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We define an equation on a simple graph which is an extension of Tanaka's equation and the skew Brownian motion equation. We then apply the theory of transition kernels developed by Le Jan and Raimond and show that all the solutions can be classified by probability measures.

1 Introduction and main results.

In [START_REF] Le | Integration of Brownian vector fields[END_REF], [START_REF] Le | Flows, coalescence and noise[END_REF] Le Jan and Raimond have extended the classical theory of stochastic flows to include flows of probability kernels. Using the Wiener chaos decomposition, it was shown that non Lipschitzian stochastic differential equations have a unique Wiener measurable solution given by random kernels. Later, the theory was applied in [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] to the study of Tanaka's equation:

ϕ s,t (x) = x + t s sgn(ϕ s,u (x))W (du), s ≤ t, x ∈ R, (1) 
where sgn(x) = 1 {x>0} -1 {x≤0} , W t = W 0,t 1 {t>0} -W t,0 1 {t≤0} and (W s,t , s ≤ t) is a real white noise (see Definition 1.10 [11]) on a probability space (Ω, A, P). If K is a stochastic flow of kernels (see Definition 3 below) and W is a real white noise, then by definition, (K, W ) is a solution of Tanaka's SDE if for all s ≤ t, x ∈ R, f ∈ C 2 b (R) (f is C 2 on R and f ′ , f ′′ are bounded)

K s,t f (x) = f (x) + t s K s,u (f ′ sgn)(x)W (du) + 1 2 t s K s,u f ′′ (x)du a.s. (2) 
It has been proved [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] that each solution flow of (2) can be characterized by a probability measure on [0, 1] which entirely determines its law. Define

τ s (x) = inf{r ≥ s : W s,r = -|x|}, s, x ∈ R.
Then, the unique F W adapted solution (Wiener flow) of ( 2) is given by W s,u .

K W s,t ( 
Among solutions of (2), there is only one flow of mappings (see Definition 4 below) which has been already studied in [START_REF] Watanabe | The stochastic flow and the noise associated to Tanaka's stochastic differential equation[END_REF].

We now fix α ∈]0, 1[ and consider the following SDE having a less obvious extension to kernels:

X s,x t = x + W s,t + (2α -1) Lx s,t , t ≥ s, x ∈ R, (3) 
where Lx s,t = lim Equation [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF] was introduced in [START_REF] Harrison | On skew Brownian motion[END_REF]. For a fixed initial condition, it has a pathwise unique solution which is distributed as the skew Brownian motion (SBM) with parameter α (SBM(α)).

It was shown in [START_REF] Barlow | Coalescence of skew Brownian motions[END_REF] that when α = 1 2 , flows associated to [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF] are coalescing and a deeper study of (3) was provided later in [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF] and [START_REF] Burdzy | Lenses in skew Brownian flow[END_REF]. Now, consider the following generalization of (1):

X s,t (x) = x + t s sgn(X s,u (x))W (du) + (2α -1) Lx s,t (X), s ≤ t, x ∈ R, (4) 
where Lx s,t (X) = lim Each solution of (4) is distributed as the SBM(α). By Tanaka's formula for symmetric local time ( [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] 

The uniqueness of solutions of the Skorokhod equation ( [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] page 239) entails that

|X s,t (x)| = |x| + W s,t -min s≤u≤t [(|x| + W s,u ) ∧ 0]. (6) 
Clearly ( 5) and [START_REF] Gall | Mouvement brownien Processus de Branchement et Superprocessus[END_REF] imply that σ(|X s,u (x)|; s ≤ u ≤ t) = σ(W s,u ; s ≤ u ≤ t) which is strictly smaller than σ(X s,u (x); s ≤ u ≤ t) and so X s,• (x) cannot be a strong solution of [START_REF] Burdzy | Lenses in skew Brownian flow[END_REF]. For these reasons, we call (4) Tanaka's SDE related to SBM(α).

From now on, for any metric space E, C(E) (respectively C b (E)) will denote the space of all continuous (respectively bounded continuous) R-valued functions on E. Let

• C 2 b (R * ) = {f ∈ C(R) : f is twice derivable on R * , f ′ , f ′′ ∈ C b (R * ), f ′ |]0,+∞[ , f ′′ |]0,+∞[ (resp. f ′ |]-∞,0[ , f ′′ |]-∞,0[
) have right (resp. left) limit in 0}.

• D α = {f ∈ C 2 b (R * ) : αf ′ (0+) = (1 -α)f ′ (0-)}.
For f ∈ D α , we set by convention f ′ (0) = f ′ (0-), f ′′ (0) = f ′′ (0-). By Itô-Tanaka's formula ( [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] page 432) or Freidlin-Sheu formula (see Lemma 2.3 [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] or Theorem 3 in Section 2) and Proposition 3 below, both extensions to kernels of (3) and ( 4) may be defined by

K s,t f (x) = f (x) + t s K s,u (εf ′ )(x)W (du) + 1 2 t s K s,u f ′′ (x)du, f ∈ D α , (7) 
where ε(x) = 1 (respectively ε(x) = sgn(x)) in the first (respectively second) case, but due to the pathwise uniqueness of (3), the unique solution of (7) when ε(x) = 1, is K s,t (x) = δ X s,x t (this can be justified by the weak domination relation, see (24)). Our aim now is to define an extention of (7) related to Walsh Brownian motion in general. The latter process was introduced in [START_REF] Walsh | A diffusion with discontinuous local time, volume 52 of Temps locaux Astérisque[END_REF] and will be recalled in the coming section. We begin by defining our graph.

Definition 1. (Graph G) Fix N ≥ 1 and α 1 , • • • , α N > 0 such that N i=1 α i = 1.
In the sequel G will denote the graph below (Figure 1) consisting of N half lines (D i ) 1≤i≤N emanating from 0. Let e i be a vector of modulus 1 such that D i = {h e i , h 0} and define for all function f : G -→ R and i ∈ [1, N], the mappings :

f i : R + -→ R h -→ f (h e i )
Define the following distance on G:

d(h e i , h ′ e j ) =      h + h ′ if i = j, (h, h ′ ) ∈ R 2 + , |h -h ′ | if i = j, (h, h ′ ) ∈ R 2 + .
For x ∈ G, we will use the simplified notation |x| := d(x, 0).

We equip G with its Borel σ-field B(G) and use the notation G * = G \ {0}. Now, define

• C 2 b (G * ) = {f ∈ C(G) : ∀i ∈ [1, N], f i is twice derivable on R * + , f ′ i , f ′′ i ∈ C b (R * + )
and both have finite limits at 0+}.

• D(α 1 , • • • , α N ) = {f ∈ C 2 b (G * ) : N i=1 α i f ′ i (0+) = 0}.
For all x ∈ G, we define e(x)

= e i if x ∈ D i , x = 0 (convention e(0) = e N ). For f ∈ C 2 b (G * ), x = 0, let f ′ (x) be the derivative of f at x relatively to e(x) (= f ′ i (|x|) if x ∈ D i ) and f ′′ (x) = (f ′ ) ′ (x) (= f ′′ i (|x|) if x ∈ D i ). We use the conventions f ′ (0) = f ′ N (0+), f ′′ (0) = f ′′ N (0+)
. Now, associate to each ray D i a sign ε i ∈ {-1, 1} and then define

ε(x) =      ε i if x ∈ D i , x = 0 ε N if x = 0
To simplify, we suppose that

ε 1 = • • • = ε p = 1, ε p+1 = • • • = ε N = -1 for some p ≤ N. Set G + = 1≤i≤p D i , G -= p+1≤i≤N D i . Then G = G + G -.
We also put α + = 1α -:= p i=1 α i .

Remark 1. Our graph can be simply defined as N pieces of R + in which the N origins are identified. The values of the e i will not have any effect in the sequel.

Definition 2. (Equation (E)).

On a probability space (Ω, A, P), let W be a real white noise and K be a stochastic flow of

G O ei (Di, αi) G + G - ε(x) = -1 ε(x) = 1 Figure 1: Graph G.
kernels on G (a precise definition will be given in Section 2). We say that (K, W ) solves (E)

if for all s ≤ t, f ∈ D(α 1 , • • • , α N ), x ∈ G, K s,t f (x) = f (x) + t s K s,u (εf ′ )(x)W (du) + 1 2 t s K s,u f ′′ (x)du a.s.
If K = δ ϕ is a solution of (E), we simply say that (ϕ, W ) solves (E).

Remarks 1.

(1) If (K, W ) solves (E), then σ(W ) ⊂ σ(K) (see Corollary 2) below. So, one can simply say that K solves (E).

(2) The case N = 2, p = 2, ε 1 = ε 2 = 1 (Figure 2) corresponds to Tanaka's SDE related to SBM and includes in particular the usual Tanaka's SDE [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]. In fact, let (K R , W ) be a solution of [START_REF] Gall | Calcul stochastique et processus de Markov[END_REF] with α = α 1 , ε(y) = sgn(y) and define ψ(y [START_REF] Gall | Calcul stochastique et processus de Markov[END_REF]. (3) As in (2), the case N = 2, p = 1, ε 1 = 1, ε 2 = -1 (Figure 3) corresponds to [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF]. In this paper, we classify all solutions of (E) by means of probability measures. We now state the first Theorem 1. Let W be a real white noise and X s,x t be the flow associated to [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF] 

) = |y|( e 1 1 y≥0 + e 2 1 y<0 ), y ∈ R. For all x ∈ G, define K G s,t (x) = ψ(K R s,t (y)) with y = ψ -1 (x). Let f ∈ D(α 1 , α 2 ), x ∈ G and g be defined on R by g(z) = f (ψ(z)) (g ∈ D α 1 ). Since K R satisfies(7) in (g, ψ -1 (x)) (g is the test function and ψ -1 (x) is the starting point), it easily comes that K G satisfies (E) in (f, x). Similarly, if K G solves (E), then K R solves
with α = α + . Define Z s,t (x) = X s,ε(x)|x| t , s ≤ t, x ∈ G and K W s,t (x) = δ x+ e(x)ε(x)Ws,t 1 {t≤τs,x} + p i=1 α i α + δ e i |Zs,t(x)| 1 {Zs,t(x)>0} + N i=p+1 α i α -δ e i |Zs,t(x)| 1 {Zs,t(x)≤0} 1 {t>τs,x} ,
where τ s,x = inf{r ≥ s : x + e(x)ε(x)W s,r = 0}. Then, K W is the unique Wiener solution of (E). This means that K W solves (E) and if K is another Wiener solution of (E), then for all

s ≤ t, x ∈ G, K W s,t (x) = K s,t (x) a.s.
The proof of this theorem follows [START_REF] Le | Integration of Brownian vector fields[END_REF] (see also [START_REF] Micaux | Flots stochastiques d'opérateurs dirigés par des bruits Gaussiens et Poissonniens[END_REF] for more details) with some modifications adapted to our case. We will use Freidlin-Sheu formula for Walsh Brownian motion to check that K W solves (E). Unicity will be justified by means of the Wiener chaos decomposition (Proposition 8). Besides the Wiener flow, there are also other weak solutions associated to (E) which are fully described by the following Theorem 2. (1) Define

∆ k = u = (u 1 , • • • , u k ) ∈ [0, 1] k : k i=1 u i = 1 , k ≥ 1.
Suppose α + = 1 2 . (a) Let m + and m -be two probability measures respectively on ∆ p and ∆ N -p satisfying :

(+) ∆p u i m + (du) = α i α + , ∀1 ≤ i ≤ p, (-) ∆ N-p u j m -(du) = α j+p α -, ∀1 ≤ j ≤ N -p.
Then, to (m + , m -) is associated a stochastic flow of kernels K m + ,m -solution of (E).

• To (δ

( α 1 α + ,••• , αp α + ) , δ ( α p+1 α -,••• , α N α -) ) is associated a Wiener solution K W . • To ( p i=1 α i α + δ 0,..,0,1,0,..,0 , N i=p+1 α i α -δ 0,..,0,1,0,..,0
) is associated a coalescing stochastic flow of mappings ϕ.

(b) For all stochastic flow of kernels K solution of (E) there exists a unique pair of measures (m + , m -) satisfying conditions (+) and (-) such that

K law = K m + ,m -. (2) If α + = 1 2 , N > 2,
there is just one solution of (E) which is a Wiener solution.

Remarks 2.

(1) If α + = 1, solutions of (E) are characterized by a unique measure m + satisfying condition (+) instead of a pair (m + , m -) and a similar remark applies if α -= 1.

(2) The case α + = 1 2 , N = 2 does not appear in the last theorem since it corresponds to dX t = W (dt). This paper follows ideas of [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] in a more general context and is organized as follows.

In Section 2, we remind basic definitions of stochastic flows and Walsh Brownian motion.

In Section 3, we use a "specific"SBM(α + ) flow introduced by Burdzy-Kaspi and excursion theory to construct all solutions of (E). Unicity of solutions is proved in Section 4. Section 5 is an appendix devoted to Freidlin-Sheu formula stated in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] for a general class of diffusion processes defined by means of their generators. Here we first establish this formula using simple arguments and then deduce the characterization of Walsh Brownian motion by means of its generator (Proposition 3).

2 Stochastic flows and Walsh Brownian motion.

Let P(G) be the space of probability measures on G and (f n ) n∈N be a sequence of functions dense in {f ∈ C 0 (G), ||f || ∞ ≤ 1} with C 0 (G) being the space of continuous functions on G which vanish at infinity. We equip P(G) with the distance

d(µ, ν) = ( n 2 -n ( f n dµ -f n dν) 2 ) 1 2
for all µ and ν in P(G). Thus, P(G) is a locally compact separable metric space. Let us recall that a kernel K on G is a measurable mapping from G into P(G). We denote by E the space of all kernels on G and we equip E with the σ-field E generated by the mappings K -→ µK, µ ∈ P(G), with µK the probability measure defined as µK(A) = G K(x, A)µ(dx)

for every µ ∈ P(G). Let us recall some fundamental definitions from [START_REF] Le | Flows, coalescence and noise[END_REF].

Stochastic flows.

Let (Ω, A, P) be a probability space. Definition 3. (Stochastic flow of kernels.) A family of (E, E)-valued random variables (K s,t ) s≤t is called a stochastic flow of kernels on G if, ∀s t the mapping

K s,t : (G × Ω, B(G) ⊗ A) -→ (P(G), B(P(G))) (x, ω) -→ K s,t (x, ω)
is measurable and if it satisfies the following properties:

1. ∀s < t < u, x ∈ G a.s. ∀f ∈ C 0 (G), K s,u f (x) = K s,t (K t,u f )(x) (flow property).
2. ∀s t the law of K s,t only depends on ts. 

For all

t 1 < t 2 < • • • < t n , the family {K t i ,t i+1 , 1 ≤ i ≤ n -1} is independent. 4. ∀t ≥ 0, x ∈ G, f ∈ C 0 (G), lim y→x E[(K 0,t f (x) -K 0,t f (y)) 2 ] = 0. 5. ∀t ≥ 0, f ∈ C 0 (G), lim x→+∞ E[(K 0,t f (x)) 2 ] = 0. 6. ∀x ∈ G, f ∈ C 0 (G), lim t→0+ E[(K 0,t f (x) -f (x)) 2 ] = 0.

Walsh Brownian motion.

Recall that for all f ∈ C 0 (G), f i is defined on R + . From now on, we extend this definition on R by setting f i = 0 on ] -∞, 0[. We will introduce Walsh Brownian motion

W (α 1 , • • • , α N ),
by giving its transition density as defined in [START_REF] Barlow | On Walsh's Brownian motions[END_REF]. On C 0 (G), consider

P t f (h e j ) = 2 N i=1 α i p t f i (-h) + p t f j (h) -p t f j (-h), h > 0, P t f (0) = 2 N i=1 α i p t f i (0).
where (p t ) t>0 is the heat kernel of the standard one dimensional Brownian motion. Then (P t ) t≥0 is a Feller semigroup on C 0 (G). A strong Markov process Z with state space G and semigroup P t , and such that Z is càdlàg is by definition the Walsh Brownian motion W (α 1 , • • • , α N ) on G.

Construction by flipping Brownian excursions.

For all n ≥ 0, let

D n = { k 2 n , k ∈ N} and D = ∪ n∈N D n . For 0 ≤ u < v, define n(u, v) = inf{n ∈ N : D n ∩]u, v[ = ∅} and f (u, v) = inf D n(u,v) ∩]u, v[.
Let B be a standard Brownian motion defined on (Ω, A, P) and ( γ r , r ∈ D) be a sequence of independent random variables with the same law N i=1 α i δ e i which is also independent of B. We define

B + t = B t -min u∈[0,t] B u , g t = sup{r ≤ t : B + r = 0}, d t = inf{r ≥ t : B + r = 0},
and finally

Z t = γ r B + t , r = f (g t , d t ) if B + t > 0, Z t = 0 if B + t = 0.
Then we have the following

Proposition 1. (Z t , t ≥ 0) is an W (α 1 , • • • , α N ) on G started at 0.
Proof. We use these notations

min s,t = min u∈[s,t]
B u , e 0,t = e(Z t ), F s = σ( e 0,u , B u ; 0 ≤ u ≤ s).

Fix 0 ≤ s < t and denote by E s,t = {min 0,s = min 0,t }(= {g t ≤ s} a.s.). Let h : G -→ R be a bounded measurable function. Then

E[h(Z t )|F s ] = E[h(Z t )1 Es,t |F s ] + E[h(Z t )1 E c s,t |F s ],
with 

E[h(Z t )1 E c s,t |F s ] = N i=1 E[h i (B + t )1 {gt>s, e 0,t = e i } |F s ] = N i=1 α i E[h i (B + t )1 {gt>s} |F s ]. If B s,r = B r -B s ,
Bs,r} |F s ] = R 1 {-B + s >x} ( R h i (y -x)g(x, y)dy)dx = 2 R + h i (u)p t-s (B + s , -u)du (u = y -x)
and so

E[h(Z t )1 E c s,t |F s ] = 2 N i=1 α i p t-s h i (-B + s ). On the other hand E[h(Z t )1 Es,t |F s ] = E[h( e 0,s (B t -min 0,s ))1 Es,t∩(Bt>min 0,s ) |F s ] = E[h( e 0,s (B t -min 0,s ))1 {Bt>min 0,s } |F s ] -E[h( e 0,s (B t -min 0,s ))1 E c s,t ∩(Bt>min 0,s ) |F s ].
Obviously on { e 0,s = e k }, we have

E[h( e 0,s (B t -min 0,s ))1 {Bt>min 0,s } |F s ] = E[h k (B s,t + B + s )1 {Bs,t+B + s >0} |F s ] = p t-s h k (B + s )
and

E[h( e 0,s (B t -min 0,s ))1 E c s,t ∩(Bt>min 0,s ) |F s ] = E[h k (B s,t + B + s )1 {-B + s > min r∈[s,t]
Bs,r,Bs,t+B

+ s >0} |F s ] = R h k (y + B + s )1 {y+B + s >0} R 1 {-B + s >x} g(x, y)dx dy = p t-s h k (-B + s ). As a result, E[h(Z t )|F s ] = P t-s h(Z s ) where P is the semigroup of W (α 1 , • • • , α N ).
Proposition 2. Let M = (M n ) n≥0 be a Markov chain on G started at 0 with stochastic matrix Q given by

Q(0, e i ) = α i , Q(n e i , (n + 1) e i ) = Q(n e i , (n -1) e i ) = 1 2 ∀i ∈ [1, N], n ≥ 1. ( 8 
)
Then, for all

0 ≤ t 1 < • • • < t p , we have ( 1 2 n M ⌊2 2n t 1 ⌋ , • • • , 1 2 n M ⌊2 2n tp⌋ ) law -----→ n → +∞ (Z t 1 , • • • , Z tp ),
where

Z is an W (α 1 , • • • , α N ) started at 0.
Proof. Let B be a standard Brownian motion and define for all n ≥ 1 :

T n 0 (B) = T n 0 (|B|) = 0 and for k ≥ 0 T n k+1 (B) = inf{r ≥ T n k (B), |B r -B T n k | = 1 2 n }, T n k+1 (|B|) = inf{r ≥ T n k (|B|), ||B r | -|B T n k || = 1 2 n }. Then, clearly T n k (B) = T n k (|B|) and so (T n k (|B|)) k≥0 law = (T n k (B)) k≥0 . It is known ([6] page 31) that lim n→+∞ T n ⌊2 2n t⌋ (B) = t a.
s. uniformly on compact sets. Then, the result holds also for

T n ⌊2 2n t⌋ (|B|). Now, let Z be the W (α 1 , • • • , α N ) started at 0 constructed in the beginning of this section from the reflected Brownian motion B + . Let T n k = T n k (B + ) (defined analogously to T n k (|B|)) and Z n k = 2 n Z T n k . Then obviously (Z n k , k ≥ 0) law = M for all n ≥ 0. Since a.s. t -→ Z t is continuous, it comes that a.s. ∀t ≥ 0, lim n→+∞ 1 2 n Z n ⌊2 2n t⌋ = Z t . 2.2.2 Freidlin-Sheu formula. Theorem 3. [5] Let (Z t ) t≥0 be a W (α 1 , • • • , α N ) on G started at z and let X t = |Z t |. Then (i) (X t ) t≥0 is a reflecting Brownian motion started at |z|. (ii) B t = X t -Lt (X) -|z| is a standard Brownian motion where Lt (X) = lim ε→0 + 1 2ε t 0 1 {|Xu|≤ε} du. (iii) ∀f ∈ C 2 b (G * ), f (Z t ) = f (z) + t 0 f ′ (Z s )dB s + 1 2 t 0 f ′′ (Z s )ds + ( N i=1 α i f ′ i (0+)) Lt (X). ( 9 
)
Remarks 3.

(1) By taking f (z) = |z| and applying Skorokhod lemma, we find the following analogous of ( 6),

|Z t | = |z| + B t -min s≤u≤t [(|z| + B u ) ∧ 0].
From this observation, when

ε i = 1 for all i ∈ [1, N], we call (E), Tanaka's SDE related to W (α 1 , • • • , α N ).
(2) For N ≥ 3, the filtration (F Z t ) has the martingale representation property with respect to B [START_REF] Barlow | On Walsh's Brownian motions[END_REF], but there is no Brownian motion W such that F Z t = F W t [START_REF] Tsirelson | Triple points: from non-Brownian filtrations to harmonic measures[END_REF].

Using this theorem, we obtain the following characterization of W (α 1 , • • • , α N ) by means of its semigroup.

Proposition 3. Let • D(α 1 , • • • , α N ) = {f ∈ C 2 b (G * ) : N i=1 α i f ′ i (0+) = 0}. • Q = (Q t ) t≥0 be a Feller semigroup satisfying Q t f (x) = f (x) + 1 2 t 0 Q u f ′′ (x)du ∀f ∈ D(α 1 , • • • , α N ). Then, Q is the semigroup of W (α 1 , • • • , α N ).
Proof. Denote by P the semigroup of W (α 1 , • • • , α N ), A ′ and D(A ′ ) being respectively its generator and its domain on C 0 (G). If

D ′ (α 1 , • • • , α N ) = {f ∈ C 0 (G) D(α 1 , • • • , α N ), f ′′ ∈ C 0 (G)}, ( 10 
)
then it is enough to prove these statements:

(i) ∀t > 0, P t (C 0 (G)) ⊂ D ′ (α 1 , • • • , α N ). (ii) D ′ (α 1 , • • • , α N ) ⊂ D(A ′ ) and A ′ f (x) = 1 2 f ′′ (x) on D ′ (α 1 , • • • , α N ). (iii) D ′ (α 1 , • • • , α N ) is dense in C 0 (G) for ||.|| ∞ .
(iv) If R and R ′ are respectively the resolvents of Q and P , then

R λ = R ′ λ ∀ λ > 0 on D ′ (α 1 , • • • , α N ).
The proof of (i) is based on elementary calculations using dominated convergence, (ii) comes from ( 9), (iii) is a consequence of (i) and the Feller property of P (approximate f by P 1 n f ).

To prove (iv), let A be the generator of

Q and fix f ∈ D ′ (α 1 , • • • , α N ). Then, R λ f is the unique element of D(A) such that (λI -A)(R λ f ) = f . We have R ′ λ f ∈ D ′ (α 1 , • • • , α N ) by (i), D ′ (α 1 , • • • , α N ) ⊂ D(A) by hypothesis. Hence R ′ λ f ∈ D(A) and since A = A ′ on D ′ (α 1 , • • • , α N ), we deduce that R λ f = R ′ λ f .
3 Construction of flows associated to (E).

In this section, we prove (a) of Theorem 2 and show that K W given in Theorem 1 solves (E).

3.1 Flow of Burdzy-Kaspi associated to SBM.

Definition.

We are looking for flows associated to the SDE (3). The flow associated to SBM(1) which solves (3) is the reflected Brownian motion above 0 given by

Y s,t (x) = (x + W s,t )1 {t≤τs,x} + (W s,t -inf u∈[τs,x,t] W s,u )1 {t>τs,x} ,
where

τ s,x = inf{r ≥ s : x + W s,r = 0}. ( 11 
)
and a similar expression holds for the SBM(0) which is the reflected Brownian motion below 0. These flows satisfy all properties of the SBM(α), α ∈]0, 1[ we will mention below such that the "strong"flow property (Proposition 4) and the strong comparison principle [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]. When

α ∈]0, 1[, we follow Burdzy-Kaspi [START_REF] Burdzy | Lenses in skew Brownian flow[END_REF]. In the sequel, we will be interested in SBM(α + ) and so we suppose in this paragraph that α + / ∈ {0, 1}.

With probability 1, for all rationals s and x simultaneously, equation ( 3) has a unique strong

solution with α = α + . Define Y s,t (x) = inf X u,y t u,y∈Q u<s,x<X u,y s , L s,t (x) = lim ε→0 + 1 2ε t s 1 {|Ys,u(x)|≤ε} du.
Then, it is easy to see that a.s.

Y s,t (x) ≤ Y s,t (y) ∀s ≤ t, x ≤ y. (12) 
This implies that x -→ Y s,t (x) is increasing and càdlàg for all s ≤ t a.s.

According to [START_REF] Burdzy | Lenses in skew Brownian flow[END_REF] (Proposition 1.1), t -→ Y s,t (x) is Hölder continuous for all s, x a.s. and with probability equal to 1: ∀s, x ∈ R, Y s,• (x) satisfies (3). We first check that Y is a flow of mappings and we start by the following flow property:

Proposition 4. ∀ t ≥ s a.s. Y s,u (x) = Y t,u (Y s,t (x)) ∀u ≥ t, x ∈ R .
Proof. It is known, since pathwise uniqueness holds for the SDE (3), that for a fixed [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF] page 161). Now, using the regularity of the flow, the result extends clearly as desired.

s ≤ t ≤ u, x ∈ R, we have Y s,u (x) = Y t,u (Y s,t (x)) a.s. ([
To conclude that Y is a stochastic flow of mappings, it remains to show the following

Lemma 1. ∀t ≥ s, x ∈ R, f ∈ C 0 (R) lim y→x E[(f (Y s,t (x)) -f (Y s,t (y))) 2 ] = 0.
Proof. We take s = 0. For g ∈ C 0 (R 2 ), set

P (2) t g(x) = E[g(Y 0,t (x 1 ), Y 0,t (x 2 ))], x = (x 1 , x 2 ).
If ε > 0, f ε (x, y) = 1 {|x-y|≥ε} , then by Theorem 10 in [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF], P

t f ε (x, y) ---→ y → x 0. (2) 
For all f ∈ C 0 (R), we have

E[(f (Y 0,t (x)) -f (Y 0,t (y))) 2 ] = P (2) t f ⊗ 2 (x, x) + P (2) t f ⊗ 2 (y, y) -2P (2) 
t f ⊗ 2 (x, y).

To conclude the lemma, we need only to check that

lim y→x P (2) t f (y) = P (2) t f (x), ∀x ∈ R 2 , f ∈ C 0 (R 2 ). Let f = f 1 ⊗ f 2 with f i ∈ C 0 (R), x = (x 1 , x 2 ), y = (y 1 , y 2 ) ∈ R 2 . Then |P (2) 
t f (y) -P

(2)

t f (x)| ≤ M 2 k=1 P (2) t (|1 ⊗ f k -f k ⊗ 1|)(y k , x k ),
where

M > 0 is a constant. For all α > 0, ∃ε > 0, |u -v| < ε ⇒ ∀1 ≤ k ≤ 2 : |f k (u) -f k (v)| < α. As a result |P (2) 
t f (y) -P

(2)

t f (x)| ≤ 2Mα + 2M 2 k=1 ||f k || ∞ P (2) 
t f ε (x k , y k ),
and we arrive at lim sup y→x |P

t f (y) -P

(2)

t f (x)| ≤ 2Mα for all α > 0 which means that lim y→x P (2) t f (y) = P (2)
t f (x). Now this easily extends by a density argument for all f ∈ C 0 (R 2 ).

In the coming section, we present some properties related to the coalescence of Y we will require in Section 3.2 to construct solutions of (E).

Coalescence of the Burdzy-Kaspi flow.

In this section, we suppose 1 2 < α + < 1. The analysis of the case 0 < α + < 1 2 requires an application of symmetry. Define

T x,y = inf{r ≥ 0, Y 0,r (x) = Y 0,r (y)}, x, y ∈ R.
By the fundamental result of [START_REF] Barlow | Coalescence of skew Brownian motions[END_REF], T x,y < ∞ a.s. for all x, y ∈ R. Due to the local time, coalescence always occurs in 0; Y 0,r (x) = Y 0,r (y) = 0 if r = T x,y . Recall the definition of τ s,x from [START_REF] Le | Flows, coalescence and noise[END_REF]. Then T x,y > sup(τ 0,x , τ 0,y ) a.s. ([1] page 203). Set

L x t = x + (2α + -1)L 0,t (x), U(x, y) = inf{z ≥ y : L x t = L y t = z for some t ≥ 0}, y ≥ x.
According to [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF] (Theorem 1.1), there exists λ > 0 such that ∀u ≥ y > 0, P(U(0, y)

≤ u) = (1 - y u ) λ .
Thus for a fixed 0 < γ < 1, we get lim y→0+ P(U(0, y)

≤ y γ ) = lim y→0+ (1 -y 1-γ ) λ = 1.
From Theorem 1.1 [START_REF] Burdzy | Local time flow related to skew Brownian motion[END_REF], we have U(x, y)x law = U(0, yx) for all 0 < x < y and so

lim y→x+ P(U(x, y) -x ≤ (y -x) γ ) = 1, ∀x ≥ 0. ( 13 
)
Lemma 2. For all x ∈ R, we have lim y→x T x,y = τ 0,x in probability.

Proof. In this proof we denote Y 0,t (0) simply by Y t . We first establish the result for x = 0. For all t > 0, we have

P(t ≤ T 0,y ) ≤ P(L 0,t (0) ≤ L 0,T 0,y (0)) = P(L 0 t ≤ U(0, y))
since (2α + -1)L 0,T 0,y (0) = U(0, y). The right-hand side converges to 0 as y → 0+ by [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF]. On the other hand, by the strong Markov property at time τ 0,y for y < 0,

G t (y) := P(t ≤ T 0,y ) = P(t ≤ τ 0,y ) + E[1 {t>τ 0,y } G t-τ 0,y (Y τy )].
For all ǫ > 0,

E[1 {t>τ 0,y } G t-τ 0,y (Y τ 0,y )] = E[1 {t-τ 0,y >ǫ} G t-τ 0,y (Y τ 0,y )] + E[1 {0<t-τ 0,y ≤ǫ} G t-τ 0,y (Y τ 0,y )] ≤ E[G ǫ (Y τ 0,y )] + P(0 < t -τ 0,y ≤ ǫ).
From previous observations, we have Y τ 0,y > 0 a.s. for all y < 0 and consequently Y τ 0,y -→ 0+ as y → 0-. Since lim z→0+ G ǫ (z) = 0, by letting y → 0-and using dominated convergence, then ǫ → 0, we get lim sup y→0-G t (y) = 0 as desired for x = 0. Now, the lemma easily holds after remarking that

T x,y -τ 0,x law = T 0,y-x if 0 ≤ x < y and T x,y -τ 0,x law = T 0,x-y if x < y ≤ 0. For s t, x ∈ R, define g s,t (x) = sup{u ∈ [s, t] : Y s,u (x) = 0} (sup(∅) = -∞). (14) 
We use Lemma 2 to prove Lemma 3. Fix s, x ∈ R. Then, a.s. for all t > τ s,x , there exists

(v, y) ∈ Q 2 such that v < g s,t (x) and Y s,r (x) = Y v,r (y) ∀ r ≥ g s,t (x).
Proof. We prove the result for s = 0 and first for x = 0. Let t > 0, then for all ǫ > 0

P(∃ η > 0 : Y 0,t (η) = Y 0,t (-η)) ≥ P(T -ǫ,ǫ ≤ t).
From P(t < T -ǫ,ǫ ) ≤ P(t < T 0,ǫ ) + P(t < T 0,-ǫ ) and the previous lemma, we have lim ǫ→0 P(t < T -ǫ,ǫ ) = 0 and therefore

P(∃ η > 0 : Y 0,t (η) = Y 0,t (-η)) = 1. Choose ǫ > 0, such that Y 0,t (ǫ) = Y 0,t (-ǫ) and let v ∈]0, T -ǫ,ǫ [∩Q. Then Y 0,v (ǫ) > Y 0,v (-ǫ) and for any rational y ∈ ]Y 0,v (-ǫ), Y 0,v (ǫ)[, we have by (12) Y v,u (Y 0,v (-ǫ)) ≤ Y v,u (y) ≤ Y v,u (Y 0,v (ǫ)), ∀u ≥ v.
The flow property (Proposition 4) yields

Y 0,u (-ǫ) ≤ Y v,u (y) ≤ Y 0,u (ǫ), ∀u ≥ v. So necessarily Y 0,r (0) = Y v,r ( 
y), ∀r ≥ g 0,t (0). For x > 0 and ǫ small enough, we have

P(Y 0,t (x + ǫ) > Y 0,t (x), t > τ 0,x ) ≤ P(τ 0,x < t < T x,x+ǫ ).
This shows that lim ǫ→0 P(Y 0,t (x + ǫ) > Y 0,t (x)|t > τ 0,x ) = 0 by Lemma 2. Similarly, for ǫ small

P(Y 0,t (x -ǫ) < Y 0,t (x), t > τ 0,x ) ≤ P(τ 0,x < t < T x-ǫ,x ).
The right-hand side converges to 0 as ǫ → 0 by Lemma 2 and so

lim ǫ→0 P(Y 0,t (x) > Y 0,t (x -ǫ)|t > τ 0,x ) = 0. Since {Y 0,t (x + ǫ) > Y 0,t (x -ǫ)} ⊂ {Y 0,t (x + ǫ) > Y 0,t (x)} ∪ {Y 0,t (x) > Y 0,t (x -ǫ)}, we get P(∃ǫ > 0 : Y 0,t (x -ǫ) = Y 0,t (x + ǫ)|t > τ 0,x ) = 1.
Following the same steps as the case

x = 0, we show the lemma for a fixed t a.s. Finally, the result easily extends almost surely for all t.

We close this section by the Lemma 4. With probability 1, for all

(s 1 , x 1 ) = (s 2 , x 2 ) ∈ Q 2 simultaneously (i) T x 1 ,x 2 s 1 ,s 2 := inf{r ≥ sup(s 1 , s 2 ) : Y s 1 ,r (x 1 ) = Y s 2 ,r (x 2 )} < ∞, (ii) T x 1 ,x 2 s 1 ,s 2 > sup(τ s 1 ,x 1 , τ s 2 ,x 2 ), (iii) Y s 1 ,T x 1 ,x 2 s 1 ,s 2 (x 1 ) = Y s 2 ,T x 1 ,x 2 s 1 ,s 2 (x 2 ) = 0, (iv) Y s 1 ,r (x 1 ) = Y s 2 ,r (x 2 ) ∀r ≥ T x 1 ,x 2 s 1 ,s 2 .
Proof. (i) is a consequence of Proposition 4, the independence of increments and the coalescence

of Y .(ii) Fix (s 1 , x 1 ) = (s 2 , x 2 ) ∈ Q 2 with s 1 ≤ s 2 .
By the comparison principle [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] and

Proposition 4, Y s 1 ,t (x 1 ) ≥ Y s 2 ,t (x 2 ) for all t ≥ s 2 or Y s 1 ,t (x 1 ) ≤ Y s 2 ,t (x 2
) for all t ≥ s 2 . Suppose for example that 0 < z := Y s 1 ,s 2 (x 1 ) < x 2 and take a rational r ∈]z,

x 2 [. Then T x 1 ,x 2 s 1 ,s 2 > τ s 2 ,z ≥ τ s 1 ,x 1 and T x 1 ,x 2 s 1 ,s 2 ≥ T r,x 2 s 2 ,s 2 > τ s 2 ,x 2 .
(iii) is clear since coalescence occurs in 0. (iv) is an immediate consequence of the pathwise uniqueness of (3).

Construction of solutions associated to (E).

We now extend the notations given in Section 2.2.1. For all n ≥ 0, let D n = { k 2 n , k ∈ Z} and D be the set of all dyadic numbers: D = ∪ n∈N D n . For u < v, define n(u, v) = inf{n ∈ N :

D n ∩]u, v[ = ∅} and f (u, v) = inf D n(u,v) ∩]u, v[. Denote by G Q = {x ∈ G : |x| ∈ Q + }. We also fix a bijection ψ : N -→ Q × G Q and set (s i , x i ) = ψ(i) for all i ≥ 0.

Construction of a stochastic flow of mappings ϕ solution of (E).

Let W be a real white noise and Y be the flow of the SBM(α + ) constructed from W in the previous section. We first construct ϕ s,• (x) for all (s, x) ∈ Q × G Q and then extend this definition for all (s, x) ∈ R × G. We begin by ϕ s 0 ,• (x 0 ), then ϕ s 1 ,• (x 1 ) and so on. To define

ϕ s 0 ,• (x 0 ), we flip excursions of Y s 0 ,• (ε(x 0 )|x 0 |) suitably. Then let ϕ s 1 ,t (x 1 ) be equal to ϕ s 0 ,t (x 0 ) if Y s 0 ,t (ε(x 0 )|x 0 |) = Y s 1 ,t (ε(x 1 )|x 1 |). Before coalescence of Y s 0 ,• (ε(x 0 )|x 0 |) and Y s 1 ,• (ε(x 1 )|x 1 |), we define ϕ s 1 ,• (x 1 ) by flipping excursions of Y s 1 ,• (ε(x 1 )|x 1 |)
independently of what happens to ϕ s 0 ,• (x 0 ) and so on. In what follows, we translate this idea rigorously. Let γ + , γ -be two independent random variables on any probability space such that

γ + law = p i=1 α i α + δ e i , γ -law = N j=p+1 α j α -δ e j . (15) 
Let (Ω, A, P) be a probability space rich enough and W = (W s,t , s ≤ t) be a real white noise defined on it. For all s ≤ t, x ∈ G, let Z s,t ( We retain the notations τ s,x , g s,t (x) of the previous section (see [START_REF] Le | Flows, coalescence and noise[END_REF] and ( 14)). For s ∈ R, x ∈ G define, by abuse of notations

τ s,x = τ s,ε(x)|x| , g s,• (x) = g s,• (ε(x)|x|) and d s,t (x) = inf{r ≥ t : Z s,r (x) = 0}. It will be convenient to set Z s,r (x) = ∞ if r < s. For all q ≥ 1, u 0 , • • • , u q ∈ R, y 0 , • • • , y q ∈ G define T y 0 ,••• ,yq u 0 ,••• ,uq = inf{r ≥ τ uq,yq : Z uq,r (y q ) ∈ {Z u i ,r (y i ), i ∈ [1, q -1]}}.
Let {( γ + s 0 ,x 0 (r), γ - s 0 ,x 0 (r)), r ∈ D ∩ [s 0 , +∞[} be a family of independent copies of ( γ + , γ -) which is independent of W . We define ϕ s 0 ,• (x 0 ) by

ϕ s 0 ,t (x 0 ) =                    x 0 + e(x 0 )ε(x 0 )W s 0 ,t if s 0 ≤ t ≤ τ s 0 ,x 0 0 if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) = 0 γ + s 0 ,x 0 (f 0 )|Z s 0 ,t (x 0 )|, f 0 = f (g s 0 ,t (x 0 ), d s 0 ,t (x 0 )) if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) > 0 γ - s 0 ,x 0 (f 0 )|Z s 0 ,t (x 0 )|, f 0 = f (g s 0 ,t (x 0 ), d s 0 ,t (x 0 )) if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) < 0 Now, suppose that ϕ s 0 ,• (x 0 ), • • • , ϕ s q-1 ,• (x q-1
) are defined and let {( γ + sq,xq (r), γ - sq,xq (r)), r ∈ D ∩ [s q , +∞[} be a family of independent copies of ( γ + , γ -) which is also independent of

σ γ + s i ,x i (r), γ - s i ,x i (r), r ∈ D ∩ [s i , +∞[, 1 ≤ i ≤ q -1, W . Since T x 0 ,••• ,xq s 0 ,••• ,sq < ∞, let i ∈ [1, q -1]
and (s i , x i ) such that Z sq,t 0 (x q ) = Z s i ,t 0 (x i ) with t 0 = T

x 0 ,••• ,xq s 0 ,••• ,sq . We define ϕ sq,• (x q ) by ϕ sq,t (x q ) =                            x q + e(x q )ε(x q )W sq,t if s q ≤ t ≤ τ sq,xq 0 if t > τ sq,xq , Z sq,t (x q ) = 0 γ + sq,xq (f q )|Z sq,t (x q )|, f q = f (g sq,t (x q ), d sq,t (x q )) if t ∈ [τ sq,xq , t 0 ], Z sq,t (x q ) > 0 γ - sq,xq (f q )|Z sq,t (x q )|, f q = f (g sq,t (x q ), d sq,t (x q )) if t ∈ [τ sq,xq , t 0 ], Z sq,t (x q ) < 0 ϕ s i ,t (x i ) if t ≥ t 0
In this way, we construct (ϕ s,

• (x), s ∈ Q, x ∈ G Q ). Now, for all s ∈ R, x ∈ G, let ϕ s,t (x) = x + e(x)ε(x)W s,t if s ≤ t ≤ τ s,x . If t > τ s,x , then by Lemma (3), there exist v ∈ Q, y ∈ G Q such that v < g s,t (x) and Z s,r (x) = Z v,r (y) ∀ r ≥ g s,t (x).
In this case, we define ϕ s,t (x) = ϕ v,t (y). Later, we will show that ϕ is a coalescing solution of (E).

Construction of a stochastic flow of kernels

K m + ,m -solution of (E).
Let m + and m -be two probability measures respectively on ∆ p and ∆ N -p . Let U + , U -be two independent random variables on any probability space such that

U + law = m + , U -law = m -. (16) 
Let (Ω, A, P) be a probability space rich enough and W = (W s,t , s ≤ t) be a real white noise defined on it. We retain the notation introduced in the previous paragraph for all functions of W . We consider a family {(U + s 0 ,x 0 (r), U - s 0 ,x 0 (r)), r ∈ D ∩ [s 0 , +∞[} of independent copies of (U + , U -) which is independent of W .

If t > τ s 0 ,x 0 and Z s 0 ,t (x 0 ) > 0 (resp. Z s 0 ,t (x 0 ) < 0), let

U + s 0 ,t (x 0 ) = U + s 0 ,x 0 (f 0 ) (resp. U - s 0 ,t (x 0 ) = U - s 0 ,x 0 (f 0 )), f 0 = f (g s 0 ,t (x 0 ), d s 0 ,t (x 0 )).
Write U + s 0 ,t (x 0 ) = (U +,i s 0 ,t (x 0 )) 1≤i≤p (resp. U - s 0 ,t (x 0 ) = (U -,i s 0 ,t (x 0 )) p+1≤i≤N ) if Z s 0 ,t (x 0 ) > 0, t > τ s 0 ,x 0 (resp. Z s 0 ,t (x 0 ) < 0, t > τ s 0 ,x 0 ) and now define

K m + ,m - s 0 ,t (x 0 ) =                    δ x 0 + e(x 0 )ε(x 0 )Ws 0 ,t if s 0 ≤ t ≤ τ s 0 ,x 0 p i=1 U +,i s 0 ,t (x 0 )δ e i |Zs 0 ,t(x0)| if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) > 0 N i=p+1 U -,i s 0 ,t (x 0 )δ e i |Zs 0 ,t(x0)| if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) < 0 δ 0 if t > τ s 0 ,x 0 , Z s 0 ,t (x 0 ) = 0 Suppose that K m + ,m - s 0 ,• (x 0 ), • • • , K m + ,m - s q-1 ,
• (x q-1 ) are defined and let {(U + sq,xq (r), U - sq,xq (r)), r ∈ D ∩ [s q , +∞[} be a family of independent copies of (U + , U -) which is also independent of

σ U + s i ,x i (r), U - s i ,x i (r), r ∈ D ∩ [s i , +∞[, 1 ≤ i ≤ q -1, W . If t > τ sq,xq
and Z sq,t (x q ) > 0 (resp. Z sq,t (x q ) < 0), we define U + sq,t (x q ) = (U +,i sq,t (x q )) 1≤i≤p (resp. U - sq,t (x q ) = (U -,i sq,t (x q )) p+1≤i≤N ) by analogy to q = 0. Let i ∈ [1, q-1] and (s i , x i ) such that Z sq,t 0 (x q ) = Z s i ,t 0 (x i ) with t 0 = T

x 0 ,••• ,xq s 0 ,••• ,sq . Then, define K m + ,m - sq,t (x q ) =                            δ xq+ e(xq)ε(xq)Ws q ,t
if s q ≤ t ≤ τ sq,xq p i=1 U +,i sq,t (x q )δ e i |Zs q ,t(xq )| if t 0 > t > τ sq,xq , Z sq,t (x q ) > 0 N i=p+1 U -,i sq,t (x q )δ e i |Zs q ,t(xq )| if t 0 > t > τ sq,xq , Z sq,t (x q ) < 0

δ 0 if t 0 ≥ t > τ sq,xq , Z sq,t (x q ) = 0 K m + ,m - s i ,t (x i ) if t > t 0
In this way, we construct (K m + ,m - s,

(x), s ∈ Q, x ∈ G Q ). Now, for s ∈ R, x ∈ G, let K m + ,m - s,t (x) = δ x+ e(x)ε(x)Ws,t if s ≤ t ≤ τ s,x . If t > τ s,x , let v ∈ Q, y ∈ G Q such that v < g s,t (x) and Z s,r (x) = Z v,r (y) ∀ r ≥ g s,t (x). Then, define K m + ,m - s,t (x) = K m + ,m - v,t (y) 
.

In the next section we will show that K m + ,m -is a stochastic flow of kernels on G which solves (E).

3.2.3

Construction of (K m + ,m -, ϕ) by filtering.

Let m + and m -be two probability measures as in Theorem 2 and ( γ + , U + ), ( γ -, U -) be two independent random variables satisfying

U + = (U +,i ) 1≤i≤p law = m + , U -= (U -,j ) p+1≤j≤N law = m -, P( γ + = e i |U + ) = U +,i , ∀i ∈ [1, p], (17) 
and

P( γ -= e j |U -) = U -,j , ∀j ∈ [p + 1, N]. (18) 
Then, in particular ( γ + , γ -) and (U + , U -) satisfy respectively ( 15) and ( 16).

On a probability space (Ω, A, P) consider the following independent processes

• W = (W s,t , s ≤ t) a real white noise.

• {( γ + s,x (r), U + s,x (r)), r ∈ D ∩ [s, +∞[, (s, x) ∈ Q × G Q } a family of independent copies of ( γ + , U + ). • {( γ - s,x (r), U - s,x (r)), r ∈ D ∩ [s, +∞[, (s, x) ∈ Q × G Q } a family of independent copies of ( γ -, U -).
Now, let ϕ and K m + ,m -be the processes constructed in Sections 3.2.1 and 3.2.2 respectively from ( γ + , γ -, W ) and (U + , U -, W ). Let σ(U + , U -, W ) be the σ-field generated by

{U + s,x (r), U - s,x (r), r ∈ D ∩ [s, +∞[, (s, x) ∈ Q × G Q } and W .
We then have the Proposition 5. (i) For all measurable bounded function f on G, s ≤ t ∈ R, x ∈ G, with probability 1,

K m + ,m - s,t f (x) = E[f (ϕ s,t (x))|σ(U + , U -, W )].
(ii) For all s, x, with probability 1, ∀t ≥ s

|ϕ s,t (x)| = |Z s,t (x)|, ϕ s,t (x) ∈ G + ⇔ Z s,t (x) ≥ 0 and ϕ s,t (x) ∈ G -⇔ Z s,t (x) ≤ 0.
(iii) For all s, x = y, with probability 1

t 0 := inf{r ≥ s : ϕ s,r (x) = ϕ s,r (y)} = inf{r ≥ s : Z s,r (x) = Z s,r (y) = 0}
and ϕ s,r (x) = ϕ s,r (y), ∀r ≥ t 0 .

Proof. (i) comes from ( 17), [START_REF] Watanabe | The stochastic flow and the noise associated to Tanaka's stochastic differential equation[END_REF] and the definiton of our flows, (ii) is clear by construction. By (ii) coalescence of ϕ s,• (x) and ϕ s,• (y) occurs in 0 and so (iii) is clear.

Next we will prove that ϕ is a stochastic flow of mappings on G. It remains to prove that properties (1) and ( 4) in the definition are satisfied. As in Lemma 1, property (4) can be derived from the following Lemma 5. ∀t ≥ s, ǫ > 0, x ∈ G, we have

lim y→x P(d(ϕ s,t (x), ϕ s,t (y)) ≥ ǫ) = 0.
Proof. We take s = 0. Notice that for all z ∈ R, we have

Y 0,t (z) = z + W t if 0 ≤ t ≤ τ 0,z .
Fix ǫ > 0, x ∈ G + \ {0} and y in the same ray as x with |y| > |x|, d(y, x) ≤ ǫ 2 . Then d(ϕ 0,t (x), ϕ 0,t (y)) = d(x, y) ≤ ǫ 2 for 0 ≤ t ≤ τ 0,|x| ∧ τ 0,|y| (= τ 0,|x| in our case). By Proposition 5 (iii), we have ϕ 0,t (x) = ϕ 0,t (y) if t ≥ T |x|,|y| . This shows that {d(ϕ 0,t (x), ϕ 0,t (y)) ≥ ǫ} ⊂ {τ 0,|x| < t < T |x|,|y| } a.s.

By Lemma 2, P(d(ϕ 0,t (x), ϕ 0,t (y)) ≥ ǫ) ≤ P(τ 0,|x| < t < T |x|,|y| ) → 0 as y → x, |y| > |x|.

By the same way,

P(d(ϕ 0,t (x), ϕ 0,t (y)) ≥ ǫ) ≤ P(τ 0,|y| < t < T |x|,|y| ) → 0 as y → x, |y| < |x|.
The case x ∈ G -holds similarly. Proposition 6. ∀s < t < u, x ∈ G: ϕ s,u (x) = ϕ t,u (ϕ s,t (x)) a.s.

Proof. Set y = ϕ s,t (x). Then, with probability 1, ∀r ≥ t, Y s,r (ε(x)|x|) = Y t,r (Y s,t (ε(x)|x|)) and so, a.s. ∀r ≥ t Z s,r (x) = Z t,r (y). All the equalities below hold a.s.

• 1st case: u ≤ τ s,x . We have τ t,y = inf{r ≥ t, Z t,r (y) = 0} = inf{r ≥ t, Z s,r (x) = 0} = τ s,x .

Consequently u ≤ τ t,y and ϕ s,u (x) = e(x)|Z s,u (x)| = e(y)|Z t,u (y)| = ϕ t,u (y) = ϕ t,u (ϕ s,t (x)).

• 2nd case: t ≤ τ s,x < u. We still have τ t,y = τ s,x and so g t,u (y) = g s,u (x). It is clear by construction that: ϕ s,u (x) = ϕ t,u (y) = ϕ t,u (ϕ s,t (x)).

• 3rd case: τ s,x < t, τ t,y ≤ u. Since τ t,y is a common zero of (Z s,r (x)) r≥s and (Z t,r (y)) r≥t before u, it comes that g t,u (y) = g s,u (x) and therefore ϕ s,u (x) = ϕ t,u (y) = ϕ t,u (ϕ s,t (x)).

• 4th case: τ s,x < t, u < τ t,y . In such a case, we have ϕ t,u (y) = e(y)|Z t,u (y)| = e(y)|Z s,u (x)|.

Since r -→ Z s,r (x) does not touch 0 in the interval [t, u] and ϕ s,t (x) = y, we easily see that

ϕ s,u (x) = e(y)|Z s,u (x)| = ϕ t,u (y).
Proposition 7. ϕ is a coalescing solution of (E).

Proof. We use these notations: Y u := Y 0,u (0), ϕ u := ϕ 0,u (0). We first show that ϕ is an

W (α 1 , • • • , α N ) on G. Define for all n ≥ 1 : T n 0 (Y ) = 0, T n k+1 (Y ) = inf{r ≥ T n k (Y ), d(ϕ r , ϕ T n k ) = 1 2 n } = inf{r ≥ T n k (Y ), |Y r -Y T n k | = 1 2 n } = inf{r ≥ T n k (Y ), ||Y r | -|Y T n k || = 1 2 n }, k ≥ 0.
Remark that |Y | is a reflected Brownian motion and denote T n k (Y ) simply by T n k . From the proof of Proposition 2, lim

n→+∞ sup t≤K |T n ⌊2 2n t⌋ -t| = 0 a.s. for all K > 0. Set ϕ n k = 2 n ϕ T n k . Then, since almost surely t -→ ϕ t is continuous, a.s. ∀t ≥ 0, lim n→+∞ 1 2 n ϕ n ⌊2 2n t⌋ = ϕ t .
By Proposition 2, it remains to show that for all n ≥ 0, (ϕ n k , k ≥ 0) is a Markov chain (started at 0) whose transition mechanism is described by [START_REF] Harrison | On skew Brownian motion[END_REF].

If Y n k = 2 n Y T n k , then, by the proof of Proposition 2 (since SBM is a special case of W (α 1 , • • • , α N )), for all n ≥ 0, (Y n k )
k≥1 is a Markov chain on Z started at 0 whose law is described by

Q(0, 1) = 1 -Q(0, -1) = α + , Q(m, m + 1) = Q(m, m -1) = 1 2 ∀m = 0. Let k ≥ 1 and x 0 , .., x k ∈ G such that x 0 = x k = 0 and |x h+1 -x h | = 1 if h ∈ [0, k -1]. We write {x h , x h = 0, h ∈ [1, k]} = {x i 0 , .., x iq }, i 0 = 0 < i 1 < • • • < i q = k and {x h , x h = 0, h ∈ [1, k]} = {x h } h∈[i 0 +1,i 1 -1] ∪ • • • ∪ {x h } h∈[i q-1 +1,i k-1 ] .
Assume that

{x h } h∈[i 0 +1,i 1 -1] ⊂ D j 0 , • • • , {x h } h∈[i q-1 +1,i k-1 ] ⊂ D j q-1
and define

A n h = (Y n h = ε(x h )|x h |), E = ( e(ϕ n i 0 +1 ) = e j 0 , • • • , e(ϕ n i q-1 +1 ) = e j q-1 ). If i ∈ [1, p], we have (ϕ n k+1 = e i , ϕ n k = x k , • • • , ϕ n 0 = x 0 ) = k h=0 A n h (Y n k+1 -Y n k = 1) E ( e(ϕ n k+1 ) = e i )
and

(ϕ n k = x k , • • • , ϕ n 0 = x 0 ) = k h=0 A n h E. Now P(ϕ n k+1 = e i |ϕ n 0 = x 0 , • • • , ϕ n k = 0) = α i α + P(Y n k+1 -Y n k = 1|Y n k = 0) = α i .
Obviously, the previous argument can be applied to show that the transition probabilities of (ϕ n k , k ≥ 0) are given by ( 8) and so ϕ is an

W (α 1 , • • • , α N ) on G started at 0. Using (9) for ϕ, it follows that ∀f ∈ D(α 1 , • • • α N ), f (ϕ t ) = f (0) + t 0 f ′ (ϕ s )dB s + 1 2 t 0 f ′′ (ϕ s )ds
where

B t = |ϕ t | -Lt (|ϕ|) = |Y t | -Lt (|Y |) = t 0 sgn(Y s )dY s
by Tanaka's formula for symmetric local time. But Y solves (3) and therefore

t 0 sgn(Y s )dY s = t 0 sgn(Y s )W (ds). Since a.s. sgn(Y s ) = ε(ϕ s ) for all s ≥ 0, it comes that ∀f ∈ D(α 1 , • • • α N ), f (ϕ 0,t (x)) = f (x) + t 0 f ′ (ϕ 0,s (x))ε(ϕ 0,s (x))W (ds) + 1 2 t 0
f ′′ (ϕ 0,s (x))ds when x = 0. Finally, by distinguishing the cases t τ 0,x and t > τ 0,x , we see that the previous equation is also satisfied for x = 0.

Corollary 1. K m + ,m -is a stochastic flow of kernels solution of (E).

Proof. By Proposition 5 (i) and Jensen inequality, K m + ,m -is a stochastic flow of kernels. The fact that K m + ,m -is a solution of (E) is a consequence of the previous proposition and is similar to Lemma 4.6 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF].

Remarks 4. (i) Define Ks,t (x, y) = K m + ,m - s,t (x) ⊗ δ ϕs,t (y). Then K is a stochastic flow of kernels on G 2 . (ii) If (m + , m -) = (δ ( α 1 α + ,••• , αp α + ) , δ ( α p+1 α -,••• , α N α -) ), then K W s,t (x) = δ x+ e(x)ε(x)Ws,t 1 {t≤τs,x} (19) 
+ p i=1 α i α + δ e i |Zs,t(x)| 1 {Zs,t(x)>0} + N i=p+1 α i α -δ e i |Zs,t(x)| 1 {Zs,t(x)≤0} 1 {t>τs,x}
is a Wiener solution of (E).

(iii) If (m + , m -) = p i=1 α i α + δ (0,..,0,1,0,..,0) , N i=p+1 α i α -δ (0,..,0,1,0,..,0) , then K m + ,m -= δ ϕ .
4 Unicity of flows associated to (E).

Let K be a solution of (E) and fix s ∈ R, x ∈ G. Then (K s,t (x)) t≥s can be modified in such a way, a.s., the mapping t -→ K s,t (x) is continuous from [s, +∞[ into P(G). We will always consider this modification for (K s,t (x)) t≥s .

Lemma 6. Let (K, W ) be a solution of (E). Then ∀x ∈ G, s ∈ R, a.s.

K s,t (x) = δ x+ e(x)ε(x)Ws,t , if s ≤ t ≤ τ s,x where τ s,x = inf{r ≥ s, ε(x)|x| + W s,r = 0}.
Proof. We follow [START_REF] Le | Flows associated to Tanaka's SDE[END_REF] (Lemma 3.1). Assume that x = 0, x ∈ D i , 1 ≤ i ≤ p and take s = 0. Let

β i = 1 and consider a set of numbers (β j ) 1≤j≤N,j =i such that N j=1 β j α j = 0. If f (h e j ) = β j h for all 1 ≤ j ≤ N, then f ∈ D(α 1 , • • • , α N ). Set τx = inf{r; K 0,r (x)(∪ j =i D j ) > 0} and apply f in (E) to get D i \{0} |y|K 0,t (x, dy) = |x| + W t for all t ≤ τx . (20) 
By applying

f k (y) = |y| 2 e -|y| k , k ≥ 1 in (E), we have for all t ≥ 0, K 0,t∧τx f k (x) = f k (x) + t 0 1 [0,τx] (u)K 0,u (εf ′ k )(x)W (du) + 1 2 t∧τx 0 K 0,u f ′′ k (x)du. As k → ∞, K 0,t∧τx f k (x) tends to t 0 |y| 2 K 0,t∧τx (x, dy) by monotone convergence. Let A > 0, xe -x ≤ A for all x ≥ 0. Since |f ′ k (y) -2|y|| ≤ (4 + A)|y|, t 0 1 [0,τx] (u)K 0,u (εf ′ k )(x)W (du) -→ t 0 1 [0,τx] (u) G 2|y|K 0,u (x, dy)W (du)
as k → ∞ using (20) and dominated convergence for stochastic integrals ( [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] page 142). From

|f ′′ k (y)| ≤ 2e -1 k |y| + 4+A k |y|, we get t∧τx 0 K 0,u f ′′ k (x)du -→ 0 as k → ∞.
By identifying the limits, we have

D i \{0} (|y| -|x| -W t ) 2 K 0,t (x, dy) = 0 ∀ t ≤ τx .
This proves that for t ≤ τx , K 0,t (x) = δ x+ e(x)Wt . The fact that τ 0,x = τx easily follows.

The previous lemma entails the following

Corollary 2. If (K, W ) is a solution of (E), then σ(W ) ⊂ σ(K).
Proof. For all x ∈ D 1 , we have K 0,t (x) = δ e 1 (|x|+Wt) if t ≤ τ 0,x . If f is a positive function on G such that f 1 (h) = h, then W t = K 0,t f (x) -|x| for all t ≤ τ 0,x , x ∈ D 1 . By considering a sequence (x k ) k≥0 converging to ∞, this shows that σ(W t ) ⊂ σ(K 0,t (y), y ∈ D 1 ).

Unicity of the Wiener solution.

In order to complete the proof of Theorem 1, we will prove the following Proposition 8. Equation (E) has at most one Wiener solution: If K and K ′ are two Wiener solutions, then for all s ≤ t, x ∈ G, K s,t (x) = K ′ s,t (x) a.s.

Proof. Denote by P the semigroup of W (α 1 , • • • , α N ), A and D(A) being respectively its generator and its domain on C 0 (G). Recall the definition of [START_REF] Le | Integration of Brownian vector fields[END_REF] and that

D ′ (α 1 , • • • , α N ) from
∀t > 0 P t (C 0 (G)) ⊂ D ′ (α 1 , • • • , α N ) ⊂ D(A) (see Proposition 3). Define S = {f : G -→ R : f, f ′ , f ′′ ∈ C b (G *
) and are extendable by continuity at 0 on each ray,

lim x→∞ f (x) = 0}.
For t > 0, h a measurable bounded function on G * , let λ t h(x) = 2p t h j (|x|), if x ∈ D j , where h j is the extension of h j that equals 0 on ] -∞, 0]. Then, the following identity can be easily checked using the explicit expression of P :

(P t f ) ′ = -P t f ′ + λ t f ′ on G * for all f ∈ S. (21) 
Fix f ∈ S. We will verify that (P t f ) ′ ∈ S. For x = h e j ∈ G * , we have

(P t f ) ′ (x) = -2 N i=1 α i R f ′ i (y -h)p t (0, y)dy + R f ′ j (y + h)p t (0, y)dy + R f ′ j (y -h)p t (0, y)dy Clearly (P t f ) ′ ∈ C b (G *
) and is extendable by continuity at 0 on each ray. Furthermore, a simple integration by parts yields

R f ′ j (y + h)p t (0, y)dy = C R f j (y + h)yp t (0, y)dy for some C ∈ R
and since lim x→∞ f (x) = 0, we get lim x→∞ (P t f ) ′ (x) = 0. It is also easy to check that (P t f ) ′′ , (P t f ) ′′′ ∈ C b (G * ) and are extendable by continuity at 0 on each ray which shows that

(P t f ) ′ ∈ S.
Let (K, W ) be a stochastic flow that solves (E) (not necessarily a Wiener flow) and fix

x = h e j ∈ G * . Our aim now is to establish the following identity

K 0,t f (x) = P t f (x) + t 0 K 0,u (D(P t-u f ))(x)W (du) (22) 
where Dg(x) = ε(x).g ′ (x). Note that

t 0 K 0,u (D(P t-u f ))(x)W (du) is well defined. In fact t 0 E[K 0,u (D(P t-u f ))(x)] 2 du ≤ t 0 P u ((D(P t-u f )) 2 )(x)du ≤ t 0 ||(P t-u f ) ′ || 2 ∞ du
and the right-hand side is bounded since (21) is satisfied and f ′ is bounded. Set g = P ǫ f =

P ǫ 2 P ǫ 2 f . Then, since P ǫ 2 f ∈ C 0 (G) (lim x→∞ P ǫ 2 f (x) = 0 comes from lim x→∞ f (x) = 0), we have g ∈ D ′ (α 1 , • • • , α N ). Now K 0,t g(x) -P t g(x) - t 0 K 0,u (D(P t-u g))(x)W (du) = n-1 p=0 (K 0, (p+1)t n P t-(p+1)t n g -K 0, pt n P t-pt n g)(x) - n-1 p=0 (p+1)t n pt n K 0,u D((P t-u -P t-(p+1)t n )g)(x)W (du) - n-1 p=0 (p+1)t n pt n K 0,u D(P t-(p+1)t n g)(x)W (du).
For all p ∈ {0, .., n -1}, g p,n = P t-(p+1)t

n g ∈ D ′ (α 1 , • • • , α N
) and so by replacing in (E), we get

(p+1)t n pt n K 0,u Dg p,n (x)W (du) = K 0, (p+1)t n g p,n (x) -K 0, pt n g p,n (x) - (p+1)t n pt n K 0,u Ag p,n (x)du = K 0, (p+1)t n g p,n (x) -K 0, pt n g p,n (x) - t n K 0, pt n Ag p,n (x) - (p+1)t n pt n (K 0,u -K 0, pt n )Ag p,n (x)du
Then we can write

K 0,t g(x) -P t g(x) - t 0 K 0,u (D(P t-u g))(x)W (du) = A 1 (n) + A 2 (n) + A 3 (n),
where

A 1 (n) = - n-1 p=0 K 0, pt n [P t-pt n g -P t-(p+1)t n g - t n .AP t-(p+1)t n g](x), A 2 (n) = - n-1 p=0 (p+1)t n pt n K 0,u D((P t-u -P t-(p+1)t n )g)(x)W (du), A 3 (n) = n-1 p=0 (p+1)t n pt n (K 0,u -K 0, pt n )AP t-(p+1)t n g(x)du. Using ||K 0,u f || ∞ ≤ ||f || ∞ if f is a bounded measurable function, we obtain |A 1 (n)| ≤ n-1 p=0 ||P t-(p+1)t n [P t n g -g - t n .Ag]|| ∞ ≤ n||P t n g -g - t n .Ag|| ∞ , with n||P t n g -g - t n .Ag|| ∞ = t.|| P tn g -g t n -Ag|| ∞ (t n := t n ).
Since g ∈ D(A), this shows that A 1 (n) converges to 0 as n → ∞. Note that A 2 (n) is the sum of orthogonal terms in L 2 (Ω). Consequently

||A 2 (n)|| 2 L 2 (Ω) = n-1 p=0 || (p+1)t n pt n K 0,u D((P t-u -P t-(p+1)t n )g)(x)W (du)|| 2 L 2 (Ω) .
By applying Jensen inequality, we arrive at

||A 2 (n)|| 2 L 2 (Ω) ≤ n-1 p=0 (p+1)t n pt n P u V 2 u (x)du If u ∈ [ pt n , (p+1)t n ]: E[((K 0,u -K 0, pt n )h p,n (x)) 2 ] ≤ E[K 0, pt n (K pt n ,u h p,n -h p,n ) 2 (x)] ≤ E[K 0, pt n (K pt n ,u h 2 p,n -2h p,n K pt n ,u h p,n + h 2 p,n )(x)] ≤ ||P u-pt n h 2 p,n -2h p,n P u-pt n h p,n + h 2 p,n || ∞ ≤ 2||h p,n || ∞ ||P u-pt n h p,n -h p,n || ∞ + ||P u-pt n h 2 p,n -h 2 p,n || ∞ . Therefore ||A 3 (n)|| L 2 (Ω) ≤ √ t(2C 1 (n) + C 2 (n)) 1 2
, where

C 1 (n) = n-1 p=0 ||h p,n || ∞ (p+1)t n pt n ||P u-pt n h p,n -h p,n || ∞ du, C 2 (n) = n-1 p=0 (p+1)t n pt n ||P u-pt n h 2 p,n -h 2 p,n || ∞ du. From ||h p,n || ∞ ≤ ||Ag|| ∞ and ||P u-pt n h p,n -h p,n || ∞ ≤ ||P u-pt n Ag -Ag|| ∞ , we get C 1 (n) ≤ ||Ag|| ∞ n-1 p=0 (p+1)t n pt n ||P u-pt n Ag -Ag|| ∞ du ≤ ||Ag|| ∞ t 0 ||P z n Ag -Ag|| ∞ dz.
As Ag ∈ C 0 (G), C 1 (n) tends to 0 obviously. On the other hand, h 2 p,n ∈ D(α 1 , • • • , α N ) (this can be easily verified since h p,n is continuous and

N i=0 α i (h p,n ) ′ i (0+) = 0
). We may apply [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF] to get 

C 2 (n) =
+ t 0 K 0,u (D(P t-u g))(x)W (du).
Now, let ǫ go to 0, then K 0,t g(x) tends to K 0,t f (x) in L 2 (Ω). Furthermore

|| t 0 K 0,u (D(P t-u g))(x)W (du) - t 0 K 0,u (D(P t-u f ))(x)W (du)|| 2 L 2 (Ω) ≤ t 0 P u ((P t-u g) ′ -(P t-u f ) ′ ) 2 (x)du.
Using the derivation formula (21), the right side may be decomposed as I ǫ + J ǫ , where

I ǫ = t 0 P u (P t-u g ′ -P t-u f ′ ) 2 (x)du, J ǫ = t 0 P u (λ t-u g ′ -λ t-u f ′ ) 2 (x)du.
By Jensen inequality, I ǫ ≤ tP t (g ′f ′ ) 2 (x). Since g ′ (y) = -P ǫ f ′ (y) + 2λ ǫ f ′ (y) -→ f ′ (y) as ǫ → 0, P t (x, dy) a.s., we get I ǫ -→ 0 as ǫ → 0 by dominated convergence. Similarly J ǫ tends to 0 as ǫ → 0. This establishes (22). Now assume that (K, W ) is a Wiener solution of (E)

and let f ∈ S. Since K 0,t f (x) ∈ L 2 (F W 0,• ∞ ) , let K 0,t f (x) = P t f (x) + ∞ n=1 J n t f (x)
be the decomposition in Wiener chaos of K 0,t f (x) in L 2 sense ( [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] page 202). By iterating (22) (recall that (P t f ) ′ ∈ S ), we see that for all n ≥ 1

J n t f (x) = 0<s 1 <•••<sn<t P s 1 (D(P s 2 -s 1 • • • D(P t-sn f )))(x)dW 0,s 1 • • • dW 0,sn .
If K ′ is another Wiener flow satisfying (22), then K 0,t f (x) and K ′ 0,t f (x) must have the same Wiener chaos decomposition for all f ∈ S, that is

K 0,t f (x) = K ′ 0,t f (x) a.s. Consequently K 0,t f (x) = K ′ 0,t f (x) a.s. for all f ∈ D ′ (α 1 , • • • , α N )
since this last set is included in S and the result extends for all f ∈ C 0 (G) by a density argument. This completes the proof when x = 0.

The case x = 0 can be deduced from property (4) in the Definition 3.

Consequence: We already know that K W given by ( 19) is a Wiener solution of (E). Since σ(W ) ⊂ σ(K), we can define K * the stochastic flow obtained by filtering K with respect to σ(W ) (Lemma 3-2 (ii) in [START_REF] Le | Flows, coalescence and noise[END_REF]). Then ∀s ≤ t, x ∈ G, K * s,t (x) = E[K s,t (x)|σ(W )] a.s. As a result, (K * , W ) solves also (E) and by the last proposition, we have:

∀s ≤ t, x ∈ G, E[K s,t (x)|σ(W )] = K W s,t (x) a.s. ( 23 
)
From now on, (K, W ) is a solution of (E) defined on (Ω, A, P). Let P n t = E[K ⊗n 0,t ] be the compatible family of Feller semigroups associated to K. We retain the notations introduced in Section 3 for all functions of W (Y s,t (x), Z s,t (x), g s,t (x) • • • ). In the next section, starting from K, we construct a flow of mappings ϕ c which is a solution of (E). This flow will play an important role to characterize the law of K.

4.2 Construction of a stochastic flow of mappings solution of (E) from K.

Let x ∈ G, t > 0. By (23), on {t > τ 0,x }, K 0,t (x) is supported on

{|Z 0,t (x)| e i , 1 ≤ i ≤ p} if Z 0,t (x) > 0
Consequence: Let ν (respectively ν c ) be the Feller convolution semigroup associated with (P n ) n≥1 (respectively (P n,c ) n≥1 ). By the proof of Theorem 4.2 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF], there exists a joint realization (K 1 , K 2 ) where K 1 and K 2 are two stochastic flows of kernels satisfying K 1 law = δ ϕ c , K 2 law = K and such that:

(i) Ks,t (x, y) = K 1 s,t (x) ⊗ K 2 s,t (y) is a stochastic flow of kernels on G 2 , (ii) For all s ≤ t, x ∈ G, K 2 s,t (x) = E[K 1 s,t (x)|K 2 ] a.s. For s ≤ t, let Fs,t = σ( Ku,v , s ≤ u ≤ v ≤ t), F i s,t = σ(K i u,v , s ≤ u ≤ v ≤ t), i = 1, 2.
Then Fs,t = F 1 s,t ∨ F 2 s,t . To simplify notations, we shall assume that ϕ c is defined on the original space (Ω, A, P) and that (i) and (ii) are satisfied if we replace (K 1 , K 2 ) by (δ ϕ c , K). Recall that (i) and (ii) are also satisfied by the pair (δ ϕ , K m + ,m -) constructed in Section 3. Now

K s,t (x) = E[δ ϕ c s,t (x) |K] a.s. for all s ≤ t, x ∈ G, (24) 
and using (23), we obtain

K W s,t (x) = E[δ ϕ c s,t (x) |σ(W )] a.s. for all s ≤ t, x ∈ G, (25) 
with K W being the Wiener flow given by (19).

Proposition 9. The stochastic flow ϕ c solves (E).

Proof. Fix t > 0, x ∈ G. By (25), δ ϕ c 0,t (x) is supported on {|Z 0,t (x)| e j , 1 ≤ j ≤ N} a.s. and so |ϕ c 0,t (x)| = |Z 0,t (x)|. Similarly, using (25), we have

ϕ c 0,t (x) ∈ G + ⇔ Z 0,t (x) ≥ 0 and ϕ c 0,t (x) ∈ G -⇔ Z 0,t (x) ≤ 0. ( 26 
) Consequently ε(ϕ c 0,t (x)) = sgn(Z 0,t (x)) a.s. Since ϕ c 0,• (x) is an W (α 1 , • • • , α N ) started at x, it satisfies Theorem 3; ∀f ∈ D(α 1 , • • • , α N ), f (ϕ c 0,t (x)) = f (x) + t 0 f ′ (ϕ c 0,u (x))dB u + 1 2 t 0 f ′′ (ϕ c 0,u (x))du a.s. with B t = |ϕ 0,t (x)| -Lt (|ϕ 0,• (x)|) -|x| = |Z 0,t (x)| -Lt (|Z 0,• (x)|) -|x|.
Tanaka's formula and (26) yield

B t = t 0 sgn(Z 0,u (x))dZ 0,u (x) = t 0 sgn(Z 0,u (x))W (du) = t 0 ε(ϕ c 0,u (x))W (du). Likewise for all s ≤ t, x ∈ G, f ∈ D(α 1 , • • • , α N ), f (ϕ c s,t (x)) = f (x) + t s f ′ (ϕ c s,u (x))ε(ϕ c s,u (x))W (du) + 1 2 t s f ′′ (ϕ c s,u (x))du a.s.
We will see later (Remark 3) that ϕ c law = ϕ where ϕ is the stochastic flow of mappings constructed in Section 3.

Two probability measures associated to K.

For all t ≥ τ s,x , set

V +,i s,t (x) = K s,t (x)(D i \ {0}) ∀1 ≤ i ≤ p and V -,N s,t (x) = K s,t (x)(D N ), V -,i s,t (x) = K s,t (x)(D i \ {0}) ∀p + 1 ≤ i ≤ N -1 V + s,t (x) = (V +,i s,t (x)) 1≤i≤p , V - s,t (x) = (V -,i s,t (x)) p+1≤i≤N , V s,t (x) = (V + s,t (x), V - s,t (x)).
For s = 0, we use these abbreviated notations

Z t (x) = Z 0,t (x), V + t (x) = V + 0,t (x), V - t (x) = V - 0,t (x), V t (x) = (V + t (x), V - t (x))
and if x = 0,

Z t = Z 0,t (0), V + t = V + 0,t (0), V - t = V - 0,t (0), V t = (V + t , V - t ). By (23), ∀x ∈ G, s ≤ t, with probability 1 K s,t (x) = δ x+ e(x)ε(x)Ws,t 1 {t≤τs,x} + ( p i=1 V +,i s,t (x)δ e i |Zs,t(x)| 1 {Zs,t(x)>0} + N i=p+1 V -,i s,t (x)δ e i |Zs,t(x)| 1 {Zs,t(x)≤0} )1 {t>τs,x} . Define F K s,t = σ(K v,u , s ≤ v ≤ u ≤ t), F W s,t = σ(W v,u , s ≤ v ≤ u ≤ t) Set V - k,n = V - S - k,n
and let m - n be the common law of (V - k,n ) k≥1 . Denote by m -the law of V - 1 under P(.|Z 1 < 0). Then, the sequence (m - n ) n≥1 converges weakly towards m -. Moreover, for all t > 0, the law of V - t under P(.|Z t < 0) is given by m -. As a result, we have

E[f (V - t )|W ]1 {Zt<0} = 1 {Zt<0} f dm -
for each measurable bounded f : R N -p -→ R. If we follow the same steps as before but consider (Z u+τ 0,x (x), u ≥ 0) for all x, we show that the law of V + 0,t (x) under P(.|Z 0,t (x) > 0, t > τ 0,x ) does not depend on t > 0. Denote by m +

x such a law. Then, thanks to Lemma 8, m + x does not depend on x ∈ G. Thus m + x = m + for all x and

E[f (V + t (x))|W ]1 {Zt(x)>0,t>τ 0,x } = 1 {Zt(x)>0,t>τ 0,x } f dm + (27) 
for each measurable bounded f : R p -→ R. Similarly

E[h(V - t (x))|W ]1 {Zt(x)<0,t>τ 0,x } = 1 {Zt(x)<0,t>τ 0,x } hdm - (28) 
for each measurable bounded h : R N -p -→ R. Fix x ∈ G, 0 < s < t and let x s = p(ϕ c 0,s (x)). Then:

(i) ϕ c s,r (x) = x + e(x)ε(x)W s,r for all r ≤ τ s,x (from Lemma 6).

(ii) τ s,x = τ s,p(x) and ϕ c s,r (x) = ϕ c s,r (p(x)) for all r ≥ τ s,x since ϕ c is a coalescing flow.

(iii) τ s,ϕ c 0,s (x) = τ s,xs and ϕ c s,r (ϕ c 0,s (x)) = ϕ c s,r (x s ) for all r ≥ τ s,xs by (ii) and the independence of increments of ϕ c . (iv) On {t > τ s,xs }, ϕ c 0,t (x) = ϕ c s,t (ϕ c 0,s (x)) = ϕ c s,t (x s ) by the flow property of ϕ c and (iii).

(v) Clearly τ s,xs = inf{r ≥ s, Z 0,r (x) = 0} a.s. Since {τ 0,x < s < g 0,t (x)} ⊂ {t > τ s,xs } a.s., we deduce that

P(ϕ c 0,t (x) = ϕ c s,t (x s )|τ 0,x < s < g 0,t (x)) = 1.
Proof. From ( 27) and ( 28), (K 0,t (x), W )

law = (K m + ,m - 0,t (x) 
, W ′ ) for all t > 0 and x ∈ G. Notice that all the properties (i)-(v) mentioned just above are satisfied by the flow ϕ constructed in Section 3 and consequently K m + ,m -satisfies also (29) using the same arguments. By following the same steps as in the proof of Lemma 11, we show by induction on n that

(K 0,t (x 1 ), • • • , K 0,t (x n ), W ) law = (K m + ,m - 0,t (x 1 ), • • • , K m + ,m - 0,t (x n ), W ′ ) for all t > 0, x 1 , • • • , x n ∈ G.
This proves the proposition.

Remark 3. When K is a stochastic flow of mappings, then by definition

(m + , m -) = ( p i=1 α i α + δ (0,..,0,1,0,..,0) , N i=p+1 α i α -δ (0,..,0,1,0,..,0) ).
This shows that there is only one flow of mappings solving (E).

The case α

+ = 1 2 , N > 2.
Let K W be the flow given by ( 19), where Z s,t (x) = ε(x)|x| + W t -W s . It is easy to verify that K W is a Wiener flow. Fix s ∈ R, x ∈ G. Then, by following ideas of Section 3.2, one can construct a real white noise W and a process (X x s,t , t ≥ s) which is an W (α 1 , • • • , α N ) started at x such that

• (i) for all t ≥ s, f ∈ D(α 1 , • • • , α N ), f (X x s,t ) = f (x) + t s (εf ′ )(X x s,u )W (du) + 1 2 t s
f ′′ (X x s,u )du a.s.

• (ii) for all t ≥ s, K W s,t (x) = E[δ X x s,t |σ(W )] a.s.

By conditioning with respect to σ(W ) in (i), this shows that K W solves (E). Now, let (K, W ) be any other solution of (E) and set P n t = E[K ⊗n 0,t ]. From the hypothesis α + = 1 2 , we see that h(x) = ε(x)|x| belongs to D(α 1 , • • • , α N ) and by applying h in (E), we get K 0,t h(x) = h(x)+W t .

Denote by (X x 1 , X x 2 ) the two-point motion started at (x 1 , x 2 ) ∈ G 2 associated to P 2 . Since From the preceding observation E[h(X x 1 t )h(X x 2 t )] = E[K 0,t h(x 1 )K 0,t h(x 2 )] = h(x 1 )h(x 2 ) + t and therefore E[(h(X x 1 t )h(X x 2 t )h(x 1 ) + h(x 2 )) 2 ] = 0.

This shows that h(X x 1 t )h(X x 2 t ) = h(x 1 )h(x 2 ). Now we will check by induction on n that P n does not depend on K. For n = 1, this follows from Proposition 3. Suppose the result holds for n and let (x 1 , • • • , x n+1 ) ∈ G n+1 such that h(x i ) = h(x j ), i = j. Let τ x i = inf{r ≥ 0 : X x i r = 0} = inf{r ≥ 0 : h(X x i r ) = 0} and (x i , x j ) ∈ G + × G -such that h(x i ) < h(x k ), h(x h ) < h(x j ) for all (x k , x h ) ∈ G + × G -(when (x i , x j ) does not exist the proof is simpler). Clearly τ x k is a function of X x h for all h, k ∈ [1, n + 1] and so for all measurable bounded f : G n+1 -→ R,

f (X x 1 t , • • • , X x n+1 t )1 {t<τx i ,inf 1≤k≤n+1 τx k =τx i } is a function of X x i and f (X x 1 t , • • • , X x n+1 t )1 {t<τx j ,inf 1≤k≤n+1 τx k =τx j } is a function of X x j .
where t > 0 is fixed. This shows that E[f (X x 1 t , • • • , X Remark that (S k ) k≥0 is a function of X x h for all h ∈ [1, n + 1]. By summing over all possible cases we need only check the unicity in law of (X x 1 t , • • • , X

x n+1 t
) conditionally to A = {S k < t < S k+1 , X x h S k = 0} where k ≥ 0, h ∈ [1, n + 1] are fixed. Write A = B ∩ {t -S k < T } where B = {S k < t, X x h S k = 0} = {S k < t, X x i S k = 0 if i = h} and T = inf{r ≥ 0, ∃j = h : X

x j r+S k = 0}. On A, X x i t is a function of (X x i S k , X x h t ) and therefore for all measurable bounded f : G n+1 -→ R,

f (X x 1 t , • • • , X x n+1 t
)1 A may be written as g((X

x i S k ) i =h , X x h t )1 A
where g is measurable bounded from G n+1 into R. By the strong Markov property for X = (X x 1 , • • • , X x n+1 ), we have

1 B E[1 {t-S k <T } g((X x i S k ) i =h , X x h t )|F X S k ] = 1 B ψ(t -S k , (X x i S k ) i =h )
where

ψ(u, y 1 , • • • , y n ) = E[1 {u<inf{r≥0:∃j∈[1,n],X y j r =0}} g(y 1 , • • • , y n , X 0 u )].
This shows that E[f (X x 1 t , • • • , X

x n+1 t

)1 A ] only depends on the law of (X x i ) i =h . As a result, P n+1 t ((x 1 , • • • , x n+1 ), dy) is unique whenever h(x i ) = h(x j ), i = j and by an approximation argument for all (x 1 , • • • , x n+1 ) ∈ G n+1 . Since a stochastic flow of kernels is uniquely determined by the compatible system of its n-point motions, this proves (2) of Theorem 2.

5 Appendix: Freidlin-Sheu formula.

In this section, we shall prove Theorem 3. We begin by (iii) Set τ z = inf{r ≥ 0, Z r = 0}. For t ≤ τ z , (9) holds from Itô's formula applied to the semimartingale X. By discussing the cases t ≤ τ z and t > τ z , one can assume that z = 0 and so in the sequel we take z = 0.

For all i ∈ [1, N], define Z i t = |Z t |1 {Zt∈D i } -|Z t |1 {Zt / ∈D i } . Then Z i t = Φ i (Z t ) where Φ i (x) = |x|1 {x∈D i } -|x|1 {x / ∈D i } . Let Q i be the semigroup of the SBM(α i ). Then the following relation is easy to check: P t (f • Φ i ) = Q i t f • Φ i for all bounded measurable function f : R -→ R which shows that Z i is a SBM(α i ) started at 0. We use the notation (P) to denote the convergence in probability.

Let δ > 0. Define τ δ 0 = θ δ 0 = 0 and for n 1

θ δ n = inf{r ≥ τ δ n-1 , |Z r | = δ}, τ δ n = inf{r ≥ θ δ n , Z r = 0}.
Let f ∈ C 2 b (G * ) and t > 0. Then

f (Z t ) -f (0) = ∞ n=0 f (Z θ δ n+1 ∧t ) -f (Z θ δ n ∧t ) = Q δ 1 + Q δ 2 + Q δ 3

1
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  Preliminary remarks. We recall that if Y is a semimartingale satisfying Y = |Y | then Lt (Y ) = Lt (|Y |). Let L t (Y ) be the (non symmetric) local time at 0 of Y and α ∈ [0, 1]. If Y is a SBM(α), then L t (Y ) = 2α Lt (Y ) by identifying Tanaka's formulas for symmetric and non symmetric local time for Y .Let Q be the semigroup of the reflecting Brownian motion on R and define Φ(x) = |x|. Then X t = Φ(Z t ) and it can be easily checked that P t (f • Φ) = Q t f • Φ for all bounded measurable function f : R -→ R which proves (i). (ii) is an easy consequence of Tanaka's formula for local time.

  {x>0} -1 {x<0} . By combining the last identity with (4), we have |X s,t (x)| = |x| + W s,t + Lx s,t (X).

page 234), |X s,t (x)| = |x| + t s sgn(X s,u (x))dX s,u (x) + Lx s,t (X),

where sgn(x) = 1

  Definition 4. (Stochastic flow of mappings.) A family (ϕ s,t ) s≤t of measurable mappings from G into G is called a stochastic flow of mappings on G if K s,t (x) := δ ϕs,t(x) is a stochastic flow of kernels on G.

	Remark 2. Let K be a stochastic flow of kernels on G and set P n t = E[K ⊗n 0,t ], n ≥ 1. Then, (P n ) n≥1 is a compatible family of Feller semigroups acting respectively on C 0 (G n ) (see Propo-
	sition 2.2 [11]).

  ′′ || ∞ dudz. || ∞ = ||2Ah p,n || ∞ ≤ 2||AP ǫ 2 f || ∞ . Write h p,n = P t-p+1 ′ (α 1 , • • • , α N ). Then, by (21), ||h ′ p,n || ∞ is uniformly bounded with respect to n, p ∈ [0, n -1]and so the same holds for ||(h 2 p,n ) ′′ || ∞ . As a result C 2 (n) tends to 0 as n → ∞. Finally K 0,t g(x) = P t g(x)
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Acknowledgements. I sincerely thank my supervisor Yves Le Jan for his guidance through my Ph.D. thesis and for his careful reading of this paper. I am also grateful to Olivier Raimond for very useful discussions, for his careful reading of this paper and for his assistance in proving Lemma 3.

where V u = (P t-u g) ′ -(P t-(p+1)t n g) ′ . By (21), one can decompose V u as follows:

Using the trivial inequality (a + b) 2 ≤ 2a 2 + 2b 2 , we obtain:

where

If p ∈ [0, n -1] and u ∈ [ pt n , (p+1)t n ], then P u X 2 u (x) ≤ P u+t-p+1 n t (g ′ -P p+1 n t-u g ′ ) 2 (x). The change of variable v = (p + 1)tnu yields

By writing P t-v n (g ′ P v n g ′ )(x) as a function of p, we prove that lim n→∞ P t-v n (g ′ P v n g ′ )(x) = P t g ′2 (x). Since g ′ is bounded, by dominated convergence this shows that B 1 (n) tends to 0 as n → +∞. For B 2 (n), we write

It was shown before that this quantity tends to 0 as n → +∞ when (p, g ′ i ) is replaced by (P, g ′ ) in general and consequently B 2 (n) tends to 0 as n → +∞. Now

). By the Cauchy-Schwarz inequality

.

and is supported on

In [START_REF] Le | Flows, coalescence and noise[END_REF] (Section 2.6), the n point motion X n started at (x 1 , • • • , x n ) ∈ G n and associated with P n has been constructed on an extension Ω × Ω ′ of Ω such that the law of ω ′ -→ X n t (ω, ω ′ ) is given by K 0,t (x 1 , dy 1 ) • • • K 0,t (x n , dy n ). For each (x, y) ∈ G 2 , let (X x t , Y y t ) t≥0 be the two point motion started at (x, y) associated with P 2 as preceded. Then

| for all t ≥ 0 and so T x,y := inf{r ≥ 0, X x r = Y y r } < +∞ a.s.

To (P n ) n≥1 , we associate a compatible family of Markovian coalescent semigroups (P n,c ) n≥1 as described in [START_REF] Le | Flows, coalescence and noise[END_REF] (Theorem 4.1): Let X n be the n point motion started at (

We denote the ith coordinate of X n t by X n t (i). Let

Suppose that X n T 1 (i) = X n T 1 (j) with i < j. Then define the process

Note that the ith coordinate of X n,1 and the jth one are equal. Now set

t and so on. In this way, we construct a Markov process X n,c such that for all i, j ∈ [1, n], X n,c (i) and X n,c (j) meet after a finite time and then stick to gether. Let P n,c t (x 1 , • • • , x n , dy) be the law of X n,c t . Then we have:

) n≥1 is a compatible family of Feller semigroups associated with a coalescing flow of mappings ϕ c .

Proof. By Theorem 4.1 [START_REF] Le | Flows, coalescence and noise[END_REF], we only need to check that: ∀t > 0, ε > 0, x ∈ G,

and assume that all these σ-fields are right-continuous and include all P-negligible sets. When

Recall that for all s ∈ R, x ∈ G, the mapping t -→ K s,t (x) defined from [s, +∞[ into P(G) is continuous. Then the following Markov property holds.

Lemma 8. Let x, y ∈ G and T be an

T and has the same law as K 0,• (y).

As a consequence of the preceding lemma, for each

and is equal in law to K 0,• (0).

Consider the following random times:

and the following σ-fields:

Then F L+ = F L-(Lemma 4.11 in [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]). Let f : R N -→ R be a bounded continuous function and set

Thanks to (24), the process r -→ V r is constant on the excursions of r -→ Z r . By following the same steps as in Section 4.2 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF], we show that there is an F Wprogressive version of X that is constant on the excursions of Z out of 0 (Lemma 4.12 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]).

We take for X this version. Then X T is

13 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]). This implies that V T is independent of σ(W ) (Lemma 4.14 [START_REF] Le | Flows associated to Tanaka's SDE[END_REF]) and the same holds if we replace T by inf{t ≥ 0 : Z t = a} where a > 0.

Define by induction T + 0,n = 0 and for k ≥ 1:

. Then, we have the following Lemma 9. For all n, (V + k,n ) k≥1 is a sequence of i.i.d. random variables. Moreover, this sequence is independent of W .

measurable which proves the first claim by Lemma 8. Now, we show by induction on q that (V + 1,n , • • • , V + q,n ) is independent of σ(W ). For q = 1, this has been justified. Suppose

measurable and

) and σ(W ) are independent.

Let m + n be the common law of (V + k,n ) k≥1 for each n ≥ 1 and define m + as the law of V + 1 under P(.|Z 1 > 0). Then, we have the Lemma 10. The sequence (m + n ) n≥1 converges weakly towards m + . For all t > 0, under P(•|Z t > 0), V + t and W are independent and the law of V + t is given by m + .

Proof. For each bounded continuous function f : R p -→ R,

The left-hand side does not depend on t, which completes the proof.

We define analogously the measure m -by considering the following stopping times: T - 0,n = 0 and for k ≥ 1:

(vi) Recall that F0,s and Fs,t are independent ( K is a flow) and F0,t = F0,s ∨ Fs,t . By (24), we have K s,t (x s ) = E[δ ϕ c s,t (xs) |F K 0,t ] and as a result of (v),

Lemma 11. Let P t,x 1 ,••• ,xn be the law of (K 0,t (x 1 ),

Proof. We will prove the lemma by induction on n. For n = 1, this is clear. Notice that if t < τ 0,z , then K 0,t (z) is σ(W ) measurable and if t > T z 1 ,z 2 0,0 , then K 0,t (z 1 ) = K 0,t (z 2 ). Suppose the result holds for n ≥ 1 and let x n+1 ∈ G. Then by the previous remark, we only need to check that the law of (K 0,t (x 1 ),

are distinct and so by summing over all possible cases, we may replace A by

Recall the definition of f from Section 3.2 and let S = f (g 0,t (x n ), g 0,t (x n+1 )), E s = E ∩ {S = s} for s ∈ D. Then it will be sufficient to show that the law of (K 0,t (x 1 ), • • • , K 0,t (x n+1 ), W ) conditionally to E s only depends on {P u,x , u ≥ 0, x ∈ G} where s ∈ D is fixed such that s < t.

(ii) There exists a random variable X n+1 which is F W 0,s measurable and satisfies

Clearly, the law of (

G}. This completes the proof. Proposition 10. Let (K m + ,m -, W ′ ) be the solution constructed in Section 3 associated with

where

0 (P) and for this write

We now establish that

and therefore

Since ♯{n ∈ N, θ δ,i n < t < τ δ,i n } ---→ δ → 0 1 {Zt∈D i \{0}} a.s., we deduce that

(f i (X τ δ,i n ∧t )f i (X θ δ,i n ∧t )) + o(1) a.s.

For all i ∈ [1, N], let fi be C 2 on R such that fi = f i on R + ,

By dominated convergence for stochastic integrals,