only mention
here a few representatives. Homotopy continuation algorithms [8, 9, 10] track the whole
regularization path. Many first-order algorithms originating from convex non-smooth op-
timization theory have been proposed to solve (Lasso). These include one-step iterative
thresholding algorithms [11, 12, 13, 14], or accelerated variants [15, 16], multi-step schemes
such as [17] or [18]. The Douglas-Rachford algorithm [19, 20] is a first order scheme that
can be used to solve (ℓ1-constrained). A more comprehensive account can be found in [21,
Chapter 7].

1.2. Theoretical performance measures of the Lasso

These last years, we have witnessed a flurry of research activity where efforts have
been made to investigate the theoretical gaurantees of the Lasso as a sparse recovery
procedure from noisy measurements in the underdetermined case n < p. Overall, the
derived conditions hinge on strong assumptions on the structure and interaction between
the variables in A as indexed by x0. An overview of the literature pertaining to our work
will be covered in Section 1.3 after notions are introduced so that the discussions are
clearer.

Let x0 be the original vector as defined in (1), f0 = Ax0 the noiseless measurements,
x(γ) a minimizer of the Lasso and f(γ) = Ax(γ).

Consistency. ℓp-consistency on the signal x means that the ℓp-error ‖x0 − x(γ)‖p, for
typically p = 1, 2 or ∞, between the unknown vector x0 and a solution x(γ) of either
(Lasso) or (ℓ1-constrained) comes within a factor of the noise level.

Sparsistency. Sparsity pattern recovery (also dubbed sparsistency for short or variable
selection in the statistical language) requires that the indices and signs of the solutions
x(γ) are equal to those of x0 for a well chosen value of γ. Partial support recovery occurs
when the recovered support is included (strictly) in that of x0 with the correct sign pattern.

In general, it is not clear which of these performance measures is better to characterize
the Lasso. Nevertheless, in the noisy case, consistency does not tell the whole story and
there are many applications where bounds on the ℓp-error are insufficient to characterize
the accuracy of the Lasso estimates. In this case, exact or partial recovery of the support,
hence of the correct model variables, is the desirable property to have. Among other
advantages, this allows for instance to circumvent the bias of the Lasso and thus enhance
the estimation of x0 and Ax0 using a debiasing procedure: recover the support I by
solving the Lasso, followed by least-squares regression on the selected variables (ai)i∈I ; see
e.g. [6, 22]. Our work falls within this scope and focuses on exact and partial support
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identification for both strictly sparse and compressible signals in the presence of noise on
Gaussian random measurements.

1.3. Literature overview

The properties of the Lasso have been extensively studied, including consistency and
distribution of the Lasso estimates. There is of course a huge literature on the subject,
and covering it fairly is beyond the scope of this paper. In this section, we restrict our
overview to those works pertaining to ours, i.e. sparsity pattern recovery in presence of
noise.

Much recent work aims at understanding the Lasso estimates from the point of view of
sparsistency. This body of work includes [22, 6, 23, 24, 25, 26, 27, 28, 29]. For the Lasso
estimates to be close to the model selection estimates when the data dimensions (n, p)
grow, all the aforementioned papers assumed a sparse model and used various conditions
that require the irrelevant variables to be not too correlated with the relevant ones.

Mutual coherence-based conditions. Several researchers have studied independently the
qualitative performance of the Lasso for either exact or sparsity pattern recovery of suf-
ficiently sparse signals under a mutual coherence condition on the measurement matrix
A; see for instance [23, 30, 26, 31] when A is deterministic, and [32] when A is Gaussian.
However, mutual coherence is known to lead to overly pessimistic sparsity bounds.

Support structure-based conditions. These sufficient recovery conditions were refined by
considering not only the cardinality of the support but also its structure, including the
signs of the non-zero elements of x0. Such criteria use the interactions between the relevant
columns of AI = (ai)i∈I and the irrelevant ones (ai)i/∈I . More precisely, we define the
following condition developed in [33] to analyse the properties of the Lasso. This condition
goes by the name of irrepresentable condition in the statistical literature; see e.g. [28, 22,
27, 34] and [35] for a detailed review.

Definition 1. Let I be the support of x0 and Ic its complement in {1, · · · , p}. The irrep-
resentable (or Fuchs) condition is fulfilled if

F (x0) :=
∥

∥AT
IcAI(A

T
I AI)

−1sign (x0)
∥

∥

∞ = max
i∈Ic

|〈ai, d(x0)〉| < 1 (3)

where d(x0) = d0 = AI(A
T
I AI)

−1sign (x0) . (4)

Condition (3) will also be the soul of our analysis in this paper.

The criterion (3) is closely related to the exact recovery coefficient (ERC) of Tropp
[26]:

ERC(x0) := 1−max
i∈Ic

∥

∥(AT
I AI)

−1AT
I ai
∥

∥

1
. (5)

In [26, Corollary 13], it is established that if ERC(x0) > 0, then the support of the Lasso
solution of the Lasso with a large enough parameter γ is included in the one of the subset
selection (ℓ0) optimal solution.

In [28], an asymptotic result is reported showing that under (3)3, the Lasso selects
exactly the set of nonzero coefficients, provided that these coefficients are bounded away

3In fact, a slightly stronger assumption requiring that all elements in (3) are uniformly bounded away
from 1.
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from zero at a certain rate, which is sufficient to guarantee exact support recovery and sign
consistency in some asymptotic regime. There, it is also shown that (3) is sufficient and
essentially necessary for variable selection. The reference [24] develops very similar results
and uses similar requirements. [36] and [37] derive asymptotic conditions for sparsistency
of the block Lasso [38] by extending (3) and (5) to the group setting.

Reference [22] proposes a non-asymptotic analysis with a sufficient condition ensuring
exact support and sign pattern recovery of most sufficiently sparse vectors for matrices
satisfying a weak coherence condition (of the order (log p)−1). Their proof relies upon (3)
and a bound on norms of random submatrices developed in [39]. The work in [27] considers
a condition of the form (3) to ensure sparsity pattern recovery from noisy measurements
by solving the Lasso. The analysis in that paper was conducted for both deterministic and
standard Gaussian A in a high-dimensional setting where p and the sparsity level grow
with the number of measurements n. That author also established that violation of (3)
is sufficient for failure of the Lasso in recovering the support set. In [40], the sufficient
bound on the number of measurements established in [27] for the standard Gaussian dense
ensemble was shown to hold for sparse measurement ensembles. The works of [22] and [27]
are certainly the most closely related to ours. We will elaborate more on these connections
by highlighting the similarities and differences in Section 2.2.

Variations on the Lasso. Other variations of the Lasso have been proposed and their prop-
erties investigated from the sparsistency standpoint. For instance, [29] and [41] studied the
adaptive4 Lasso and developed asymptotic results similar to those just above but require
either a good initial estimator or a level of coherence on the pessimistic order of 1/

√
n.

In [43], it is shown that a multi-step thresholding procedure can accurately estimate a
sparse vector under the restricted eigenvalue condition5 [7]. The two-stage procedure in
[45] applies selective penalization in the second stage and is studied assuming incoherence
conditions. A more general framework for multi-stage variable selection was studied by [46]
by controlling the probability of false positives at the price of false negatives. [47] quanti-
fied the variable selection property of thresholded Lasso using prediction error (closely tied
to false negative selections) together with its number of false positive selections, without
requiring the irrepresentable or incoherence conditions on the measurement matrix, nor
assumptions about the minimal signal-to-noise ratio (SNR). [34] examined the variable
selection property and sign consistency of the Lasso followed by hard thresholding (a form
of adaptive Lasso), when all non-zero components are large enough. These authors assume
that the singular values of AI for all I such that |I| = ‖x0‖0 are be bounded away from
zero. They argued that if the irrepresentable condition is relaxed, the Lasso cannot recover
the correct sparsity pattern, but under their assumption, they show that the estimator
is still consistent in the ℓ2-norm sense. In addition, they show it is possible to achieve
sparsistency. For an overview of other penalized methods that have been proposed for the
purpose of variable selection, see [48].

Information-theoretic bounds. A recent line of research has developed information-theoretic
sufficient and necessary bounds to characterize fundamental limits on minimal SNR, the
number of measurements n, and tolerable sparsity level k required for exact or partial

4The adaptive Lasso as seen in the statistical literature turns out to be a two-step procedure, where
the second step is to solve a reweighted ℓ1 norm problem, with weights given by the Lasso estimate in the
first step. In fact, this is a special case of the iterative reweighted ℓ1 minimization [42].

5This is a refinement of the well-known restricted isometry property [44], see the review [35] for a
thorough discussion on these relationships.
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support pattern recovery of exactly sparse signals by any algorithm including the optimal
exhaustive ℓ0 decoder [49, 50, 51, 52, 53, 54, 55, 56]. In most of these works, the bounds
are asymptotic, i.e. they provide asymptotic scaling and typically require that the spar-
sity level k varies at some rate (linearly or sub-linearly) with the signal dimension p when
n grows to infinity. It is worth mentioning that a careful normalization is needed, for
instance of the sampling matrix and noise, when comparing these results in the literature.

The paper [49] was the first to consider the information-theoretic limits of exact spar-
sity recovery from the Gaussian measurement ensemble, explicitly identifying the minimal
SNR (or equivalently T = mini∈I(x0) |x0(i)|) as a key parameter. This analysis yielded nec-
essary and sufficient conditions on the tuples (n, p, k, T ) for asymptotically reliable sparsity
recovery. This complements the analysis of [27] by showing that in the sub-linear sparsity
regime, i.e k = o(p), the number of measurements required by the Lasso n & k log(p− k)
6 achieves the information-theoretic necessary bound. Subsequent work of [51, 52, 56, 57]
has extended this type of analysis to partial support recovery using different support dis-
tortion measures. [58] extended some of the results by [51] for the Gaussian ensemble to
sub-Gaussian and other random measurement ensembles. [53] consider only exact sup-
port recovery, and also provides results for general (non-Gaussian) dense measurement
ensembles. The necessary bounds of [49] were strenghthned in [52] when k scales linearly
with n (linear sparsity regime), and in [50] for all scalings. The last authors also give a
sufficient condition for sparsistency of a simple maximum correlation procedure that scales
similarly but turns out to be conservative, as it does never hold asymptotically, see the
counter-example in [55].

[59] found a non-asymptotic upper bound on the probability that the ℓ0 decoder of
x declares a wrong sparsity pattern, given any generic measurement matrix A. When A
is drawn from the Gaussian ensemble, they obtain asymptotically sufficient conditions on
the number of measurements and the minimal SNR for exact recovery, which agree with
the known necessary conditions previously established.

In [54], the authors derive sufficient and necessary conditions for exact support recovery
by the ℓ0 optimal decoder, with additive white Gaussian noise in either the measurements
or the signal. For noise on the observations, they show that asymptotically a number
of measurements & k log(p/k) in conjunction with a noise variance of the order (log p)−1

are necessary and sufficient for exact support recovery. Furthermore, if a small fraction
of support errors can be tolerated, a constant variance turns out to be sufficient in the
linear sparsity regime. They argue that their analysis avoids using union bounds that are
generally conservative, hence leading to tighter bounds on the number of measurements
compared to previously developed.

1.4. Organization of the paper

The rest of the paper is organized as follows. We first state our main results and discuss
the connections and novelties with respect to existing work. In Section 3 and 4, we detail
the proofs for exact recovery with strictly sparse and compressible signals, before proving
the partial support recovery result in Section 5. Numerical experiments are carried out in
Section 6. Section 6 includes a final discussion and some concluding remarks.

6The shorthand notation f & g means that g = O(f).
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2. Contributions

Most of the results developed in the literature on sparsistency of the Lasso exhibit
asymptotic scaling results in terms of the triple (n, p, k), but this does not tell the whole
story. Often, one needs to know the exact constants involved in the bounds, not only
their dependence on key quantities such as the SNR and/or other parameters of the signal
x0, but also the constants appearing in the bounds. As a consequence, the majority of
sufficient conditions are more conservative than those suggested by empirical evidence.

In this paper, we investigate the theoretical guarantees of the Lasso in terms of sparsity
pattern recovery (support and sign consistency) from noisy measurements –the noise being
not necessarily random– when the measurement matrix belongs to the Gaussian ensemble.
More precisely, we provide precise non-asymptotic bounds, including explicit sharp leading
numerical constants, on the key quantities that come into play (sparsity level for a given
measurement budget, minimal SNR, regularization parameter) to ensure exact or partial
sparsity pattern recovery using the Lasso for both strictly sparse and compressible signals.
Our results have several distinctive features compared to previous closely-connected works.
This will be discussed in further details in Section 2.2. Numerical evidence reported in
Section 6 confirm that the sharp sparsity level threshold identified by our theoretical results
below which sparsistency of the Lasso is guaranteed meets that empirically observed.

2.1. Statement of main results

Our first result Theorem 1 establishes conditions allowing exact sparsity pattern re-
covery when the signal is strictly sparse. Then, these conditions are extended to cover
the compressible case in Theorem 2. In these two results, the role of the minimal SNR
is crucial. Our third main result in Theorem 3 gets rid of this assumption in the strictly
sparse case, but this time, the Lasso allows only partial recovery of the support. We also
provide in this case a sharp ℓ2-consistency result on the Lasso estimate.

The three theorems are stated following the same structure: suppose that (x0, w) fulfill
some requirements formalized by a set Y, then with overwhelming probability (w.o.p. for
short) on the choice of A, the Lasso estimate obeys some property P. It should be noted
that these theorems imply in particular that w.o.p. on the choice of A, for most vectors
(x0, w) ∈ Y, the Lasso estimate satisfies property P, whatever the probability measure
used on the set Y.

The proof of Theorem 1 is given in Section 3. We prove its extension to compressible
signals as stated in Theorem 2 in Section 4. Both proofs capitalize on an implicit formula
of the Lasso solution. The proof of Theorem 3 given in Section 5 is quite different, since
no such implicit formula is used.

2.1.1. Exact Support Recovery with Strictly Sparse Signals

Theorem 1 shows that for most Gaussian matrices and most sparse vectors x0 and
noise vectors w with bounded ℓ2-norm, the Lasso estimate recovers exactly the sign and
the support of x0 for a suitable choice of γ.

Theorem 1. Let A ∈ R
n×p be a Gaussian matrix, i.e. its entries are i.i.d. N (0, 1/n),

w ∈ R
n is such that ‖w‖2 6 ε, 0 ≤ α, β < 1 and p > e

1
2(1−

√
β) . Suppose that x0 ∈ R

p obeys

‖x0‖0 = k ≤ αβn

2 log p
(6)

and

min
i∈I

|x0(i)| = T >
5.5ε√
1− α

√

2 log p

n
. (7)
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Solve the Lasso problem from the measurements y = Ax0 + w. Then with a probability
P (n, p, α, β) that tends to 1 as n grows to infinity, the Lasso solution x(γ) with

γ =
ε√

1− α

√

2 log p

n
(8)

is unique and satisfies

supp (x(γ)) = supp (x0) and sign
(

x(γ)
)

= sign (x0) .

The proof (see Section 3) shows that the probability P (n, p, α, β) is larger than

1− 1

2
e−0.7

√
logn − 1

2
√
π log p

− o

(

1

log p

)

− o(e−0.7
√
logn) .

Although this bound on the probability is far from optimal.

In plain words, Theorem 1 asserts that for (α, β) ∈ [0, 1) the support and the sign of
most vectors obeying (6) can be recovered using Lasso if the non-zero coefficients of x0 are
large enough compared to noise. This bound on the sparsity of x0 turns out to be optimal,
since for any c > 1, for most vectors such that ‖x0‖0 > cn

2 log p , the support cannot be
recovered using a Lasso estimate even with no noise. Indeed, [33] and [60] proved that the
Lasso estimate for any γ shares the same sign and the same support as x0 when y = Ax0
if and only if

max
j /∈I

|〈aj , AI(A
T
I AI)

−1sign (x0)〉| 6 1 .

(Note the difference with the strict inequality in (3)). Hence if ‖x0‖0 > cn
2 log p with c > 1,

then w.o.p.
∥

∥AI(A
T
I AI)

−1sign (x)
∥

∥

2

2
> Cn

2 log p for some C > 1 and sufficiently large p.

As a result, maxj /∈I |〈aj , AI(A
T
I AI)

−1sign (x)〉| >
√
C > 1. This optimality discussion is

consistent with the information-theoretic bounds of [49], where it was proved that the
number of measurements required by the Lasso achieves the (asymptotic) information-
theoretic necessary bound that has the scaling (6) when the sparsity regime is sub-linear
and T 2 ∼ 1/ ‖x0‖0.

An important feature of Theorem 1 is that all the constants are made explicit and are
governed by the two numerical constants α and β. The role of α is very instructive since
when lowering γ by decreasing α, the threshold on the minimal SNR is decreased to allow
smaller coefficients to be recovered, but simultaneously the probability of success gets lower
and the number of measurements required to recover the k-sparse signal increases. The
converse applies when α is increased. On the other hand, increasing β (in an appropriate
range; see Section 3.3 for details) allows a higher threshold on the sparsity level, but again
at the price of a smaller probability of success.

2.1.2. Support Recovery with Compressible Signals

Theorem 1 can be easily extended to signals that are not exactly sparse in the sense
that their energy is concentrated on a few large coefficients. We consider the best k-term
approximation xk of x0 obtained by keeping only the k largest entries from x0 and setting
the other to zero. This is equivalently defined using a thresholding

xk(i) =

{

x0(i) if |x0(i)| ≥ T,
0 otherwise,

and k = |I(xk)|. (9)
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A signal is generally considered as compressible if the residual xk − x0 is small. For
sparsistency to make sense in this compressible case, stronger constraints are required,
namely that the largest components xk of the signal are significantly larger than the
residual xk − x0. This is detailed in the following theorem.

Theorem 2. Let A, α, β and p as in Theorem 1. We measure y = Ax0 + w, and let xk

be the best k-term approximation of x0 where k satisfies (6). Suppose furthermore that

‖w‖2 + 2
∥

∥

∥
x0 − xk

∥

∥

∥

2
6 ε

and T as defined in (9) is such that

T > 5.5

√

2 log p

n(1− α)
ε (10)

∥

∥

∥x0 − xk
∥

∥

∥

∞
≤ 4(1−√

α)

5

√

2 log p

n(1 + 2
√
α− 3α)

ε. (11)

Then, with a probability P (n, p, α, β) that tends to 1 as n grows to infinity, the solution
x(γ) of the Lasso with measurements y with

γ = 2

√

2 log p

n(1 + 2
√
α− 3α)

ε

is unique and satisfies

supp (x(γ)) = supp
(

xk
)

and sign
(

x(γ)
)

= sign
(

xk
)

.

Again, all the leading constants are explicit. Conditions (10) and (11) impose compress-
ibility constraints on the signal, namely that the magnitude T of the largest components
are well above the average magnitude ε/

√
n of the residual, and that the residual is “flat”

because the ratio of its ℓ∞ and ℓ2 norms should be small.
Theorem 2 encompasses the strictly sparse result, Theorem 1, which is easily recovered

by letting x0 = xk. The parameter α plays a similar role in both theorems. Furthermore,
in Theorem 2, the Lasso becomes more tolerant to compressibility errors x0 − xk as α
decreases. This however comes at the price of a lower probability of success as indicated
in our proof.

2.1.3. Partial Support Recovery with Strictly Sparse Signals

In both previous theorems, the assumption on T plays a crucial role: if T is too small,
there is no way to distinguish the small components of x0 from the noise; see also the
discussion and literature review in Section 1.3. Nevertheless, if no assumptions are made
on T , one can nevertheless expect to partly recover the support of x0. This is formalized
in the following result.

Theorem 3. Let A, α and β as in Theorem 1. Suppose that we measure y = Ax0 + w,
where x0 fulfills (6). Solve the Lasso problem from the measurements y = Ax0 +w. Then
with a probability P2(n, p, α, β) which tends to 1 as n goes to infinity, the Lasso solution

x(γ) with γ = ε√
1−α

√

2 log p
n is unique and satisfies supp (x(γ)) ⊂ supp (x0). Moreover, the

Lasso estimate is ℓ2-consistent

‖x0 − x(γ)‖2 6 ε

(√

α

1− α
+ 2

)

.

9



If γ is large enough it is clear that supp (x(γ)) ⊂ supp (x0) since for γ >
∥

∥ATy
∥

∥

∞,
x(γ) = 0. Theorem 3 provides a parameter γ proportional to ε that ensures a partial
support recovery without any assumption on T . The theorem also gives a sharp upper
bound on ℓ2-error of the Lasso estimate. This ℓ2-consistency remains valid under the
additional hypotheses of Theorem 1 or 2 allowing exact recovery of the support.

2.2. Connections to related works

Sparsistency. As we mentioned in Section 1.3, our work is closely related to [22, 27], but
is different in many important ways that we summarize as follows.

• Deterministic vs random measurement matrices: the work of [22] considers deter-
ministic matrices satisfying a weak incoherence condition. Our work focuses on the
classical Gaussian ensemble.

• Asymptotic vs non-asymptotic analysis: the analysis in [27] applies to high-dimensional
setting where even the sparsity level k grows with the number of measurements n.
As a result, k appears in the statements of the probabilities, which thus requires
that k → +∞. This is very different from our setting as well as that of [22] where
the probabilities depend solely on the dimensions of A. We believe that this is more
natural in many applications.

• Random vs deterministic noise: in both previous works, the noise is stochastic (Gaus-
sian in [22] and sub-Gaussian in [27]). In our work, we handle any noise with a finite
ℓ2-norm.

• Leading numerical constants: these are not always explicit and sharp in those works.
The constant involved in the sparsity level upper-bound in [22, Theorem 1.3] is not
given, whereas (6) gives an explicit and sharp bound. The bound (7) and (8) on T
and γ are similar to those given in [22, Theorem 1.3] once specialized for α = 3/4.
In [27, Theorem 2], the constant appearing in the lower-bound on T is not given,
whereas (7) provides an explicit expression that is shown to be reasonably good in
Section 6.

• Compressible signals: to the best of our knowledge, the compressible case has not
been covered in the literature, and Theorem 2 appears then as a distinctly novel
result of this paper.

• ℓ2-consistency: such a result is not given in those references. A bound on the ℓ2-
prediction error on Ax0 −Ax(γ) is proved in [22]. An ℓ∞-consistency is established
in [27], which is an immediate consequence of sparsistency. Our method of proof
differs significantly from the one used in [27], and in particular it naturally leads to
a result of ℓ2-consistency.

• Exact and partial support recovery: in [22] the partial recovery case was not con-
sidered. In [27], exact and partial recovery are somewhat handeled simulatenously,
while we give two distinct results for each case.

ℓ2-consistency. This property of the Lasso estimate has been widely studied by many
authors under various sufficient conditions. Theorem 3 may then be compared to this
literature, and we here focus on results based on the restricted isometry property (RIP)
[44] and more or less similar variants in the literature; see the discussion in [34] and the
review in [35].
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The RIP results are uniform and ensure ℓ2-stability of the Lasso for all sufficiently
sparse vectors from noisy measurements, whereas Theorem 3 guarantees that the Lasso
estimate is ℓ2-consistent for most sparse vectors and a given matrix. When A is Gaussian,
the scaling of the sparsity bound is O(n/ log(p/n)) for RIP-based results which is better
than O(n/ log p) in Theorem 3. Note that the scaling O(n) was derived in [61] when A
belongs to the uniform spherical ensemble to ensure ℓ2-stability of the Lasso for most
matrices A, although the leading constants are not given explicitly. However, the RIP is
a worst-case analysis, and the price is that the leading constants in the sufficient sparsity
bounds are overly small. In contrast, the leading numerical constants in our sparsity and
ℓ2-consistency upper-bounds are explicit and solely controlled by α and β ∈ [0, 1). For
instance, it can be verified from our proof that the value of the sparsity upper-bound we
provide is actually larger than the bounds obtained from the RIP for p up to e100. Finally,
the RIP is a deterministic property that turns out to be satisfied by many ensembles of
random matrices other than the Gaussian. Our Theorem 3 could probably be extended
to sub-Gaussian matrices (e.g. using [62, Corollary V.2.1]), but this remains an open
question.

3. Proof of Support Identification of Exactly Sparse Signals

This section gives the proof of Theorem 1. In the following, for any vector x ∈ R
p,

we denote as x̄ ∈ R
|I(x)| the restriction of x to its non zero entries I(x). We also denote

AI = (ai)i∈I ∈ R
n×|I| the matrix obtained from A by selecting the columns indexed by I,

where we dropped the dependence of x for simplicity. We denote as

A+
I = (AT

I AI)
−1AT

I

the pseudo inverse of AI .

3.1. Optimality Conditions for Penalized Minimization

First order optimality conditions show that a vector x⋆ is a solution of the Lasso if and
only if

{

AT
I (y −Ax⋆) = γsign

(

x⋆
)

∀j /∈ I, |aTj (y −Ax⋆)| ≤ γ,
(12)

where I = I(x⋆), see for instance [33].
Hence if the goal pursued is to ensure that I(x⋆) = I(x0) and sign (x⋆) = sign (x0), the

only candidate solution of the Lasso is

x⋆ = x0 − γ(AT
I AI)

−1sign (x0) +A+
I w. (13)

This vector x⋆ is thus a solution of the Lasso if and only the two following conditions are
in force :

sign (x0) = sign (x⋆) (C1)

∀j /∈ I(x0), |〈aj , γd0(x) + P(AI )⊥(w)〉| ≤ γ (C2)

where P(AI)⊥ is the orthogonal projection on the vector space orthogonal to the vectors
(ai)i∈I .

Sections 3.2 and 3.3 show that under the hypotheses of Theorem 1, conditions (C1)
and (C2) are in force with a probability that tends toward 1 with n going to infinity. This
will thus conclude the proof of Theorem 1.
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3.2. Condition (C1)

One has sign (x0) = sign (x⋆) as soon as

∥

∥γ(AT
I AI)

−1sign (x0) +A+
I w
∥

∥

∞ ≤ T (14)

We prove that this is indeed the case with high probability.

Lemma 2, whose proof is given in Appendix A, shows that if γ = ε√
1−α

√

2 log p
n 6 T

5.5

then

γ
∥

∥(AT
I AI)

−1sign (x0)
∥

∥

∞ ≤ T (1 + 4
√
α)

5.5

with a probability greater than 1− kp−1.28 − 2e
−nα(0.75

√
2−1)2

4 log p

To prove (14), we will now bound
∥

∥A+
I w
∥

∥

∞. To this end, we use the following decom-
position

∥

∥A+
I w
∥

∥

∞ = D1 ×D2 ×D3

where

D1 =

∥

∥A+
I w
∥

∥

∞
∥

∥A+
I w
∥

∥

2

, D2 =

∥

∥A+
I w
∥

∥

2
∥

∥AT
I w
∥

∥

2

, D3 =

∥

∥AT
I w
∥

∥

2

‖w‖2
× ‖w‖2 .

Bounding D1. Since A and w are independent, lemma 3, whose proof is given in Ap-
pendix A.2, shows that the law of A+

I w is invariant under orthogonal transform R
k.

Hence the random variable
A+

I w
∥

∥A+
I w
∥

∥

2

follows the uniform law on the unit ℓ2 sphere of Rk.
Using the concentration lemma 7 detailed in Appendix B with ǫ = (8 logn log k

k2
)
1
4 , one

gets

P

(
∥

∥A+
I w
∥

∥

∞
∥

∥A+
I w
∥

∥

2

≤
√

2

k
(2 log n log k)

1
4

)

≥ 1−4ke−
√
2 logn log k ≥ 1−max(4n− 1

3 , 8e−
√

2 log(2n))

(One can notice that
‖A+

I w‖∞
‖A+

I w‖
2

≤ 1 actually gives a better bound if k is small compared

to n; moreover the bound on the probability is 1− 4n− 1
3 for k big.)

Bounding D2. D2 is bounded by the maximum of the eigenvalues of (AT
I AI)

−1. Using

lemma 5 with t = 1−
√

k
n − 1

2
1
4
gives

P
(

D2 ≤ 2
1
4

)

≥ 1− e
−n

2
(1− 1

2
1
4

− 1√
2 log n

)2

Bounding D3. One has

D3 =
1

‖w‖2
∑

i∈I
|〈ai, w〉|2.

Since each 〈ai, w〉 is a centered Gaussian variable of variance
‖w‖22
n , the variable

n
∥

∥AT
I w
∥

∥

2

2

‖w‖22

12



follows a χ2 distribution with k degrees of freedom.
Using lemma 8, given in Appendix B, with

1 + δ = 2

√

log n

log k

one has

P

(

∥

∥AT
I w
∥

∥

2

2
≤ 2k

√
log n ‖w‖22
n
√
log k

)

≥ 1− 1√
2πk

e
−k(

√

log n
log k

− 1
2
− log 2

2
− 1

4
log( log n

log k
)) ≥ 1−1

2
e−0.7

√
logn

This last bound is quite pessimistic; when k is large this probability is actually much
bigger.

This shows that with high probability,

D3 ≤
√

2k

n

(

log n

log k

) 1
4

.

Putting everything together.. Hence one obtains that with a probability bigger than

1− 1

2
e−0.7

√
logn − e

−n
2
(1− 1

2
1
4

− 1√
2 log n

)2

−max(4n− 1
3 , 8e−

√
2 log(2n))− kn− 3

2 − 2e−
n(

√
2−1)2

4 log n

that tends to 1 when n tends to +∞.

∥

∥A+
I w
∥

∥

∞ ≤ 2ε

√

2 log n

n
,

which, together with the hypotheses of Theorem 1 on T , implies

∥

∥A+
I w
∥

∥

∞ ≤ 2T
√
1− α

5.5
.

This shows that condition (C1) is in force with a probability that tends to 1 when n tends
to +∞.

3.3. Condition (C2)

In the following, we denote as

u = γd0(x0) + P(AI )⊥(w) (15)

that depends on x0 and w.
One needs to bound the (〈aj , u〉)j /∈I with high probability. We will start by bounding

‖u‖2.

Bounding ‖u‖2. Using the orthogonality of d0(x0) and PA⊥
I
(w), one has

‖u‖22 = γ2 ‖d0(x0)‖22 +
∥

∥

∥P(AI )⊥(w)
∥

∥

∥

2

2
. (16)

Denoting S = sign (x0), one has

nk

‖d0(x0)‖22
=

n ‖S‖22
ST(AT

I AI)−1S
.
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Since x0 and A are independent, Lemma 6, detailed in Appendix B, shows that nk
‖d0(x0)‖22

follows a χ2 distribution with n− k + 1 degrees of freedom.
Using Lemma 9, detailed in Appendix B, one obtains that for all δ > 0,

P

(

nk

n− k + 1
< (1− δ) ‖d0‖22

)

≤ e
(n−k+1) log(1−δ)

2

Since k
n ≤ 1

2 log p , one gets for p ≥ e
1
2δ ,

P
(

k < ‖d0‖22 (1− δ)2
)

≤ e
n log(1−δ)(4−δ)

8

and thus, choosing δ such that (1− δ) >
√
β

P

(

‖d0‖22 ≤
k

β

)

≥ 1− e
n(3−

√
β) log b

16

This shows that

‖d0(x0)‖22 ≤
k

β

with a probability that tends to 1 when n tends to +∞.

One should note that the condition p > e
1

2(1−√
β) actually guarantees that one can find

a suitable δ.
Using the fact that

∥

∥

∥
P(AI )⊥(w)

∥

∥

∥

2
≤ ‖w‖2 6 ε, the decomposition (16) then shows that

P (‖u‖22 ≤ γ2
k

β
+ ε2) ≥ 1− e

n(3−
√

β) log β

16 (17)

Bounding maxj /∈I |〈u, aj〉|. For a fixed u, the random variables 〈aj , u〉 are Gaussian vari-

ables of variance
‖u‖22
n .

Using the bound on ‖u‖22 (17), one gets that with a probability larger than

1− e
n(3−√

β) log β

16 − 1
2
√
π log p

max
j /∈I

|〈aj , u〉| ≤
√

2 log p

n

(

γ2
k

β
+ ε2

)

Condition (C2) is thus in force with high probability if
√

2 log p

n

(

γ2
k

β
+ ε2

)

≤ γ.

One thus sees that
ε√

1− α

√

2 log p

n
≤ γ

implies that (C2) is in force with high probability which concludes proof of Theorem 1.

4. Proof of Support Identification of Compressible Signals

Since y = Axk + A(x0 − xk) + w, results of section 3.1 are still valid, provided one
replaces w by w2 = Ah+w where h = x0 − xk and x0 by xk. Hence we just have to check
conditions C1 and C2; the main difference with the previous section is that the noise w2

is not independent of A anymore. More precisely, w2 is independent of (ai)i∈I but not of
(aj)j /∈I .
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Condition C1. Since this condition only depends on AI , it is verified with a probabil-
ity which tends to 1 as n tends to infinity, as already seen before, provided ‖w2‖2 ≤
T
5.5

√

(1−α)n
2 log p . But ‖w2‖2 ≤ ‖w‖2 + ‖Ah‖2, where Ah is a Gaussian vector, whose coordi-

nates are independent and of variance
‖h‖22
n . Hence

n‖Ah‖22
‖h‖22

follows a χ2 distribution with

n degrees of freedom. Therefore using lemma 8, one gets

P (‖Ah‖2 ≤ 2 ‖h‖2) ≥ 1− 1

3
√
2πn

e−0.8n

Using the hypotheses of Theorem 2 one then has with a probability that tends to 1 as
n tends to infinity

‖w2‖2 ≤ ‖w‖2 + 2 ‖h‖2 ≤
T

5.5

√

(1− α)n

2 log p

Condition C1 is thus in force with high probability.

Condition C2. Let j /∈ I. We denote vj = w2 − hjaj. In particular, vj is independent of
aj. Condition C2 can now be written :

∀j /∈ I, |〈aj , γd0(xk) + P(AI )⊥(vj) + hjP(AI )⊥(aj)〉| ≤ γ

The proof of Theorem 1 shows that with high probability

∥

∥

∥
γd0(x

k) + P(AI )⊥(vj)
∥

∥

∥

2

2
≤ γ2

k

β
+ ‖vj‖22

But ‖vj‖2 ≤ ‖w2‖2+‖h‖∞ ‖aj‖2, where n ‖aj‖22 follows a χ2 distribution with n degrees
of freedom; as before one can apply lemma 8 and obtain as in the proof of Theorem 1 that
with a probability that tends to 1 as n tends to infinity,

max
j /∈I

|〈aj , γd0(xk) + P(AI )⊥(vj)〉| ≤
√

2 log p

n

(

γ2
k

β
+ (‖w‖2 + 2 ‖h‖2)2

)

Hence the hypotheses of Theorem 2 ensure that with a high probability

max
j /∈I

|〈aj , γd0(xk) + P(AI )⊥(vj)〉| ≤
γ

2
(1 +

√
α) (18)

Moreover for all j ≤ p,

|hj〈aj , P(AI )⊥(aj)〉| ≤ ‖h‖∞
∥

∥

∥P(AI )⊥(aj)
∥

∥

∥

2

2

where
∥

∥

∥
P(AI)⊥(aj)

∥

∥

∥

2

2
is the square of the norm of the projection of a Gaussian vector on

a vector space of dimension n− k. The vector space (AI)
⊥ is independent of aj , therefore

(n− k)
∥

∥

∥P(AI )⊥(aj)
∥

∥

∥

2

2
follows a χ2 distribution with n− k degrees of freedom. Hence one

has with high probability

max
j /∈j

|hj〈aj , P(AI )⊥(aj)〉| ≤
5

4
‖h‖∞ ≤ γ

2
(1−√

α) (19)

Equations (18) and (19) show that C2 holds with high probability.
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5. Proof of Partial Support Recovery

To prove the first part of Theorem 3, we need to show that with w.o.p, the extension
x1(γ) on R

p of the solution of

min
x∈R|I|

1

2
‖y1 −Ax‖22 + γ ‖x‖1 (20)

where y1 = PAI
(y), is the solution of the Lasso. By definition, the support J of this

extension is included in I.
To prove this, one needs to prove that

{

AT
J (y −Ax1(γ)) = γsign

(

x1(γ)
)

∀l /∈ J, |aTl (y −Ax1(γ))| ≤ γ,
(21)

By definition, the support J of x1(γ) is included in I. Since y1 = PAI
(y), one has AT

J (y −
Ax1(γ)) = AT

J (y1−Ax1(γ)); moreover, since x1(γ) is the extension of the solution of (20),
one has :

AT
J (y −Ax1(γ)) = γsign

(

x1(γ)
)

and
∀l ∈ (I ∩ Jc), |aTl (y −Ax1(γ))| ≤ γ.

To prove Theorem 3, it is thus sufficient to prove that w.o.p

∀l /∈ I, |aTl (y −Ax1(γ))| ≤ γ. (22)

Following the proofs of Theorems 1 and 2, we will use the independency between vectors
(al)l /∈I and vector y −Ax1(γ) to bound these scalar products.

Lemma 1. Let A ∈ R
n×k such that (ATA) is invertible, let y ∈ R

n and x(γ) be a solution

of the Lasso. The application f from R
+∗ to R

+ defined by f(γ) =
‖y−Ax(γ)‖2

γ is well-
defined and non-increasing.

Proof: The authors in [8] and [60] independently proved that:

• the solution x(γ) of the Lasso is unique;

• there is a finite increasing sequence (γk)k6K with γ0 = 0 and γK =
∥

∥ATy
∥

∥

∞ such
that for all k < K, the sign and the support of x(γ) are constant on each interval
(γk, γk+1).

• x(γ) is a continuous function of γ.

Moreover x(γ) satisfies

x(γ) = (AT
JAJ)

−1AT
J y − γ(AT

JAJ)
−1sign

(

x(γ)
)

(23)

which implies

r(γ) := y −Ax(γ) = PA⊥
J
(y)− γAJ (A

T
JAJ)

−1sign
(

x(γ)
)

Hence on each interval (γk, γk+1), r(γ) is an affine function of γ which can be written

r(γ) = z − γv, with v ∈ V := Span((aj)j∈J) and z ∈ V ⊥
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For γ ∈ (γk, γk+1), one has

‖r(γ)‖22
γ2

=
‖z‖22
γ2

+ ‖v‖22 (24)

hence f(γ) =
‖r(γ)‖2

γ is a non increasing function of γ on each interval (γk, γk+1). Since f

is continuous, it follows that f is non increasing on R
+∗.

Remark 1. If (AT
I AI) is not invertible, the Lasso may have several solutions. Neverthe-

less r(γ) is always uniquely defined and the lemma should also apply.

From Lemma 1, we deduce that
‖y1−Ax1(γ)‖2

γ is a non increasing function of γ. Since
y1 ∈ Im (AI) and AI has full column-rank,

lim
γ→0

x1(γ) = x1 = x0 + (AT
I AI)

−1AT
I w

is the unique vector of R|I| such that AIx = y1. Since AI is Gaussian and independant
from x0 and w, the support of x1 is almost surely equal to I. Hence there exists γ1 > 0
such that if γ < γ1, the support and the sign of x1(γ) are equal those of x1. More precisely,
if γ < γ1, one has

x(γ) = x1 − γ(AT
I AI)

−1sign (x1) and r(γ) = y1 −Ax1(γ) = γAI(A
T
I AI)

−1sign (x1)

Hence for γ ∈ (0, γ1),
‖y1−Ax1(γ)‖2

γ =
∥

∥AI(A
T
I AI)

−1sign (x1)
∥

∥

2
. Since

∥

∥AI(A
T
I AI)

−1sign (x1)
∥

∥

2

2
= 〈(AT

I AI)
−1sign (x1) , sign (x1)〉

we deduce that for all γ > 0,
‖y1−Ax1(γ)‖2

γ 6
√

|I|ρ((AT
I AI)−1); hence for any β < (1 −

√

k
n)

2,

P (
‖y1 −Ax1(γ)‖2

γ
6

√

k

β
) ≥ 1− e−

n(1−
√

β−
√

k
n )2

2 (25)

Since ‖y −Ax1(γ)‖22 6 ε2 + ‖y1 −Ax1(γ)‖22 we deduce that with a probability larger

than 1− e−
n(1−

√
β−
√

k
n )2

2 − 1
2
√
π log p

,

max
l /∈I

|aTl (y −Ax1(γ))| 6

√

2 log p(ε2 + γ2k
β )

n
. (26)

If k 6 αβn
2 log p and γ > ε√

1−α

√

2 log p
n then

√

2 log p(ε2+ γ2k
β

)

n 6 γ and then inequality (22) is

satisfied w.o.p. which ends the proof of the first part of the theorem.
We now prove that w.o.p

‖x0 − x(γ)‖2 6 ε

(√

α

1− α
+ 2

)

.

To prove this inequality we notice that for large γ, x(γ) is also the extension of the solution
of (20) w.o.p and we use the Lipschitz property of the function mapping γ to x1(γ).
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Indeed, one has

‖x0 − x1(γ)‖2 6 ‖x0 − x1‖2 + ‖x1 − x1(γ)‖2 . (27)

Noticing x0 − x1 = (AT
I AI)

−1AT
I w, it follows that ‖x0 − x1‖2 6 ε

√

ρ((AT
I AI)−1).

We deduce that ‖x0 − x1‖2 6 2ε with probability larger than 1−e
−n

2
(0.29−

√

kn
)

2

. Since
for all γ > 0, x1(γ) is defined by (23) and limγ→0 x1(γ) = x1 one has

‖x1 − x1(γ)‖2 6 γ max
J⊂I,S∈{−1,1}|J|

∥

∥(AT
JAJ)

−1S
∥

∥

2
. (28)

For all J ⊂ I, one has ρ((AT
JAJ)

−1) 6 ρ((AT
I AI)

−1) and for all S ∈ {−1, 1}|J |, ‖S‖2 6
√
k;

thus

P

(

‖x1 − x1(γ)‖2 6 γ

√

k

β

)

≥ 1− e
−n

2

(

0.29−
√

k
n

)2

.

If γ = ε√
1−α

√

2 log p
n and k 6 αβn

2 log p

‖x1 − x1(γ)‖2 6 ε

√

α

1− α
,

which concludes the proof.

6. Numerical Illustrations

This section aims at providing empirical support of the sharpness of our bounds by
assessing experimentally the quality of the constants involved in Theorem 1. More specif-
ically, we perform a probabilistic analysis of support and sign recovery, to show that the
bounds (6), (8) and (7) are quite tight.

In all the numerical tests, we use problems of size (n, p) = (8000, 32000), which is a
realistic high-dimensional scenario in agreement with signal and image processing appli-
cations. We perform a randomized analysis, where the probability of exact recovery of
supports and signs (sparsistency) are computed by Monte-Carlo sampling with respect to
a probability distribution on the measurement matrix, k-sparse signals and on the noise w.
As detailed in Section 1.1, the matrice A is a realization drawn from the Gaussian ensem-
ble. We assume that the non-zero entries x(i) for i ∈ I(x) of a signal x are independent
realizations of a Bernoulli variable taking equiprobable values {+T,−T}. We also assume
that the noise w is drawn from the uniform distribution on the sphere {w ∈ R

n \ ‖w‖ = ε}.
Since only the signal-to-noise ratio matters in the bounds, we fix ε = 1 and only vary the
value of T .

Challenging the sparsity bound (6). We first evaluate, for α = 0.8, and for a varying value
of k, the probability of sparsistency given that

T =
5.5ε√
1− α

√

2 log p

n
and γ =

T

5.5
(29)

which are values in accordance with the bounds (7) and (8).
In order to compute numerically this probability, for each k, we generate 1000 sparse

signals x0 with ‖x0‖0 = k, and check wether conditions (C1) and (C2) defined in Section 3.1
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Figure 1: Probability of sparsistency as a function of k for (n, p) = (8000, 32000) and α = 0.8. The vertical

lines corresponds to our sparsistency bound kβ, from left to right, for β = 0.7, 0.8, 0.9, 1.

are satisfied. Figure 1 shows how this probability decays when k increases. The vertical
lines corresponds to the critical sparsity thresholds

kβ =
αβn

2 log p
(30)

as identified by the bounds (6). The estimated probability exhibits a typical phase tran-
sition that is located precisely around the critical value kβ for β close to one. This shows
that our bound is quite sharp. We have also displayed the same probability curve for
other, less conservative, values of γ ∈ {T/4, T/2}, which improves slightly the probability
with respect to γ = T/5.5.

Challenging the regularization parameter value (8). We evaluate, for (α, β) = (0.8, 0.8),
the probability of sparsistency using a value of γ that differs from

γ0 =
ε√

1− α

√

2 log p

n
(31)

given in (8), for which Theorem 1 is valid. We use the critical sparsity level k = kβ defined
in (30). To study only the influence of γ, we use a signal-to-noise ratio that is infinite,
meaning that ε is small in comparison to T . This implies in particular that in this regime,
only condition (C1) is needed to be checked to estimate the probability of sparsistency.

Figure 2 shows the increase in this probability as the ratio γ/γ0 increases. This makes
sense because the signal is large with respect to the noise so that a large threshold should
be preferred. One can see that at the critical value γ = γ0 suggested by Theorem 1, this
probability is close to 1. This shows that the value (8) of γ is quite sharp.

Challenging the signal-to-noise ratio (7). Lastly, we estimate, for (α, β) = (0.8, 0.8), the
minimal signal level T that is required to ensure the inclusion of the support, meaning
I(x(γ)) ⊂ I(x0). We use the critical sparsity k = kβ defined in (30), and γ = γ0 where γ0
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Figure 2: Probability of support recovery for large T as a function of γ/γ0 for k = kβ, (n, p) = (8000, 32000)
and (α, β) = (0.8, 0.8).

is defined in (31). Since we are only interested in support inclusion, we only need to check
condition (C2).

The bound in (7) suggests that T ≥ 5.5γ0 is enough. Figure 3 however suggests that
this bound is pessimistic, and that T ≥ 2γ0 appears to be enough to guarantee the support
inclusion with high probability. A few reasons may explain this sub-optimality.

• There is no guarantee that the concentration lemmas we use are optimal.

• The limit ratio T
ǫ relies mainly on Lemma 2 and especially on the bound 1+ 4

√
b in

it. This bound can be improved by at least three ways.

– Using the same proof, the bound can be slightly enhanced by decaying the
probability of success.

– The result in the lemma is non asymptotic. The bound and the probability were
computed to be available for all α 6 1, β 6 1 and for all p > 1212. With the
values used in the numerical experiments, and decaying a bit the probability of
success, the bound can turn into 1+2.7

√
b, yielding a better bound T ≥ 4.37γ0.

– In the proof of Lemma 2, the majorization ‖Bi‖2 6 ρ(B) is used. This bound
is available for any matrix, but one might perhaps do better by exploiting
Gaussiannity of the measurement matrix.

Conclusion

This paper has presented a novel analysis of the sparsistency of the Lasso from noisy
Gaussian measurements. We derived sharp bounds on the sparsity of the signal to guar-
antee sparsistency with high probability. This result is extended to handle compressible
signals and to establish sharp ℓ2-consistency. A distinctive feature of our analysis is that it
provides explicit constants for the three key parameters of the problem: the sparsity of the
signal, the minimal signal-to-noise ratio and the Lasso regularization parameter. Numeri-
cal results support the claim that these constants are either sharp or at least reasonably
well behaved.
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Figure 3: Probability of support inclusion as a function of T/γ0 for k = kβ , (n, p) = (8000, 32000) and

(α, β) = (0.8, 0.8).

A. Properties of Wishart Matrices

A.1. Sup-norm of a projected Rademacher sequence

Lemma 2. If C ∈ R
n×k is a Gaussian matrix, with k ≤ nb

2 log p with 0 < b ≤ 1 and if

S ∈ {−1, 1}k is drawn independently from C, then if p ≥ 1212,

P
(

∥

∥(CTC)−1S
∥

∥

∞ ≤ 1 + 4
√
b
)

≥ 1− kp−1.28 − 2e−
nb(0.75

√
2−1)2

4 log p

Proof: We use the following splitting

(CTC)−1 = I + ((CTC)−1 − I) = I +B.

This shows that
∥

∥(CTC)−1S
∥

∥

∞ ≤ ‖S‖∞ + ‖BS‖∞ = 1 + ‖BS‖∞ .

One can then observe that (BS)(i) =
∑

j≤k |Bi,j|S(j)sign (Bi,j); one has Bi,i > 0, and
according to lemma 4, for given i, the variables sign (Bi,j)j 6=i form a Rademacher sequence
(this means that they are independent and uniformly distributed on {−1, 1}), and this
sequence is independent of Bi,i and of (|Bi,j |)j 6=i. Hence one can apply Hoeffding’s lemma
10 (multiplying the line by an independent variable uniform on {−1, 1} to take care of the
fact that sign (Bi,i) is not uniformly distributed), thus getting for any i ≤ k and any t > 0,

P



|
k
∑

j=1

Bi,jS(j)| ≥ t ‖Bi‖2



 ≤ e−
t2

2 (32)

Now, for all i ≤ k, ‖Bi‖2 ≤ ρ(B), where ρ(B) is the spectral radius of B. Using lemma

5 with t = (0.75 − 1√
2
)
√

b
log p and using k

n ≤ b
2 log p , one gets :

P



λmin(C
TC) ≤

(

1− 0.75

√

b

log p

)2


 ≤ e−
nb(0.75

√
2−1)2)

4 log p
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Hence

P



λmax((C
TC)−1) ≥

(

1− 0.75

√

b

log p

)−2


 ≤ e−
(0.75

√
2−1)2bn

4 log p

Similarly, one gets

P



λmin((C
TC)−1) ≤

(

1 + 0.75

√

b

log p

)−2


 ≤ e
− (0.75

√
2−1)2bn

4 log p

Finally, one has with a probability bigger than 1− 2e−
nb(0.75

√
2−1)2)

4 log p

ρ(B) ≤ max

(∣

∣

∣

∣

∣

(1 + 0.75

√

b

log p
)−2 − 1

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

(1− 0.75

√

b

log p
)−2 − 1

∣

∣

∣

∣

∣

)

In particular, if log(p)
b ≥ 152

(17−
√
129)2

≃ 7.07, one gets ρ(B) ≤ 2.5
√

b
log p with a probability

larger than 1− 2e
−nb(0.75

√
2−1)2

4 log p .
Using this bound in (32) with t = 1.6

√

log(p) yields

P
(

‖BS‖∞ ≥ 4
√
b
)

≤ P

(

‖BS‖∞ ≥ t ‖Bi‖2 and ρ(B) ≤ 2.5

√

b

log p

)

+ P

(

ρ(B) ≥ 2.5

√

b

log p

)

≤ kp−1.28 + 2e−
nb(0.75

√
2−1)2

4 log p

Finally if log(p)
b ≥ 7.08

P
(

∥

∥(CTC)−1S
∥

∥

∞ ≤ 1 + 4
√
b
)

≥ 1− kp−1.28 − 2e
−nb(0.75

√
2−1)2

4 log p

One can notice that if one actually has log p
b ≥ 16.2 as in the numerical experiments

(b = 0.64, p = 32000), one can adapt this proof and, by losing a bit on the probability
(applying lemmas with smaller values of t), one can get

∥

∥(CTC)−1S
∥

∥

∞ ≤ 1+2.7
√
b w.o.p.

A.2. Rotation invariance

Lemma 3. If C ∈ R
n×k is a Gaussian matrix, and w ∈ R

n is independent of C, the law
of C+w is invariant under orthogonal transformation of Rk, where C+ = (CTC)−1CT.

Proof: If C ∈ R
n×k is a Gaussian matrix, then for any orthogonal matrix U ∈ R

k×k,
D = CU and C have the same law. The law of D+w and C+w are thus the same. Since
for all w, one has

D+w = U−1C+w

the law of U−1C+w is the same as the law of C+w.
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A.3. Signs of non-diagonal entries of an inverse Wishart matrix

Lemma 4. If B ∈ R
k×k is the inverse of a Wishart matrix, then for all i ≤ k, the

variables (sign (Bi,j) , j 6= i) form a Rademacher sequence, that is they are independent
and uniformly distributed on {−1, 1}. Moreover this sequence is independent of Bi,i , and
of (|Bi,j|)j 6=i.

Proof: If B = (bij)i6k,j6k ∈ R
k×k is the inverse of a Wishart matrix, then

B = (ATA)−1 where A ∈ Mn,k(R) is a Gaussian matrix. Let E ∈ Mk,k(R) be di-
agonal such that for all 1 ≤ i ≤ k, |Ei,i| = 1. Then (AE)TAE = EATAE, hence
((AE)T(AE))−1 = E(ATA)−1E. Therefore the coefficients of C = ((AE)TAE)−1 are
(cij)i6k,j6k = (eiiejjbij)i6k,j6k.
But A and AE have the same law, hence B and C also have the same law. Hence for all
(ǫj)j6k,j 6=i ∈ {−1, 1}k−1, the laws of (Bi,1, . . . , Bi,k) and
(ǫ1Bi,1, . . . , Bi,i, . . . , ǫkBi,k) are the same. This implies that the variables (sign (Bi,j) , j 6=
i) form a Rademacher sequence, and this sequence is independent of Bi,i, and of (|Bi,j |)j 6=i.

A.4. Extreme eigenvalues of a Wishart matrix

The proof of the following lemma can be found in [63, page 42].

Lemma 5. If A ∈ R
n×k is a Gaussian matrix whose coefficients are centered of variance

1
n , then the maximal and minimal eigenvalues of the Wishart matrix B = ATA satisfy for
all t > 0

P

(

λmax(B) ≥ (1 +

√

k

n
+ t)2

)

6 e−
nt2

2

and

P

(

λmin(B) 6 (1−
√

k

n
− t)2

)

6 e−
nt2

2

A.5. Distribution of a quadratic form

The following lemma is a consequence of [64, Theorem 3.2.12].

Lemma 6. If B is a Wishart matrix as described in Lemma 5, then for all X ∈ R
k

independent of B, the random variable
n‖X‖22

XTB−1X
follows a χ2 distribution with n − k + 1

degrees of freedom.

B. Concentration inequalities

The following lemma is well known; a proof can be found in [65].

Lemma 7. Let µk denote the uniform probability on the unit sphere Sk−1 in R
k, and let

A ⊂ Sk−1 such that µk(A) ≥ 1
2 . Then µk({x ∈ Sk−1, d(x,A) ≤ ǫ}) ≥ 1 − 2e−

kǫ2

2 . As a

corollary, µk(x ∈ Sk−1, |x1| ≤ ǫ} ≥ 1− 4e−
kǫ2

2 .

The following lemma is due to Cai et Silverman, see [66].

Lemma 8. If X follows a χ2 distribution with k degrees of freedom, then for all δ > 0,

P (X > (1 + δ)k) 6
1√
2πkδ

e−
k
2
(δ−log(1+δ))
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The following lemma is due to Hoeffding, see [67].

Lemma 9. If X follows a χ2 distribution with k degrees of freedom, then for all δ > 0,

P (X < (1− δ)k) 6 e
k log(1−δ)

2

The following lemma can be obtained by applying the Chernoff-Hoeffding inequality.

Lemma 10. If (εi)i6k is a Rademacher sequence, then for all a = (ai)i6k ∈ R
k and for

all t > 0,

P

(∣

∣

∣

∣

∣

k
∑

i=1

εiai

∣

∣

∣

∣

∣

≥ t ‖a‖2

)

6 e−
t2

2 .
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