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The Mean First Rotation Time of a planar
polymer

S. Vakeroudis∗† M. Yor∗‡ D. Holcman†

January 10, 2011

Abstract

We estimate here the mean first time, called the mean rotation
time (MRT), for a planar polymer to wind around a point. The poly-
mer is modeled as a collection of n rods, each of them parameterized
by a Brownian angle. We are led to study the sum of i.i.d. expo-
nentials with a one dimensional Brownian motion in the argument.
We find that the free end of the polymer satisfies a novel stochastic
equation with nonlinear time function. Finally, we obtain an asymp-
totic formula for the MRT, and the leading order term depends on

√
n

and, interestingly, weakly on the initial configuration. Our analytical
results are confirmed by Brownian simulations.

1 Introduction

The main focus of this paper is on some properties of a planar polymer
motion and in particular, the mean time that a rotation is completed around
a fixed point. This mean rotation time (MRT) provides a quantification
for the transition between a free two dimensional Brownian motion to a
restricted motion. To characterize this time, we shall use a simplified model
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of a polymer made by a collection of n two dimensional connected rods with
Brownian random angle (Figure 1). To estimate the mean rotation time,
we shall fix one end part of the polymer. We shall examine how the MRT
depends on various parameters such as the diffusion constant, the number
of rods or their length. Using some types of approximations and numerical
simulations, the mean time for the two polymer ends to meet was estimated
in dimension three [PZS96, WiF74].

Although the windings of a planar Brownian motion, that is the number
of rotations around one point in dimension 2 or a line in dimension three and
its asymptotic behavior has commonly been studied [ReY99, Spi58, PiY86,
LeGY87, LeG90], very little is known about the mean time for a rotation
to be completed for the first time. For an Ornstein-Uhlenbeck process, we
recently [Vak10] estimated the first time that it hits the boundary of a given
cone.

The paper is organized as followed: in section two, we present the poly-
mer model. In section three, we study a sum of i.i.d. exponentials of one
dimensional Brownian motions. Interestingly, using a Central Limit Theo-
rem, we obtain a new stochastic equation for the limit process. This equation
describes the motion of the free polymer end. In section four, we obtain the
main result which is an asymptotic formula for the MRT E [τn] when the
polymer is made of n rods of equal lengths l0 with the first end fixed at
a distance L from the origin and the Brownian motion is characterized by
the diffusion constant D the rotational diffusion constant. We find that The
MRT depends logarithmically on the initial configuration and for nl0 >> L

and n ≥ 3, the leading order term is given by:

1.

E [τn] ≈
√
n

8D

[

2 ln

(∑n
k=1 e

i√
2D

θk(0)

√
n

+O(1)

)

+Q

]

,

where (θk(0), 1 ≤ k ≤ n) are the initial angles of the polymer and Q =
9.56,

2. for an initially stretched polymer,

E [τn] ≈
√
n

8D
lnn,
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Figure 1: Schematic representation of a planar polymer winding
around the origin.(a) A random configuration, (b) MRT when one of the
beads reaches 2π.

3. for an average over uniformly distributed initial angles,

E [τn] ≈
√
n

8D

[

2 ln

(
L

l0
√
n
+O(1)

)

+Q

]

.

We confirm our analytical results with Brownian simulations. Finally, in
section five we discuss some related and open questions.

2 Stochastic modeling of a planar polymer

Various models are available to study polymers: the Rouse model con-
sists of a collection of beads connected by springs, while more sophisti-
cated models account for bending, torsion and specific mechanical properties
[Rou53, SSS80, DoE94]. We shall consider here a very crude approximation
where a planar polymer is modeled as a collection of n rigid rods, with equal
fixed lengths l0 of coordinates (X0, X1, X2, . . . , Xn) (Figure 1) in a framework
with an origin 0. We shall fix one of the polymer end X0 = (L, 0) (where
L > 0) on the x-axis. The dynamics of the i-th rod is characterized by its
angle θi(t) with respect to the x-axis. The overall polymer dynamics is thus
characterized by the angles (θ1(t), θ2(t), . . . , θn(t), t ≥ 0). Due to the ther-
mal collision in the medium, the angles are independent Brownian variables.
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Thus, with
(law)
= denoting equality in law,

(θi(t), i ≤ n)
(law)
=

√
2D (Bi(t), i ≤ n) ⇔







dθ1(t) =
√
2D dB1(t)

dθ2(t) =
√
2D dB2(t)

...

dθn(t) =
√
2D dBn(t),

where D is the rotational diffusion constant and (B1(t), . . . , Bn(t), t ≥ 0) is
an n-dimensional Brownian motion (BM). The position of each rod can now
be obtained as







X1(t) = L+ l0e
iθ1(t)

X2(t) = X1(t) + l0e
iθ2(t)

...

Xn(t) = Xn−1(t) + l0e
iθn(t).

(1)

In particular, the moving end is given by

Xn(t) = L+ l0
(
eiθ1(t) + . . .+ eiθn(t)

)
= L+ l0

n∑

k=1

eiθk(t) = L+ l0

n∑

k=1

ei
√
2DBk(t),

(2)

which can be written as

Xn(t) = Rn(t)e
iϕn(t), (3)

and thus ϕn(t) defines the rotation of the polymer with respect to the origin
0 and Rn is the associated distance.

Thus to compute the MRT, we shall study a sum of exponentials of Brow-
nian motions, which usually leads to surprising computations [Yor01]. First,
we scale the space and time variables as followed

l̃ =
L

l0
and t̃ =

t

2D
. (4)

4



equation (2) becomes

Xn(t) = l̃ +
n∑

k=1

eiB̃k(t), (5)

where
(

B̃1(t), . . . , B̃n(t), t ≥ 0
)

is an n-dimensional Brownian motion (BM),

and for k = 1, . . . , n, using the scaling property of Brownian motion, we
have:

B̃k(t) ≡
1√
2D

Bk(t)
(law)
= Bk

(
t

2D

)

= Bk(t̃).

From now on, we shall use B instead of B̃.
Before describing our approach, we shall now discuss the initial configu-

ration of the polymer. The initial polymer configuration is given by

cn ≡
n∑

k=1

eiθk(0), (6)

where the initial angles θk(0) are such that the polymer has not already made
a loop. After scaling, the initial configuration becomes

cn =

n∑

k=1

ei θ̃k(0). (7)

with

θ̃k(0) =
√
2DBk(0). (8)

From now on, we shall use θk(0) instead of θ̃k(0). Any segment in the interior
of the polymer can hit the angle 2π around the origin, but we will not consider
this as a winding event, although we could and in that case, the MRT would
be different. Rather, we shall only consider that given an initial configuration
cn, the MRT is defined as

MRT ≡ E{τn|cn} ≡ E [τn] , (9)

where

τn ≡ inf{t > 0, ϕn(t) = 2π or − 2π}. (10)
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Thus, an initial configuration is not winding when

|ϕn(0)| < 2π. (11)

Thus, we can define the winding event using a one dimensional variable only.
In general, winding is a rare event and we expect that the MRT will depend
crucially on the length of the polymer and will be quite long. Interestingly,
the rotation is accomplished when the angle ϕn(t) reaches 2π or −2π, but
the distance of the free end point to the origin is not fixed, leading to a one
dimensional free parameter space. This undefined position is in favor of a
winding time that is not too large compared to any narrow escape problem
where a Brownian particle has to find a small target in a confined domain
[WaK93, PWPSK09, HoS04, SSHE06, SSH07, BKH07].

In this study, we will consider not only that the initial condition satisfies
|ϕn(0)| < 2π, but we shall impose that ϕn(0) is located far enough from 2π,
to avoid studying any boundary layer effect, which would lead to a different
MRT law. Indeed, starting inside the boundary layer for a narrow escape
type problem leads to specific escape laws [SSHE06]. Given a small ε > 0 we
shall consider the space of configurations Ωε such that |ϕn(0)| < 2π − ε. We
shall mainly focus on the stretched polymer

(θ1(0), θ2(0), . . . , θn(0)) = (0, 0, . . . , 0) (12)

and thus cn = n > 0 (in this case, ϕn(0) = 0). Finally, it is quite obvious
that winding occurs only when the condition

nl0 > L (13)

is satisfied, which we assume all along.
The outline of our method is: first we show that the sum Xn(t) converges

(eq. (2)) and we obtain a Central Limit Theorem. Using Itô calculus, we
study the sequence

1√
n
Xn(t) =

1√
n
[Xn(t)− E (Xn(t))] . (14)

and prove that Xn(t), for n large, converges to a stochastic process which
is a generalization of an Ornstein-Uhlenbeck process (GOUP), containing a
time dependent deterministic drift cne

−t. This GOUP is driven by a (local)

martingale
(

M
(n)
t , t ≥ 0

)

that we further characterize. Interestingly, each
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of the two cartesian coordinates of
(

M
(n)
t , t ≥ 0

)

converges to two indepen-

dent Brownian motions with two different time scale functions. To obtain
an asymptotic formula for the MRT, we show that in the long time asymp-
totic, where winding occurs, the GOUP can be approximated by a standard
Ornstein-Uhlenbeck process (OUP). Using some properties of the GOUP
[Vak10], we finally derive the MRT for the polymer which is the mean time
that ϕn(t) = 2π or −2π.

3 Properties of the free polymer end Xn(t)

using a Central Limit Theorem

In this section we study some properties of the free polymer end Xn(t). In
particular, using a Central Limit Theorem, we show that the limit process
satisfies a stochastic equation of a new type. To study the random part of
Xn(t), we shall remove from it its first moment and we shall now consider
the asymptotic behavior of the drift-less sequence

1√
n
Xn(t) =

1√
n
[Xn(t)− E (Xn(t))] . (15)

We start by computing the first moment E (Xn(t)). Because in relation
(2), (θi(t), t ≥ 0) are n independent identically distributed (iid) Brownian
motions with variance 2D, after rescaling, we obtain that

E (Xn(t)) = E

[

l̃ +

n∑

k=1

eiBk(t)

]

= l̃ +

(
n∑

k=1

E
[
ei(Bk(t)−Bk(0))

]
E
[
ei(Bk(0))

]

)

= l̃ + cne
− t

2 . (16)

where cn is defined by (7) and we have used that

E
[
ei(Bk(t)−Bk(0))

]
= e−

t
2 (17)
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We study the sequence (15) as follows:

1√
n
Xn(t) =

1√
n

[
n∑

k=1

eiBk(t) − E

(
n∑

k=1

eiBk(t)

)]

=
1√
n

n∑

k=1

Fk(t), (18)

where Fk(t) = eiBk(t) − E
(
eiBk(t)

)
. Applying Itô’s formula to

Z
(n)
t =

1√
n

n∑

k=1

Fk(t) (19)

with Z
(n)
0 = 0, we obtain that

Z
(n)
t =

i√
n

∫ t

0

n∑

k=1

eiBk(s)dBk(s)−
1

2
√
n

∫ t

0

n∑

k=1

(
eiBk(s) − E

(
eiBk(s)

))
ds =

= M
(n)
t − 1

2

∫ t

0

Z(n)
s ds, (20)

where

M
(n)
t =

1√
n
i

∫ t

0

n∑

k=1

eiBk(s) dBk(s)

=
1√
n

∫ t

0

n∑

k=1

(i cos(Bk(s))− sin(Bk(s))) dBk(s)

= S
(n)
t + iC

(n)
t . (21)

We shall now study the asymptotic limit of the local martingale M
(n)
t and

summarize our result in the following theorem.

Theorem 3.1 The sequence (M
(n)
t , t ≥ 0) converges in law to a Brownian

motion in dimension 2, viewed at a nonlinear function of time. We obtain
a convergence in law associated with the topology of the uniform convergence
on compact sets of the functions in C(R+,R

2). More precisely,

(S(n)
u , C(n)

u , u ≥ 0)
(law)−→
n→∞

(
ˆ̃
β 1

2

∫ u
0 ds (1+e−2s), β̃ 1

2

∫ u
0 ds (1−e−2s), u ≥ 0), (22)

where ( ˆ̃βu, β̃u, u ≥ 0) are two independent Brownian motions.
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Remark 3.2 The approximation result of equation (22) is new and it shows
that the sum of complex exponentials of i.i.d. Brownian motions can be ap-
proximated by a two dimensional Brownian motion, given at a time which is
a nonlinear function different for each coordinate.

The proof of Theorem 3.1 is given in Appendix A. We conclude that
the sequence M

(n)
t converges in law as

M
(n)
t

(law)−→
n→∞

ˆ̃
β(

t
2
+ 1−e−2t

4

) + iβ̃(

t
2
− 1−e−2t

4

), (23)

and we define Z
(n)
t , which generalizes a classical Ornstein-Uhlenbeck process.

It is driven by (M
(n)
t , t ≥ 0) and is solution of

Z
(n)
t = M

(n)
t − 1

2

∫ t

0

Z(n)
s ds

= e−
t
2

∫ t

0

e
s
2dM (n)

s . (24)

Corollary 3.3 The sequence Z
(n)
t converges

Z
(n)
t = e−

t
2

∫ t

0

e
s
2dM (n)

s (25)

(law)−→
n→∞

e−
t
2

{∫ t

0

e
s
2d

ˆ̃
β( 1

2

∫ u
0 ds (1+e−2s)) + i

∫ t

0

e
s
2dβ̃ 1

2(
∫ u
0 ds (1−e−2s))

}

= e−
t
2

{∫ t

0

e
s
2

(

d
ˆ̃
β(

s
2
+ 1−e−2s

4

) + idβ̃(

s
2
− 1−e−2s

4

)

)}

. (26)

From the identities (15), (16), (18), (20) and Theorem 3.1 we obtain the
following expansion

Xn(t) = Xn(t) + E [Xn(t)]

=
√
n Z

(n)
t + cne

− t
2 + l̃, (27)

with Z
(n)
t a GOUP driven by M

(n)
t which is given by (23). From this ex-

pression for the sequence Xn(t), and using the Ornstein-Uhlenbeck property
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[ReY99], we have that

Xn(t) =
√
nZ

(n)
t + cne

− t
2 + l̃

=
√
n

(

l̃√
n
+ Z

(n)
t +

cn√
n
e−

t
2

)

=
√
n

(

e−
t
2

(

l̃√
n
+

∫ t

0

e
s
2dM (n)

s

)

+
cn√
n
e−

t
2

)

(law)
≈

√
ne−

t
2

(

c̃n +

(∫ t

0

e
s
2

(

d
ˆ̃
β(

s
2
+ 1−e−2s

4

) + i dβ̃(

s
2
− 1−e−2s

4

)

)))

,

where

c̃n ≡ l̃√
n
+

cn√
n
, (28)

and l̃ = L
l0
is the rescaled distance of the fixed end from the origin 0 (l0 is the

fixed length of the rods), n is the number of rods/beads, and cn is a constant
depending on the initial configuration. Finally

Xn(t)
(law)
≈

√
ne−

t
2 (c̃n + I(t)) , (29)

where

I(t) =

(∫ t

0

e
s
2

(

d
ˆ̃
β(

s
2
+ 1−e−2s

4

) + i dβ̃(

s
2
− 1−e−2s

4

)

))

. (30)

4 Asymptotic expression for the MRT

Estimation of the MRT

We shall now study more precisely the different time scales of the two Brow-
nian motions in (23) and in (30). We rewrite the expression (26) as:

Z
(n)
t

(law)
≈

n:large
e−

t
2 I(t), (31)

where

I(t) =

∫ t

0

e
s
2

(

d
ˆ̃
β(

s
2
+ 1−e−2s

4

) + idβ̃(

s
2
− 1−e−2s

4

)

)

. (32)
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In order to study I(t), we decompose it into two integrals, the first one from
0 to t1 and the second one from t1 to t, where t1 = O

(
1
t

)
.

We shall estimate each one for t large, hence t1 → 0 with t1 < t, the regime
for which the rotation will be accomplished. Thus:

I(t) = J1(t1) + J2(t), (33)

where:

J1(t1) ≡
∫ t1

0

e
s
2

(

d
ˆ̃
β(

s
2
+ 1−e−2s

4

) + i dβ̃(

s
2
− 1−e−2s

4

)

)

(34)

J2(t) ≡
∫ t

t1

e
s
2

(

d
ˆ̃
β(

s
2
+ 1−e−2s

4

) + i dβ̃(

s
2
− 1−e−2s

4

)

)

. (35)

We shall now estimate each integral separately. We shall use the notation
< · > for the quadratic variation: for a real-valued stochastic process Mt and
for the sequence {∆n} of the subdivisions of an interval [0, t], for every t, the
quadratic variation is

< M,M >t=< M >t= lim
|∆n|→0

n∑

k=1

(
Mtk −Mtk−1

)2
.

More generally, the quadratic covariation of two real-valued stochastic pro-
cesses Mt and Nt is defined by

< M,N >t= lim
|∆n|→0

n∑

k=1

(
Mtk −Mtk−1

) (
Ntk −Ntk−1

)
.

We shall use here the following notation:
L2

≈ denotes an approximation in
the L2−norm: Two stochastic processes (W

(1)
t , t ≥ 0) and (W

(2)
t , t ≥ 0) such

that W
(1)
t

L2

≈ W
(2)
t referees to lim

t→∞
E

[(

W
(1)
t −W

(2)
t

)2
]

= 0 . We shall now

show that:

J1(t1)
L2

≈
∫ t1

0

e
s
2

(

d
ˆ̃
βs + idβ̃ s2

2

)

(36)

J2(t)
L2

≈
√

1

2

∫ t

t1

e
s
2

(

d
ˆ̃
βs + i dβ̃s

)

︸ ︷︷ ︸

dBs

+O (1) , (37)
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For that purpose, we start with the first integral. Using Burkholder-Davis-
Gundy inequality (BDG) [ReY99, KaSh88], there exists a constant 0 < c1 <

∞ such that:

E

[(

J1(t1)−
∫ t1

0

e
s
2

(

d
ˆ̃
βs + idβ̃ s2

2

))2
]

≡ E

[(∫ t1

0

e
s
2

[(

d
ˆ̃
β(

s
2
+ 1−e−2s

4

) + i dβ̃(

s
2
− 1−e−2s

4

)

)

−
(

d
ˆ̃
βs + idβ̃ s2

2

)])2
]

= E

[(∫ t1

0

e
s
2

[

d
ˆ̃
β(

1−e−2s

4
− s

2

) + i dβ̃(

− 1−e−2s

4
+ s

2
− s2

2

)

])2
]

≤ c1E

[〈∫ t1

0

e
s
2

[

d
ˆ̃
β(

1−e−2s

4
− s

2

) + i dβ̃(

− 1−e−2s

4
+ s

2
− s2

2

)

]〉]

= c1

(∫ t1

0

esd

(
1− e−2s

4
− s

2

)

−
∫ t1

0

esd

(

−1− e−2s

4
+

s

2
− s2

2

))

= c1

(∫ t1

0

esd

(
1− e−2s

2

)

−
∫ t1

0

esds+

∫ t1

0

esd

(
s2

2

))

= c1

(∫ t1

0

es
(
e−2s + s− 1

)
ds

)

= c1

(∫ t1

0

e−sds+

∫ t1

0

sesds−
∫ t1

0

esds

)

= c1
(
e−t1 − 1 + t1e

t1 − 2et1 + 2
)
= O (t1) ≡ O

(
1

t

)
t:large≈ 0, (38)

and for the second one:

E





((

J2(t)−
√

1

2

∫ t

t1

e
s
2

(

d
ˆ̃
βs + idβ̃s

)
)

− O(1)

)2




≤ E





(

J2(t)−
√

1

2

∫ t

t1

e
s
2

(

d
ˆ̃
βs + idβ̃s

)
)2


+ (O(1))2

≤ O(1) + (O(1))2 = O(1), (39)
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because there is a constant 0 < c2 < ∞ such that:

E





(

J2(t)−
√

1

2

∫ t

t1

e
s
2

(

d
ˆ̃
βs + idβ̃s

)
)2




= E

[(

J2(t)−
∫ t

t1

e
s
2

(

d
ˆ̃
β s

2
+ idβ̃ s

2

))2
]

≡ E

[(∫ t

t1

e
s
2

[(

d
ˆ̃
β(

s
2
+ 1−e−2s

4

) + i dβ̃(

s
2
− 1−e−2s

4

)

)

−
(

d
ˆ̃
β s

2
+ idβ̃ s

2

)])2
]

= E

[(∫ t

t1

e
s
2

[

d
ˆ̃
β(

1−e−2s

4

) + i dβ̃(

− 1−e−2s

4

)

])2
]

≤ c2E

[〈∫ t

t1

e
s
2

[

d
ˆ̃
β(

1−e−2s

4

) + i dβ̃(

− 1−e−2s

4

)

]〉]

= c2

(∫ t

t1

esd

(
1− e−2s

4

)

−
∫ t

t1

esd

(

−1− e−2s

4

))

= c2

(

2

∫ t

t1

es
1

2
e−2sds

)

= c2

∫ t

t1

e−sds

= c2
(
e−t1 − e−t

)
= c2

(

e−O( 1
t ) − e−t

)
t:large≈ O (1) . (40)

Thus:

I(t)
L2

≈
∫ t1

0

e
s
2

(

d
ˆ̃
βs + i dβ̃ s2

2

)

+

√

1

2

∫ t

t1

e
s
2

(

d
ˆ̃
βs + i dβ̃s

)

︸ ︷︷ ︸

dBs

+O (1) , (41)

where
(

Bt =
ˆ̃
βt + iβ̃t, t ≥ 0

)

is a 2-dimensional Brownian motion starting

from 1.
We estimate now the contribution of each integral in (41). Using again
Burkholder-Davis-Gundy inequality (BDG) [ReY99, KaSh88], there exists a

13



constant 0 < c3 < ∞ such that:

E

[(∫ t1

0

e
s
2

(

d
ˆ̃
βs + idβ̃ s2

2

))2
]

≤ c3E

[〈∫ t1

0

e
s
2

(

d
ˆ̃
βs + idβ̃ s2

2

)〉]

= c3

(∫ t1

0

esds−
∫ t1

0

esd(
s2

2
)

)

= c3

(∫ t1

0

esds−
∫ t1

0

s esds

)

= c3

(
(
et1 − 1

)
−
(

t1e
t1 −

∫ t1

0

esds

))

= c3
((
et1 − 1

)
−
(
t1e

t1 − et1 + 1
))

= c3
(
2et1 − 2− t1e

t1
)
. (42)

For t large ⇒ t1 = O
(
1
t

)
small, and:

E
[
J1(t1)

2
]
≤ O (t1) ≡ O

(
1

t

)

,

and thus J1(t1) is of order O (t1) ≡ O
(
1
t

)
.

Asymptotic expression for the MRT

We shall now gather the expressions (33) and (42), with t1 = 1
t

t:large−→ 0, to
derive an asymptotic value for the MRT. First, we have that

I(t)
L2

≈ O(1) +

√

1

2

∫ t

0

e
s
2

(

d
ˆ̃
βs + i dβ̃s

)

, (43)

and from (29) and (31):

X
(n)
t

(law)
≈

n:large

√
nY

(n)
t , (44)

where (we denote Yt for Y
(n)
t )

Yt ≡ e−
t
2

(

c̃′n +

√

1

2

∫ t

0

e
s
2dBs

)

, (45)

14



and the sequence is

c̃′n ≡ l̃√
n
+

cn√
n
+O(1), (46)

where l̃ = L
l0
is the rescaled distance of the fixed end from the origin 0 (l0 is the

fixed length of the rods), n is the number of rods/beads, and cn ≡∑n
k=1 e

iθk(0)

is a constant depending on the initial configuration.

Changing time and expression of the MRT

We shall now apply successive changes of time to express the MRT. By
changing the variables u = s

2
in (45) and by the scaling property of Brownian

motion, we have

Yt ≡ e−
t
2

(

c̃′n +

√

1

2

∫ t/2

0

eudB2u

)

(law)
= e−

t
2

(

c̃′n +

∫ t/2

0

eudBu

)

.

Thus:

Y2t
(law)
= e−t

(

c̃′n +

∫ t

0

eudBu

)

. (47)

For λ = 1 and z0 = c̃′n, by Dambis-Dubins-Schwarz Theorem we have that
[Vak10]:

Y2t
(law)
= e−t (Bαt

) , (48)

where

αt =

∫ t

0

e2sds =
e2t − 1

2

⇒ α−1(t) =
1

2
ln (1 + 2t) . (49)

By applying Itô’s formula to (48), we obtain

dY2s = −e−s
Bαs

ds+ e−sd (Bαs
) .

We divide by Y2s and we obtain:

dY2s

Y2s

= −ds+
dBαs

Bαs

.

15



Thus:

Im

(
dY2s

Y2s

)

= Im

(
dBαs

Bαs

)

,

which means that for the continuous winding process

θZt ≡ Im(

∫ t

0

dZs

Zs

), t ≥ 0, (50)

associated to a stochastic process Z, then

θY2t = θBαt
.

Thus with relation (49), the first hitting times of the symmetric conic bound-
ary of angle c

T θ
c ≡ inf

{
t ≥ 0 :

∣
∣θYt
∣
∣ = c

}
, (51)

and

T θ
−c,c ≡ inf

{
t ≥ 0 :

∣
∣θBt
∣
∣ = c

}
(52)

for the Ornstein-Uhlenbeck process Y and for a Brownian motion B respec-
tively satisfy

2T θ
c =

1

2
ln
(
1 + 2T θ

−c,c

)
. (53)

Finally,

E
[
2T θ

c

]
=

1

2
E
[
ln
(
1 + 2T θ

−c,c

)]
(54)

=
ln 2

2
+

1

2
E

[

ln

(

T θ
−c,c +

1

2

)]

, (55)

and equivalently:

E
[
T θ
c

]
=

1

4
E
[
ln
(
1 + 2T θ

−c,c

)]
(56)

=
ln 2

4
+

1

4
E

[

ln

(

T θ
−c,c +

1

2

)]

. (57)
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Thus, by taking c = 2π, for n large, the mean time E [τn] that the polymer
rotates around 0, is

E [τn] ≈
√
n

4

(

ln 2 + E

[

ln

(

T θ
−2π,2π +

1

2

)])

. (58)

By using the series expansion of log(1+x), we shall now estimate the second
term:

E

[

ln

(

T θ
−c,c +

1

2

)]

− E
[
ln
(
T θ
−c,c

)]
= E

[

ln

(

1 +
1

2T θ
−c,c

)]

=
1

2
E

[
1

T θ
−c,c

]

− 1

8
E

[(
1

T θ
−c,c

)2
]

+ . . . .

Using the Laplace transform for the hitting time T θ
−c,c of a Brownian motion

E
[

e−
λ2

2
T θ
−c,c

]

=
1

cosh(λc)
, (59)

[ReY99] (Chapter II, Prop. 3.7) or [PiY03](p.298), we get

E

[
1

T θ
−c,c

]

=

∫ ∞

0

dt E
[

e−tT θ
−c,c

]
t=λ2

2=

∫ ∞

0

λ dλ E
[

e−
λ2

2
T θ
−c,c

]

︸ ︷︷ ︸
1

cosh(λc)

λc=µ
=

1

c2

∫ ∞

0

µ dµ

cosh(µ)
=

2

c2

∫ ∞

0

µ dµ

eµ (1 + e−2µ)
, (60)

with:

∫ ∞

0

µ dµ

eµ (1 + e−2µ)
=

∫ ∞

0

µ dµ e−µ
+∞∑

n=0

(
−e−2µ

)n

=

+∞∑

n=0

∫ ∞

0

µ dµ (−1)ne−(2n+1)µ

=

+∞∑

n=0

(−1)n
1

(2n+ 1)2
= β(2) = K,

17



where β(s) denotes Dirichlet’s beta function which for s = 2 is equal to the
Catalan’s constant K ≈ 0.915965 . . .. Similarly,

E

[(
1

T θ
−c,c

)2
]

=
1

2Γ(2)

∫ ∞

0

λ3 E
[

e−
λ2

2
T θ
−c,c

]

︸ ︷︷ ︸
1

cosh(λc)

dλ

λc=µ
=

1

2Γ(2)

1

c4

∫ ∞

0

µ3 dµ

cosh(µ)

=
1

Γ(2)c4

∫ ∞

0

µ3 dµ e−µ
+∞∑

n=0

(
−e−2µ

)n

=
1

Γ(2)c4

+∞∑

n=0

∫ ∞

0

µ3 dµ (−1)ne−(2n+1)µ

=
3!

Γ(2)c4

+∞∑

n=0

(−1)n
1

(2n+ 1)4
=

6

c4
β(4). (61)

Thus, for c = 2π, using formula (60) we obtain the numerical result

1

2
E

[
1

T θ
−2π,2π

]

=
1

4π2
K ≈ 1.16 ∗ 10−2,

and similarly using formula (61), we obtain

1

8
E

[(
1

T θ
−2π,2π

)2
]

=
6

8π4
β(4) ≈ 1.1925 ∗ 10−4.

Thus,

1

8
E

[(
1

T θ
−2π,2π

)2
]

≪ 1

2
E

[
1

T θ
−2π,2π

]

,

and we can approximate:

E

[

ln

(

T θ
−2π,2π +

1

2

)]

≈ E
[
ln
(
T θ
−2π,2π

)]
+

1

2
E

[
1

T θ
−2π,2π

]

. (62)

To estimate the first moment of ln
(
T θ
−c,c

)
, for an angle c, we use (Zt = Z

(1)
t +

iZ
(2)
t , t ≥ 0) a standard planar Brownian motion, starting from c̃′n+i0, c̃′n > 0,

18



where (Z
(1)
t , t ≥ 0) and (Z

(2)
t , t ≥ 0) are two independent linear Brownian mo-

tions, starting respectively from c̃′n and 0. From the skew product representa-
tion [ReY99, Vak10] there is another planar Brownian motion (δu+iγu, u ≥ 0)
starting from log c̃′n + i0, such as:

log |Zt|+ iθt ≡
∫ t

0

dZs

Zs
= (δu + iγu)

∣
∣
∣
u=Ht≡

∫ t
0

ds

|Zs|2
, (63)

and equivalently

log |Zt| = δHt
; θt = γHt

. (64)

Thus, with T
γ
−c,c ≡ inf {t ≥ 0 : |γt| = c}, because θT θ

−c,c
= γH

Tθ
−c,c

:

T
γ
−c,c = HT θ

−c,c
,

hence T θ
−c,c = H−1

u

∣
∣
∣
u=T γ

−c,c

, where

H−1
u ≡ inf{t : Ht > u} =

∫ u

0

ds exp(2δs) ≡ Au. (65)

Hence, with δs = log(c̃′n)+δ
(0)
s , where (δ

(0)
s , s ≥ 0) is another one-dimensional

Brownian motion starting from 0, we obtain:

T θ
−c,c = H−1(T γ

−c,c) ≡
∫ T γ

−c,c

0

ds exp (2δs) = (c̃′)2

(
∫ T γ

−c,c

0

ds exp
(
2δ(0)s

)

)

≡ (c̃′)2T θ(1)

−c,c ,

where T θ(1)

−c,c ≡ inf
{
t ≥ 0 :

∣
∣θZt
∣
∣ = c

}
is the first hitting time of the symmetric

conic boundary of angle c of a process Z starting from 1. Thus:

E
[
ln
(
T θ
−c,c

)]
= 2 ln(c̃′) + E

[

ln
(

T θ(1)

−c,c

)]

. (66)

The first moment of ln
(

T θ(1)

−c,c

)

has the following integral representation ([Vak10]

Prop. 2.9):

E
[

ln
(

T θ(1)

−c,c

)]

= 2F (c) + ln (2) + cE ,
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where

F (c) =

∫ ∞

0

dz

cosh
(
πz
2

) ln (sinh (cz)) , (67)

and cE ≈ 0.577 denotes Euler’s constant.
Indeed, the skew product representation (64), for t = T θ

−c,c, yields: HT θ
−c,c

=

T
γ
−c,c ⇐⇒ T θ

−c,c = AT γ
−c,c

, thus, for ε > 0:

E
[(
T θ
−c,c

)ε]− 1 = E
[(

AT γ
−c,c

)ε]

− 1.

On the left hand side, we have

1

ε

(
E
[(
T θ
−c,c

)ε]− 1
)
≡ 1

ε

(

E
[

eε ln(T
θ
−c,c)

]

− 1
)

ε→0−→ E
[
ln
(
T θ
−c,c

)]
,

and on the right hand side, we use Bougerol’s identity for u = T
γ
−c,c. This

identity tells that for any fixed u > 0:

sinh(δu)
(law)
= δ̂(Au≡

∫ u

0
ds exp(2βs)) ,

with (δ̂t, t ≥ 0) another Brownian motion, independent of δ. Hence, using
the scaling property of Brownian motion, the density of δT γ

−c,c
[BiY87]:

h−c,c(y) =

(
1

2c

)
1

cosh(yπ
2c
)
=

(
1

c

)
1

e
yπ
2c + e−

yπ
2c

,

and taking the limit for ε → 0, we obtain (66). From (66), we finally obtain

E
[
ln
(
T θ
−c,c

)]
= 2 ln(c̃′n) + 2F (c) + ln (2) + cE . (68)

For c = 2π, we have F (2π) ≈ 3.8. In Figure 2 we plot F with respect to the
angle c. In summary, from (58), (62) and (68):

E [τn] ≈
√
n

4
(2 ln(c̃′n) +Q) , (69)

where

Q = 2F (2π) + 2 ln 2 + cE +
1

2
E

[
1

T θ
−2π,2π

]

(70)
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Figure 2: F as a function of the angle c.

is a constant with F (2π) ≈ 3.8, cE ≈ 0.577, and E
[

1
T θ
−2π,2π

]

≈ 2.32. ∗ 10−2,

thus

Q ≈ 9.56. (71)

For an initial configuration cn ≡∑n
k=1 e

iθk(0)

c̃′n ≈ l̃√
n
+

cn√
n
+O(1), (72)

the MRT is given by the formula

E [τn] ≈
√
n

4

[

2 ln

(

l̃√
n
+

cn√
n
+O(1)

)

+Q

]

. (73)

For a long enough polymer, such that nl0 >> L ⇒ n >> l̃, so l̃√
n
is negligible

with respect to O(1), we obtain:

E [τn] ≈
√
n

4

[

2 ln

(∑n
k=1 e

iθk(0)

√
n

+O(1)

)

+Q

]

. (74)

Finally, using the unscaled variables (4), we obtain:

E [τn] ≈
√
n

8D

[

2 ln

(∑n
k=1 e

i√
2D

θk(0)

√
n

+O(1)

)

+Q

]

. (75)
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Figure 3: MRT of the free polymer end as a function of the number
of beads n (Brownian simulations).

Expressions (74) and (75) show that the leading order term of the MRT
depends through the log on the initial configuration, however this dependance
is weak. The term of order O(1) needs further investigation.

We consider now that the polymer is initially stretched, hence cn = n.

From (73), for a long enough polymer such that nl0 >> L ⇒ n >> l̃, thus l̃√
n

and O(1) are negligible with respect to
√
n, by using the unscaled variables

(4), the MRT is approximately:

E [τn] ≈
√
n

8D
[ln (n) +Q] . (76)

In order to check the range of validity of formula (76), we run some
Brownian simulations. In Figure 3, we simulated the MRT with a time step
dt = 0.01 for n = 50 to 300 rods in steps of 5, and for each n, we took 300
samples and averaged over all of them. The parameters we chose are D = 10
the diffusion coefficient, L = 0.3 the distance from the origin 0 and l0 = 0.25
the length of each rod and we chose for the initial condition a stretch polymer
located on the half line 0x (hence cn = L+nl0) θk(0) = 0, ∀k = (1, ..., n) and
then we computed the MRT E [τn]. In Figure 4, we plot both the results from
Brownian simulations and the formula (76). We considered values n = 50
from 300 rods in steps of 10, D = 10, L = 0.3, l0 = 0.25, thus the condition
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Figure 4: Comparing the Analytical Formula and the Brownian
simulations of the MRT. The MRT of the polymer end is depicted with
respect to the number of beads n.

√
n l0 >> L is satisfied. For each numerical computation, we performed 300

runs simulations with a time step dt = 0.01. By comparing the numerical
simulations (Fig. 4), with the analytical formula for the MRT, we see an
overshoot.

The straight initial configuration is no restriction to the generality of our
study: we have that cn ≤ n and the upper bound is achieved for a straight
initial configuration. In Figure 5, we simulate the MRT E [τn] for both a
random and a initially straight configuration (Brownian simulations with a
time step dt = 0.01 for n = 50 to 300 rods in steps of 5, and for each n, we
took 300 samples and averaged over all of them; the parameters we chose are
D = 10 the diffusion coefficient, L = 0.3 the distance from the origin 0 and
l0 = 0.25).

Uniformly distributed initial angles

When the initial angles (θ1(0), θ2(0), . . . , θn(0)) are uniformly distributed over
[0, 2π], by averaging over all the possible initial configurations, from (7), we
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Figure 5: MRT of the free polymer end as a function of the number
of beads n for the straight and for a random initial configuration
(Brownian simulations).

obtain

E [Xn(0)] ≡ E
[

l̃ + cn

]

= l̃ + E

[
n∑

k=1

eiθk(0)

]

= l̃ + E

[
n∑

k=1

(cos(θk(0)) + i sin(θk(0)))

]

= l̃. (77)

Thus, the mean initial position for a bead is l̃ and by using the unscaled
variables (4) the MRT is given by

E [τn] ≈
√
n

8D

[

2 ln

(
L

l0
√
n
+O(1)

)

+Q

]

. (78)

Remark 4.1 Formula (75) (or formulas (76) and (78)) provides the asymp-
totic expansion for the MRT when θ1 ∈ R+. In reality θ1 ∈ [0, 2π], thus a
better characterization is to estimate the MRT by using the probability den-
sity function for θ1 in the one dimensional torus. By repeating the previous
calculations, these formulas remain valid.
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Figure 6: Brownian simulations of the MMRT as a function of the
number of beads n− 2 for D = 10.

4.1 The Minimum Mean First Rotation Time

The Minimum Mean Rotation Time (MMRT) is the first time that any of
the segments of the polymer loops around the origin,

MMRT ≡ min
En

E{τn|cn} ≡ E [τmin] , (79)

where En is the ensemble of rods such that can travel up to the origin. The
MMRT is now a decreasing function of n. In Figure 6, we present some
simulations for the MMRT as a function of n (100 simulations per time step
dt = 0.01 with n = 4 to 15 rods and the diffusion constant D = 10, L = 0.3
the distance from the origin 0 and l0 = 0.25 the length of each rod). The
initial configuration is such that |ϕn(0)| < 2π − ε, e.g. the straight initial
configuration: θk(0) = 0, ∀k = (1, ..., n).

In Figure 7, we present some Brownian simulations for the MMRT as a
function of D and of L (Figure 7(a) and Figure 7(b) respectively). L and l0
satisfy the rotation compatibility condition nl0 > L. E [τmin] decreases with
D and increases with the distance from the origin L.
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Figure 7: Brownian simulations of the MMRT as a function of the
number of beads n− 2. (a) For several values of D with L = 0.3, (b) for
several values of L with D = 10.

Initial configuration in the boundary layer

When the polymer is almost making a loop, we expect the MRT to have a
different behavior. We look at thus numerically, and we start with an initial
polymer configuration in the boundary layer :

2π − ε ≤ |ϕn(0)| < 2π.

where φn is defined in 3. The rotation of the polymer will be complete very
fast and using Brownian simulations (100 runs per point with n = 10 rods
and the diffusion constant D = 1, L = 0.1 the distance from the origin 0 and
l0 = 0.2 the length of each rod), we plotted in Figure 8 the results showing
that when the initial total angle ϕn(0) tends to 2π, the MRT tends to zero,
the precise asymptotic remains to be completed. Numerically, we postulate
that there is threshold for an initial total angle |ϕn(0)| = π

2
. Before this

value, the MRT seems independent from this angle, whereas for |ϕn(0)| > π
2
,

the MRT decreases to zero. However, this needs further investigation.

5 Discussion and conclusion

In the present paper, we studied the MRT for a planar polymer consisting of
n rods of length l0. The first end is fixed at a distance L from the origin, while
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Figure 8: Brownian simulations of the MRT as a function of the
initial total angle ϕn(0).

the other end moves by Brownian motion. Interestingly, we have shown here
that the motion of the free polymer end satisfies a new stochastic equation
(27), containing a nonlinear time-dependent deterministic drift. When n is
large, the limit stochastic equation is an Ornstein-Uhlenbeck process, with
different time scales for each of the two coordinates.

We found that the MRT E [τn] actually depends on the initial configu-
ration of the polymer. This result is in contrast with the small hole theory
[HSS07, SSHE06, SSH06a, SSH06b, HoS04, WaK93, WHK93, SSH08] which
shows that the leading order term of the MFPT for a Brownian particle to
reach a small hole does not depend on the initial configuration. There are
several reasons for such a difference. First, the position of the free moving
end is a sum of i.i.d. variables and is not Markovian, which leads to a pro-
cess with memory. Second, we may not be exactly in the context of a small
hole, because the polymer completes a rotation when the free end reaches
any point of the positif x-axis. In summary, for nl0 >> L, the leading order
term of the MRT is given by

1.

E [τn] ≈
√
n

8D

[

2 ln

(∑n
k=1 e

i√
2D

θk(0)

√
n

+O(1)

)

+Q

]

,
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where (θk(0), 1 ≤ k ≤ n) is the sequence of the initial angles and Q =
9.56,

2. for a stretched initial configuration

E [τn] ≈
√
n

8D
lnn,

3. for an average over uniformly distributed initial angles

E [τn] ≈
√
n

8D

[

2 ln

(
L

l0
√
n
+O(1)

)

+Q

]

.

As we have shown, these formula show very good agreement Brownian sim-
ulations (Fig. 4). The order one term O(1) in cases 1 and 3 needs further
investigation. There are several extension of this work: when the polymer
has already made one loop, what is the probability to make a second loop
before unwrapping and in that case, what is the MRT. How to extend such
study in dimension 3.
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Appendix

In the Appendix we prove Theorem 3.1. We use arguments coming from
probability theory and we show the convergence of the sequence (M

(n)
t , t ≥ 0)

to a Brownian motion in dimension 2, with different time scale functions.

A Proof of Theorem 3.1

To prove the theorem, we study each sequence S
(n)
t and C

(n)
t separately. The

change of time comes from Dambis-Dubins-Schwarz Theorem and the scaling
property of the Brownian motion [ReY99]. For a fixed time t ≥ 0, we have

C
(n)
t :=

1√
n

∫ t

0

n∑

k=1

cos(Bk(s)) dBk(s)

=
1√
n
β
(n)

(
∫ t
0

∑n
k=1 cos

2(Bk(s)) ds)

= β̃
(n)

( 1
n

∫ t

0

∑n
k=1 cos

2(Bk(s)) ds)
, (80)

and

S
(n)
t := − 1√

n

∫ t

0

n∑

k=1

sin(Bk(s)) dBk(s)

=
1√
n
β̂
(n)

(
∫ t
0

∑n
k=1 sin

2(Bk(s)) ds)

= ˆ̃
β
(n)

( 1
n

∫ t

0

∑n
k=1 sin

2(Bk(s)) ds)
, (81)

where (βu, β̂u, β̃u,
ˆ̃
βu, u ≥ 0) are four independent Brownian motions. To

study the limit of (S
(n)
u , C

(n)
u , u ≥ 0) and prove convergence in law, we shall

show [Bil68, Bil78] or [ReY99] (Chapter XIII):

1. The convergence of the finite dimensional distributions and

2. the tightness of the sequence (M
(n)
t , t ≥ 0), where by definition, a

sequence (M
(n)
t , t ≥ 0) of random variable is tight if, for all ε > 0, there

exists a compact subset K such that P (M
(n)
t ∈ K) > 1−ε for all n ≥ 1.
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1. We consider two functions f, g and we study the characteristic function
(∀λ, µ ∈ R) (λ and µ could be omitted (λ = µ = 1) as they don’t play any
role in the proof. However, it seems better to use them so as to have the
general form of the characteristic function as known). We study now

E

[

e
i
(

λ
∫∞
0

f(u)dS
(n)
u +µ

∫∞
0

g(u)dC
(n)
u

)

]

= E

[

e
i
(

λ
∫∞
0

f(u)dS
(n)
u +µ

∫∞
0

g(u)dC
(n)
u

)

×

×e
1
2

〈

λ
∫ ·
0 f(s)dS

(n)
s +µ

∫ ·
0 g(s)dC

(n)
s

〉

u
− 1

2

〈

λ
∫ ·
0 f(s)dS

(n)
s +µ

∫ ·
0 g(s)dC

(n)
s

〉

u

]

. (82)

We know that since we have an exponential martingale [ReY99]

E

[

e
i
(

λ
∫∞
0

f(u)dS
(n)
u +µ

∫∞
0

g(u)dC
(n)
u

)

+ 1
2

〈

λ
∫ ·
0
f(s)dS

(n)
s +µ

∫ ·
0
g(s)dC

(n)
s

〉

u

]

= 1. (83)

Moreover:
〈

λ

∫ ·

0

f(s)dS(n)
s + µ

∫ ·

0

g(s)dC(n)
s

〉

u

=

= λ2

∫ u

0

f 2(s) d
〈
S(n)

〉

s
+ µ2

∫ u

0

g2(s) d
〈
C(n)

〉

s

+2λµ

∫ u

0

f(s)g(s) d
〈
S(n), C(n)

〉

s
. (84)

Using the Law of Large Numbers, with
(P )−→ denoting convergence in Proba-

bility,

〈
S(n), C(n)

〉

u
=

1

n

∫ u

0

n∑

k=1

sin(Bk(s)) cos(Bk(s)) ds

(P )−→
n→∞

∫ u

0

E [sin(B1(s)) cos(B1(s))] ds

= 0. (85)

Indeed, by the symmetry property of the Brownian motion B1
(law)
= −B1,

thus: E [sin(B1(s)) cos(B1(s))] = E [sin(−B1(s)) cos(−B1(s))] which yields:
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E [sin(B1(s)) cos(B1(s))] = 0. Similarly, the Law of Large Numbers yields:

〈
S(n)

〉

u
=

1

n

∫ u

0

n∑

k=1

sin2(Bk(s)) ds

(P )−→
n→∞

∫ u

0

E
[
sin2(B1(s))

]
ds, (86)

and

〈
C(n)

〉

u
=

1

n

∫ u

0

n∑

k=1

cos2(Bk(s)) ds

(P )−→
n→∞

∫ u

0

E
[
cos2(B1(s))

]
ds. (87)

However

E
[
(cos(B1(s)) + i sin(B1(s)))

2] = E
[
cos2(B1(s))− sin2(B1(s))

]
,

as, once more by symmetry, E [sin(B1(s)) cos(B1(s))] = 0, and (recall that

∀λ, E
[
eλB(s)

]
= e

λ2

2
s):

E
[
(cos(B1(s)) + i sin(B1(s)))

2] = E
[
e2iB1(s)

]
= e−2s.

Hence:

E
[
cos2(B1(s))

]
−E

[

sin2(
√
2DB1(s))

]

= e−2s,

and

E
[
cos2(B1(s))

]
+ E

[
sin2(B1(s))

]
= 1.

We deduce:

E
[
cos2(B1(s))

]
=

1 + e−2s

2
(88)

E
[
sin2(B1(s))

]
=

1− e−2s

2
. (89)
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Thus:

〈
S(n)

〉

u
=

1

n

∫ u

0

n∑

k=1

sin2(Bk(s)) ds

(P )−→
n→∞

∫ u

0

E
[
sin2(B1(s))

]
ds

=
1

2

∫ u

0

(
1− e−2s

)
ds, (90)

and

〈
C(n)

〉

u
=

1

n

∫ u

0

n∑

k=1

cos2(Bk(s)) ds

(P )−→
n→∞

∫ u

0

E
[
cos2(B1(s))

]
ds

=
1

2

∫ u

0

(
1 + e−2s

)
ds. (91)

Hence, from (82):

E

[

e
i
(

λ
∫∞
0

f(u)dS
(n)
u +µ

∫∞
0

g(u)dC
(n)
u

)

]

n→∞−→ exp

(

−λ2

2

∫ ∞

0

f 2(u)
1

2

(
1− e−2u

)
du− µ2

2

∫ ∞

0

g2(u)
1

2

(
1 + e−2u

)
du

)

= E
[

eiλ
∫∞
0 f(u)dSu

]

E
[

eiµ
∫∞
0 g(u)dCu

]

, (92)

which shows the convergence of the finite distributions.
2. In order to prove tightness, we shall use Kolmogorov’s criterion: (M

(n)
t , t ≥

0) is tight if, for every n, there exist positive constants α, β and c4 such as:

E

[∣
∣
∣M

(n)
t −M (n)

s

∣
∣
∣

β
]

≤ c4 |t− s|1+α
. (93)

Indeed, Cauchy-Schwarz inequality yields

E

[∣
∣
∣M

(n)
t −M (n)

s

∣
∣
∣

β
]

= E

[∣
∣
∣S

(n)
t + iC

(n)
t − S(n)

s − iC(n)
s

∣
∣
∣

β
]

≤
(

E

[∣
∣
∣S

(n)
t − S(n)

s

∣
∣
∣

2β
])1/2(

E

[∣
∣
∣C

(n)
t − C(n)

s

∣
∣
∣

2β
])1/2

.

(94)
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By using Burkholder-Davis-Gundy inequality (BDG) [ReY99, KaSh88], there
exists a constant 0 < c5 < ∞ such that:

E

[∣
∣
∣S

(n)
t − S(n)

s

∣
∣
∣

2β
]

≤ E

[(

sup
u,v

∣
∣S(n)

u − S(n)
v

∣
∣

)2β
]

, s < u, v < t

≤ c5E

[〈

S
(n)
t − S(n)

s

〉β
]

. (95)

We have that:

〈
S(n)

〉

t
=

1

n

∫ t

0

n∑

k=1

sin2(Bk(u))
︸ ︷︷ ︸

≤1

du ≤ t (96)

〈
S(n)

〉

s
=

1

n

∫ s

0

n∑

k=1

sin2(Bk(u))
︸ ︷︷ ︸

≤1

du ≤ s (97)

〈

S
(n)
t , S(n)

s

〉

= 0. (98)

Thus,

(

E

[∣
∣
∣S

(n)
t − S(n)

s

∣
∣
∣

2β
])1/2

≤ c
1/2
5 |t− s|β/2 . (99)

Similar computations for C(n), lead to a constant 0 < c6 < ∞ such that:

(

E

[∣
∣
∣C

(n)
t − C(n)

s

∣
∣
∣

2β
])1/2

≤ c
1/2
6 |t− s|β/2 . (100)

From (94), (99) and (100) we deduce (93) for e.g. α = 1, β = 2 and c4 =

(c5c6)
1/2. So, we proved that (M

(n)
t , t ≥ 0) is tight.

Summarizing our results 1 and 2, we deduce that the sequences (S
(n)
u and

C
(n)
u , u ≥ 0) are asymptotically independent and finally,

(S(n)
u , C(n)

u , u ≥ 0)
(law)−→
n→∞

(
ˆ̃
β 1

2

∫ u
0 ds (1+e−2s), β̃ 1

2

∫ u
0 ds (1−e−2s), u ≥ 0).

2
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