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Abstract

We define an equation on a simple graph which is an extension of Tanaka’s equation
and the skew Brownian motion equation. We then apply the theory of transition kernels
developed by Le Jan and Raimond and show that all the solutions can be classified by

probability measures.
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1 Introduction and main results.

In [10], [11] Le Jan and Raimond have extended the classical theory of stochastic flows to
include flows of probability kernels. Using the Wiener chaos decomposition, it was shown that
non Lipschitzian stochastic differential equations have a unique Wiener measurable solution
given by random kernels. Later, the theory was applied in [12] to the study of Tanaka’s
equation: t

osi(r) =2 +/ sgn(ps ()W (du), s<t,x €R, (1)
where sgn(z) = lso — Lg<op, We = Worlpsoy — Wiolp<oy and (W, s < t) is a real white
noise (see Definition 1.10 [11]) on a probability space (£, A,P). If K is a stochastic flow of
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kernels (see Definition 3 below) and W is a real white noise, then by definition, (K, W) is a
solution of Tanaka’s SDE if for all s < ¢,z € R, f € C}R) (f is C? on R and f', f” are
bounded)

Ko f(x) = f(x) +/ Ko (f'sgn)(z)W (du) + %/ Ko of"(x)du a.s. (2)

It has been proved [12] that each solution flow of (2) can be characterized by a probability

measure on [0, 1] which entirely determines its law. Define
Ts(z) = inf{r > s : W, = —|z|},s,z € R.
Then, the unique F" adapted solution (Wiener flow) of (2) is given by

1 .
K:,[; (l‘) - 5z+sgn(z)Ws,t1{t§Ts(J:)} + 5(5W:,_t + 5_W:t)1{t>73(a:)}7 WSJ,rt = Ws,t - uler[lsft] Ws,u-

Among solutions of (2), there is only one flow of mappings (see Definition 4 below) which has
been already studied in [18].

We now fix « €]0, 1[ and consider the following SDE having a less obvious extension to kernels:
X7 =04+ Wi+ (20— 1)[~/§7t, t>s,xeR, (3)

where

- 1 [t
Li’t = lim —/ Liixse|<eydu (The symmetric local time).

e—0+ 2¢

Equation (3) was introduced in [8]. For a fixed initial condition, it has a pathwise unique solu-

tion which is distributed as the skew Brownian motion (SBM) with parameter o (SBM(«)).

1

5, flows associated to (3) are coalescing and a deeper study

It was shown in [1] that when a #

of (3) was provided later in [3] and [4]. Now, consider the following generalization of (1):

t
Xei(z) =2 —i—/ sgn (X (@)W (du) + (2a = 1)LE (X), s <tz R, (4)
where
- 1 [t
LX) = lim — [ 1ix. o<adu.
w(X) 835525/8 {1 X, (@) <2} AU

Each solution of (4) is distributed as the SBM («). By Tanaka’s formula for symmetric local
time ([15] page 234),

[ Xoa(@)] = \w|+/ SE0( X (2))d X (@) + LT,(X),
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where sgn(z) = 1{z50y — l{z<0}. By combining the last identity with (4), we have
[ Xoa(@)] = || + Wiy + L (X). ()
The uniqueness of solutions of the Skorokhod equation ([15] page 239) entails that
Xool)] = bl + Wi — min [(] + W,) A 0] ()

Clearly (5) and (6) imply that o(|X,.(2)];s < u <t) = (W, s < u < t) which is strictly
smaller than (X, (x);s <u <t) and so X,.(x) cannot be a strong solution of (4). For these
reasons, we call (4) Tanaka’s SDE related to SBM («).

From now on, for any metric space E, C(E) (respectively Cy(F)) will denote the space of all

continuous (respectively bounded continuous) R-valued functions on E. Let

o C}(R*) ={f € C(R): [ is twice derivable on R*, f', f € Cy(R*), fljo 1 oops filo 100l
(resp. f)_ oo 0p J[—co,0p) have right (resp. left) limit in 0}.

o Do={f€CFR"):af'(0+) = (1—-a)f'(0-)}.

For f € D,, we set by convention f(0) = f'(0—), f”(0) = f"(0—). By Ito-Tanaka’s formula
([13] page 432) or Freidlin-Sheu formula (see Lemma 2.3 [5] or Theorem 3 in Section 2) and
Proposition 3 below, both extensions to kernels of (3) and (4) may be defined by

Kol @) = f(a)+ [ KouleP@Widn)+5 [ Kouf'@du, f€D0 (0

where e(x) = 1 (respectively e(x) = sgn(z)) in the first (respectively second) case, but due to
the pathwise uniqueness of (3), the unique solution of (7) when e(z) = 1, is K(z) = dxs=
(this can be justified by the weak domination relation, see (24)). Our aim now is to define an
extention of (7) related to Walsh Brownian motion in general. The latter process was introduced
in [17] and will be recalled in the coming section. We begin by defining our graph.

Definition 1. (Graph G)
N

Fix N >1 and aq,--- ,an > 0 such thatZal-zl.

i=1
In the sequel G will denote the graph below (Figure 1) consisting of N half lines (D;)i1<i<n



emanating from 0. Let €; be a vector of modulus 1 such that D; = {hée;, h = 0} and define for

all function f: G — R and i € [1, N], the mappings :

fi : R+ — R
h — f(he))

Define the following distance on G':

d(he. we) - h+h  ifi#j, (h 1) eRE,
|h—HW| ifi=j,(hh)eR2.
For x € G, we will use the simplified notation |z| := d(x,0).
We equip G with its Borel o-field B(G) and use the notation G* = G \ {0}. Now, define
o C2(G*)={f € C(GQ) :Vie [1,N], f; is twice derivable on R, f!, fI" € C,(R%) and both
have finite limits at 0+}.

N
o D(ay, -+, ay) = {f € C}(G"): Y i f/(0+) = 0}.

For all x € G, we define €(x) = é}i}x € D;,x # 0 (convention €(0) = €y ). For f € CZ(G*),
x #0, let f'(x) be the derivative of f at x relatively to e(z) (= f!(|z|) if x € D;) and f"(x) =
(F)(@) (= f2(2]) if 2 € Dy). We use the conventions f'(0) = ffs(0+), "(0) = £4(0+). Now,
associate to each ray D; a sign e; € {—1,1} and then define

g waEDZ,$7éO
e(x) =

EN ifSL’:O

To simplify, we suppose thate; = ---=¢e, =1, epy1 =---=¢eny = —1 for somep < N. Set
¢t=\J D, G = |J DiThen G=G*|]JG.
1<i<p pHI<i<N

We also put at =1 —a™ :=>"  «.

Remark 1. Our graph can be simply defined as N pieces of Ry in which the N origins are
wdentified. The values of the €; will not have any effect in the sequel.

Definition 2. (Equation (E)).
On a probability space (2, A,P), let W be a real white noise and K be a stochastic flow of
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Figure 1: Graph G.

kernels on G (a precise definition will be given in Section 2). We say that (K, W) solves (E)
if for all s <t,f € D(ay, - ,ay),z € G,

t 1 t
Koaf@) = 1(0)+ [ KoleP@Wdn) + 5 [ Kouf @i as
If K =0, is a solution of (E), we simply say that (o, W) solves (E).

Remarks 1. (1) If (K, W) solves (E), then o(W) C o(K) (see Corollary 2) below. So, one
can simply say that K solves (E).

(2) The case N = 2,p = 2,61 = €9 = 1 (Figure 2) corresponds to Tanaka’s SDE related to S BM
and includes in particular the usual Tanaka’s SDE [12]. In fact, let (K® W) be a solution of
(7) with o = aq,e(y) = sgn(y) and define Y(y) = |y|(€1ly>0 + €21y<0),y € R. For all z € G,
define K&,(x) = (K$(y)) with y = ¢~ (x). Let f € D(on,o2),2 € G and g be defined on R
by g(2) = f(¥(2)) (g € Da,). Since K® satisfies(7) in (9,01 (x)) (g is the test function and
Y Y(x) is the starting point), it easily comes that K satisfies (E) in (f,x). Similarly, if K¢
solves (E), then K® solves (7).

Figure 2: Tanaka’s SDE.



(3) As in (2), the case N =2,p= 1,61 = 1,69 = —1 (Figure 3) corresponds to (3).

_________________________________________________________________

Figure 3: SBM equation.

In this paper, we classify all solutions of (£) by means of probability measures. We now state

the first

Theorem 1. Let W be a real white noise and X;"* be the flow associated to (3) with « = a™.

Define Zs(x) = X0l s <t 0 e G and

K:};('T) = 5x+€(x)5(a:)Ws,t1{t§Ts,x}
+ (Za—i5ai|zs,t(x>|1{zs,t(x>>0}+ > a—i5e7\zs,t(m)\1{Zs,t(m)§0})1{t>Ts,z}v
=1 i=p+1

where 75, = inf{r > s : x + é(x)e(x)Ws, = 0}. Then, KW is the unique Wiener solution of
(E). This means that K" solves (E) and if K is another Wiener solution of (E), then for all

s<txeG, KJ(r)=Ky,r)as.

The proof of this theorem follows [10] (see also [14] for more details) with some modifications
adapted to our case. We will use Freidlin-Sheu formula for Walsh Brownian motion to check
that K" solves (F). Unicity will be justified by means of the Wiener chaos decomposition
(Proposition 8). Besides the Wiener flow, there are also other weak solutions associated to (F)

which are fully described by the following



Theorem 2. (1) Define

k
Akz{u:<u1’7uk)€[071]kzu221}, kZl

i=1
Suppose ot # 3.

(a) Let m™ and m~ be two probability measures respectively on A, and Ay_, satisfying :

(+) uier(du):a—i,Vl <i<p,
A, a

(-) ujm_(du):ajer, Vi<j< N —p.
a

An_p
Then, to (m*,m™) is associated a stochastic flow of kernels K™ ™ solution of (E).

e To ((5(ﬂ _ %),5(%“ ,a%v)) is associated a Wiener solution KW .

at e ) =y
N
@ Qi . . : .
o To () —0o,.010,.0, E —00...0.1,0...0) 1S associated a coalescing stochastic flow of
o -
=1 i=p+1
mappings .

(b) For all stochastic flow of kernels K solution of (E) there exists a unique pair of measures
(m™,m™) satisfying conditions (+) and (—) such that K faw pemtm

(2) If a™ = 5, N > 2, there is just one solution of (E) which is a Wiener solution.

Remarks 2. (1) If a™ =1, solutions of (E) are characterized by a unique measure m™ satis-

fying condition (+) instead of a pair (m™, m~) and a similar remark applies if a= = 1.
(2) The case at = %,N = 2 does not appear in the last theorem since it corresponds to

This paper follows ideas of [12] in a more general context and is organized as follows.
In Section 2, we remind basic definitions of stochastic flows and Walsh Brownian motion.
In Section 3, we use a “specific”’ SBM (a™) flow introduced by Burdzy-Kaspi and excursion
theory to construct all solutions of (E). Unicity of solutions is proved in Section 4. Section
5 is an appendix devoted to Freidlin-Sheu formula stated in [5] for a general class of diffusion
processes defined by means of their generators. Here we first establish this formula using simple
arguments and then deduce the characterization of Walsh Brownian motion by means of its

generator (Proposition 3).



2 Stochastic lows and Walsh Brownian motion.

Let P(G) be the space of probability measures on G and (f,)n,en be a sequence of functions
dense in {f € Co(G), || f]]oo < 1} with Cy(G) being the space of continuous functions on G which
vanish at infinity. We equip P(G) with the distance d(u,v) = (32, 27"([ fadu — ffndy)Q)%
for all g and v in P(G). Thus, P(G) is a locally compact separable metric space. Let us
recall that a kernel K on G is a measurable mapping from G into P(G). We denote by E
the space of all kernels on G and we equip E with the o-field £ generated by the mappings
K +— pK, 1€ P(G), with pK the probability measure defined as uK(A) = [, K(z, A)p(dz)

for every 1 € P(G). Let us recall some fundamental definitions from [11].

2.1 Stochastic flows.
Let (£2,.A,P) be a probability space.

Definition 3. (Stochastic flow of kernels.) A family of (E, E)-valued random variables (K )s<t
15 called a stochastic flow of kernels on G if, Vs <t the mapping

Kgy + (GxQ,BG)®A) — (P(G),B(P(G)))

(r,w) — K (z,w)

s measurable and if it satisfies the following properties:

~

Vs<t<u,xeG as. VfeOyG),Keuf(x) = Ket(Kiwf)(x) (flow property).
2. Vs <t the law of K, only depends on t — s.

8. Forallt; <ty <--- <ty, the family {K,4,.,,1 <1 <n—1} is independent.
4.Vt >0,z € G, feCy(G), }}L%E[(Ko,tf(x) — Ko.f(y))?] = 0.

5. Vt>0,feCyG), xETooEKKO’tf(x))Q] =0.

6. ¥ € G, [ € Co(G), lim Bl(Kouf(x) — /()] = 0.



Definition 4. (Stochastic flow of mappings.) A family (¢s:)s<¢ of measurable mappings from
G into G is called a stochastic flow of mappings on G if K, (x) := 0y, ,(2) 95 a stochastic flow

of kernels on G.

Remark 2. Let K be a stochastic flow of kernels on G and set P/ = E[Kg{'],n > 1. Then,
(P™)p>1 18 a compatible family of Feller semigroups acting respectively on Co(G™) (see Propo-

sition 2.2 [11]).

2.2 Walsh Brownian motion.

Recall that for all f € Cy(G), f; is defined on R, . From now on, we extend this definition on
R by setting f; = 0 on | — 00, 0[. We will introduce Walsh Brownian motion W(ay,--- , ay),
by giving its transition density as defined in [2]. On Cy(G), consider

Ptf<h€j) = QZ a;pe fi(—=h) +ptfj(h) - ptfj<_h)a h>0, Pf(0)= QZ a;p fi(0).

where (p;)i>o is the heat kernel of the standard one dimensional Brownian motion. Then (F;)¢>q
is a Feller semigroup on Cy(G). A strong Markov process Z with state space G and semigroup
P,, and such that Z is cadlag is by definition the Walsh Brownian motion W (ay, - ,ay) on
G.

2.2.1 Construction by flipping Brownian excursions.

For all n >0, let D, = {£, k € N} and D = U,,enD,,. For 0 < u < v, define n(u,v) = inf{n €
N D,Nu, v[# 0} and f(u,v) = inf Dy 0N, v].

Let B be a standard Brownian motion defined on (2, A,P) and (¥,,r € D) be a sequence of
N

independent random variables with the same law Z a;0z, which is also independent of B. We

i=1

define

B = B; — m[in} By, g¢=sup{r <t: B =0}, d; =inf{r > t: B =0},
u€e(0,t

and finally Z; = 4, B, ,r = f(g;,dy) if B >0, Z; =0 if B}t = 0. Then we have the following

Proposition 1. (Z;,t > 0) is an W(ay, -+ ,an) on G started at 0.
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Proof. We use these notations

ming; = m[m} By, €y =€(Zi), Fs = 0(€0u, Bu; 0 <u < s).
ue|(s,t

Fix 0 < s <t and denote by Es; = {ming, = ming,}(= {g: < s} a.s.). Let h : G — R be a

bounded measurable function. Then

E[n(Z)|Fs] = EM(Z)1g, | Fs] + E[M(Z)1E | Fd],

with

N
E[h(Z)1g: |F) =Y Elhi(BH ) Ligssa,—a | F

i=1

Zaz i( 1{gt>s}‘}— J-

If By, = B, — B;, then the density of (min B, ,, Bs;) with respect to the Lebesgue measure

rels,t|

is given by

2 —(—2x + y)2
m(—% +y) eXp(W)l{ww@} ([7] page 28).

g(z,y) =
Since (Bs,,r > s) is independent of F, we get
E[hZ(Bj>1{gt>s}|fs] - E[h’ (B t rIé’l[(lgli]Bs T)]‘{ mln]Bs r> n'l[ln]Bs r}‘F:I

— /Rl{Bbx}(/R hi(y — x)g(x, y)dy)dx
- 2/R hiw)pi—o(BE, —u)du (u=y—a)

and so E[h(Zi)1ge,|Fs] = QZazpt shi(=BF). On the other hand

Elh(Z)1E, | Fs] = Elh(€o,s(B; — mings))1e, ,n(B,>mino..)

T
- E[h< (Bt mino,s))l{Bt>mino,s}‘Fs] - E[h<€O,S(Bt - mino,s»1E§’tﬂ(Bt>mino’s)|-Fs]-

Obviously on {é s = €}, we have

E[h(go,s<Bt - mino,s))1{3t>mino,s}

Fs) = Elh(Bsi + B)lp \ prgy| Fs)

= ptfshk<B:)

10



and

E[h(€0,s(Br — mino,s))1pe ,n(Bi>mino.o) [Fs] = Ellw(Bs + B pee rrl[in]Bs,r,Bs,t+B§L>0}|*F8]
rE|s,t

= / hi(y + B:)l{y+B;_>O} (/ 1{_Bs+>m}9(377 y)daz) dy = pr—shix(—BY).
R R

As a result, E[h(Z;)|Fs] = Pi—sh(Z;) where P is the semigroup of W (ay, -, ay). O

Proposition 2. Let M = (M,,)n>0 be a Markov chain on G started at 0 with stochastic matriz

Q given by
Q0.8) = i, Q(nes, (n+1)&) = Q(nei, (n— &) = Vie[LN], n>1  (8)

Then, for all 0 <t; < --- <1,, we have

1 1 law
(G Mizmargs s gy Miozme,) ———— (Zuy o Zy,),

’2 n — +oo

where Z is an W (o, -+ ,ay) started at 0.

Proof. Let B be a standard Brownian motion and define for all n > 1 : T#(B) = T3 (| B|) =
and for £k >0

n : n 1
Tia(B) = inf{r 2 T3(B),|B: — Brp| = o},

Tea(IBl) = int{r > (1B, ||B:| — |Brl| = 5, -

Then, clearly T77(B) = T;}(|B]) and so (T(|B]))k>o0 faw (T3 (B))k>o- It is known ([6] page
31) that hm T{;% ;/(B) =t a.s. uniformly on compact sets. Then, the result holds also for

22%J(|B|) Now, let Z be the W(ay,---,ay) started at 0 constructed in the beginning of
this section from the reflected Brownian motion B*. Let T}* = T}*(B*) (defined analogously to
TR (IBl)) and Z}! = 2" Zzn. Then obviously (Z7,k > 0) = "M for all n > 0. Since as. t — Z,

is continuous, it comes that a.s. V& > 0,lim,, , o Q%Zfz% b= Zy. O

11



2.2.2 Freidlin-Sheu formula.

Theorem 3. [5] Let (Z;)i>0 be a W(ay, -+ ,an) on G started at z and let Xy = |Z;|. Then
(i) (Xi)eso is a reflecting Brownian motion started at |z|.

(ii) By = X, — L(X) — |2| is a standard Brownian motion where

- 1t
Li(X) = hm—/ Liix,|<eydu.
0

e—0t 2¢

(i) i € GG,
! / 1 ! " a / T
1z =10+ [ £(zap.+ 5 [ 1z (Do 0mix). o)

Remarks 3. (1) By taking f(z) = |z| and applying Skorokhod lemma, we find the following
analogous of (6),
|Zi| = |z| + B — min [(|z] + B.) A0].
s<u<t

From this observation, when ¢; = 1 for all i € [1,N], we call (E), Tanaka’s SDE related to
Wi(ag, -, ay).

(2) For N > 3, the filtration (FZ) has the martingale representation property with respect to
B [2], but there is no Brownian motion W such that F7 = F}V [16].

Using this theorem, we obtain the following characterization of W (ay, - -+, ay) by means of its

semigroup.

Proposition 3. Let
N
o D(an, -+, an) ={f € C}G") : Y _aifl(0+) = 0}.
i=1
e Q = (Qi)i>0 be a Feller semigroup satisfying
1 t
Qi) = J2)+ 5 [ Quf"(@)du ¥ € Dlar, - ).
0
Then, @ is the semigroup of W(ay, -, ay).

Proof. Denote by P the semigroup of W(ay,---,ay), A" and D(A’) being respectively its

generator and its domain on Cy(G). If

D'(ay, -+ ,an) = {f € Co(G)[ | Dlar.- -+ ,an), f" € Co(G)}, (10)

12



then it is enough to prove these statements:
(i) Vt >0, P(Co(G)) C D'(ay,---,an).
(ii) D'(aq, -+ ,an) C D(A) and A'f(z) = 5 f"(x) on D'(ayq, -+, ay).
(iii) D'(aq, -+ ,an) is dense in Cy(G) for ||.|]o-

(iv) If R and R’ are respectively the resolvents of @) and P, then

Ry=R, ¥V A>0 on D'(ay,--,ay).

The proof of (i) is based on elementary calculations using dominated convergence, (ii) comes
from (9), (iii) is a consequence of (i) and the Feller property of P (approximate f by P% f).
To prove (iv), let A be the generator of @) and fix f € D'(ay, - ,ay). Then, R,f is the
unique element of D(A) such that (A — A)(R\f) = f. We have R\f € D'(ay,---,an)
by (i), D'(aq,---,ay) C D(A) by hypothesis. Hence R\f € D(A) and since A = A’ on
D'(aq, -+ ,ay), we deduce that Ryf = R\ f. O

3 Construction of flows associated to (F).

In this section, we prove (a) of Theorem 2 and show that K" given in Theorem 1 solves (E).

3.1 Flow of Burdzy-Kaspi associated to SBM.
3.1.1 Definition.

We are looking for flows associated to the SDE (3). The flow associated to SBM (1) which

solves (3) is the reflected Brownian motion above 0 given by

Ys,t(x) - (l‘ + Ws,t)l{tﬁfrs,x} + (Ws,t — inf Ws,u)l{t>’rs,x}7

UE[Ts,z,t]
where

Tsx = nf{r >s:x+ W, =0} (11)

and a similar expression holds for the SBM (0) which is the reflected Brownian motion below
0. These flows satisfy all properties of the SBM («a), & €]0, 1] we will mention below such that
the “strong”flow property (Proposition 4) and the strong comparison principle (12). When

13



a €]0, 1[, we follow Burdzy-Kaspi [4]. In the sequel, we will be interested in SBM (a™) and so
we suppose in this paragraph that o™ ¢ {0, 1}.
With probability 1, for all rationals s and x simultaneously, equation (3) has a unique strong

solution with o = a™. Define

1 t
Y = inf X;"Y, L, = lim— [ 1 2)|<evdu.
() inf X, +(@) = lim o / {IYsu(@)] <epdU
u<s,ac<Xg’y
Then, it is easy to see that a.s.
}/st(x) < Ys,t(y) Vs <t,x <. (12)

This implies that © — Y ,(x) is increasing and cadlag for all s <t a.s.

According to [4] (Proposition 1.1), t — Y, () is Holder continuous for all s,z a.s. and with
probability equal to 1: Vs, z € R, Y} .(z) satisfies (3). We first check that Y is a flow of mappings
and we start by the following flow property:

Proposition 4. V¢ > s a.s.
Yiulx) =Yiu(Yse(z)) Yu>t,z e R.
Proof. Tt is known, since pathwise uniqueness holds for the SDE (3), that for a fixed s <t <

u,x € R, we have Y, ,(z) = Y. (Yse(z)) a.s. ([9] page 161). Now, using the regularity of the

flow, the result extends clearly as desired. O
To conclude that Y is a stochastic flow of mappings, it remains to show the following

Lemma 1. Vi > s, x € R, f € Cy(R)

lim B[(f(Yea(z)) = f(Yaa(y))*] = 0.

y—T
Proof. We take s = 0. For g € Cy(R?), set

PPg(x) = Blg(You(n1), You(w2))], x = (21, 2).

14



If e >0, foz,y) = 1{o—y/>c}, then by Theorem 10 in [13], Pt(Q)fe(:c,y) — 0.
> )
For all f € Cy(R), we have

El(f (Yor(@)) = f(YouW))*) = B2 1% (,2) + PP ¥ (y.y) = 2P 1% (2,).
To conclude the lemma, we need only to check that

lim P f(y) = PP f(x), Vo € R?, f e Cy(R?).

Yy—x

Let f = f1 (029 f2 with fz c Co(R>, r = (.Tl,l’g),y = (yl,yg) c Rz. Then

2

PP fy) = PP @) < MY _PP(1® fr— fr ® 1)) (g, 7).
k=1

where M > 01is a constant. Foralla > 0,3¢ >0, [u—v| <e=V1I <k <2: |fi(u)— fr(v)] <
a. As a result
2
[P 1) = B2 F()] < 2Ma+ 20y || filloo P fe (ki)
k=1

and we arrive at limsup, ., PP f(y) — PP f(z)] < 2Ma for all @ > 0 which means that
lim,_,, Pt(Q) fly) = Pt(Q) f(z). Now this easily extends by a density argument for all f € Cy(R?).

U

In the coming section, we present some properties related to the coalescence of Y we will

require in Section 3.2 to construct solutions of (F).

3.1.2 Coalescence of the Burdzy-Kaspi flow.

In this section, we suppose % < at < 1. The analysis of the case 0 < o < % requires an

application of symmetry. Define
Ty = nf{r >0, Yo,(2) = Yo,(y)}, =,y €R.

By the fundamental result of [1], 7,,, < oo a.s. for all z,y € R. Due to the local time,
coalescence always occurs in 0; Y, (z) = Yo,(y) = 0 if r = T, ,. Recall the definition of 7,

from (11). Then T, , > sup(7o.4, T0,y) a.s. ([1] page 203). Set
LY =2+ (20" = 1)Loy(z), Ulz,y) =inf{z>y: L} =L} =z for some t>0},y > z.
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According to [3] (Theorem 1.1), there exists A > 0 such that
Vu>y >0, PUWOy)<u)=(1- L)
u

Thus for a fixed 0 < v < 1, we get lim, o, P(U(0,y) < y7) = lim, ;o4 (1 —y' ™) = 1.
From Theorem 1.1 [3], we have U(z,y) — faw U0,y — x) for all 0 < x < y and so

lim P(U(z,y) —x < (y—x)") =1, Yx > 0. (13)

y—x+

Lemma 2. For all x € R, we have limy_,, T, , = 79, n probability.

Proof. In this proof we denote Y;;(0) simply by Y;. We first establish the result for z = 0. For

all t > 0, we have
B(t < Th,) < B(Los(0) < Loy, (0)) = B(LY < U(0,))

since (2" —1) Lo, ,(0) = U(0,y). The right-hand side converges to 0 as y — 0+ by (13). On

the other hand, by the strong Markov property at time 7, for y <0,
Giy) =Pt <Toy) =Pt < 10y) + Ellgsr,}Gir, (V)]
For all € > 0,

E[l{t>To,y}Gt—To,y (YTO,y )] - E[l{t—To,y>E}Gt—To,y (me)] + E[1{0<t—To,y§E}Gt—To,y (YTO,y)]

< E[GG(YTM)] +P0<t—1, <e).

From previous observations, we have Y, > 0 a.s. for all y < 0 and consequently Y, ~— 0+
as y — 0—. Since lim, ,o; G.(2) = 0, by letting y — 0— and using dominated convergence,
then € — 0, we get limsup Gy(y) = 0 as desired for z = 0. Now, the lemma easily holds after

y—0—
remarking that

law law

Tey—T02 = Toy—if0<zxz<y and T,, -7, = To.—yif x <y <0.
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For s <t,x € R, define

gsi(x) = sup{u € [s,1] : Yiu(x) =0} (sup(d) = —o0). (14)
We use Lemma 2 to prove
Lemma 3. Fiz s,x € R. Then, a.s. for allt > 7, ., there exists (v,y) € Q* such that

v < gsi(x) and Ys, . (z) =Y, (y) V r > gs1(x).

Proof. We prove the result for s = 0 and first for z = 0. Let ¢ > 0, then for all ¢ > 0
P37 >0:You(n) = You(=n) > P(T-c <1).

From P(t < T_..) <P(t < Tp.) +P(t < Tp—) and the previous lemma, we have lim._,oP(t <
T ..) = 0 and therefore P(3 n > 0 : Yy,(n) = Yo, (—n)) = 1. Choose ¢ > 0, such that
Yo+(€) = Yoi(—€) and let v €]0,7_[NQ. Then Yy,(€) > Yo, (—€) and for any rational y €
1Yo.0(—€), Yo, (€)[, we have by (12)

K},U(%,v<_€>> S YL,u(iy) S K},U(%,U(€))7 vu Z V.

The flow property (Proposition 4) yields Yy ,(—€) <Y, .(y) < Yj.(€), Yu > v. So necessarily
Y0.-(0) =Y, (y), ¥r > go.4(0). For x > 0 and e small enough, we have

P(You(x 4 €) > You(2),t > 7o) S P(100 <t < Thnye)-
This shows that lim. o P(Yy (x4 €) > Yo, ()|t > 70,) = 0 by Lemma 2. Similarly, for e small
P(Yoi(z — €) < You(2),t > 700) < P00 <t < Tyc)-

The right-hand side converges to 0 as ¢ — 0 by Lemma 2 and so

lime o P(Yo+(z) > Yoi(z — €)|t > 79,) = 0. Since
{(Yoi(x+e€) > You(r —e)} C{You(w+6€) > You(w)} U{You(x) > You(z —€)},

we get P(de > 0 : Yy (x —€) = Yo, (v + €)|[t > 79,) = 1. Following the same steps as the case
x = 0, we show the lemma for a fixed ¢t a.s. Finally, the result easily extends almost surely for

all ¢. .
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We close this section by the

Lemma 4. With probability 1, for all (s1,21) # (s9,12) € Q? simultaneously
(i) Tehe? i=inf{r > sup(si, s2) 1 Yy, o(21) = Yy (22)} < 00,

(i) T35 > Sub(Tsy 215 Toaa)

(iii) Ysl,Tfl{;”;? (1) = }QQ,T;{Q (z2) =0,

(i) Yoy o(21) = Yoy p(2) ¥ > T2122.

1,52

Proof. (i) is a consequence of Proposition 4, the independence of increments and the coalescence
of Y.(ii) Fix (s1,71) # (s2,22) € Q* with s; < sy. By the comparison principle (12) and
Proposition 4, Y5, +(z1) > Y, (x2) forallt > sy or Yy, ¢(x1) < Y, (22) forallt > so. Suppose for
example that 0 < z := Y}, ,,(21) < 22 and take a rational 7 €]z, x5[. Then T722 > 7, . > 74, o,

o1 s s . : N . .
and Tg152 > TH%2 > 7, 4,. (iil) is clear since coalescence occurs in 0. (iv) is an immediate

consequence of the pathwise uniqueness of (3). O

3.2 Construction of solutions associated to (FE).

We now extend the notations given in Section 2.2.1. For all n > 0, let D, = {£, k € Z} and
D be the set of all dyadic numbers: D = U,enD,,. For u < v, define n(u,v) = inf{n € N :
D,NJu,v[# 0} and f(u,v) = inf Dy, )N]u, v[. Denote by Gg = {x € G : |z| € Q4}. We also
fix a bijection ¢ : N — Q x G and set (s;, x;) = (i) for all i > 0.

3.2.1 Construction of a stochastic flow of mappings ¢ solution of (F).

Let W be a real white noise and Y be the flow of the SBM(a™) constructed from W in
the previous section. We first construct ¢, .(z) for all (s,z2) € Q x Gg and then extend this
definition for all (s,xz) € R x G. We begin by ¢, .(7¢), then ¢, .(x;) and so on. To define
©so.-(T0), we flip excursions of Y, .(e(xo)|zo|) suitably. Then let ¢y, ¢(x1) be equal to ¢y, +(z0)
if Yy, :(e(zo)|wo|) = Y ¢(e(x1)|z1]). Before coalescence of Yy, .(e(zo)|zo]) and Y, .(e(z1)|x1]),
we define ¢, .(z1) by flipping excursions of Yy, .(¢(z1)|z1]) independently of what happens to

©s,.- (7o) and so on. In what follows, we translate this idea rigorously. Let 47,5~ be two
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independent random variables on any probability space such that

_;+ law Z . el, _,, law Z Q; 5ﬂ (15)

jmpr1 @
Let (€2, A,IP) be a probability space rich enough and W = (W, s < t) be a real white noise
defined on it. For all s < t,x € G, let Z;,(z) := Y (e(x)|x|) where Y is the flow of Burdzy-
Kaspi constructed from W as in Section 3.1.1 if a* ¢ {0, 1} (= the reflecting Brownian motion
associated to (3) if o™ € {0, 1}).
We retain the notations 7; 4, gs () of the previous section (see (11) and (14)). Fors €e R,z € G

define, by abuse of notations

Tsuw = Tse(@)als s, (T) = gs.(e(x)|x|) and ds4(x) = inf{r > t: Z,,(x) = 0}.

It will be convenient to set Z;,.(x) = oo if r < s. Forall ¢ > 1,ug,--- ,u, € R,yp,--,y, € G
define

T2 50 = inf{r > Ty, ¢ Zugr (g) € {Zusr (W), i € [1,¢ = 1]}}.

Let {(V3 20 (1), Yeg.z0 (1)), 7 € DN [0, +-00[} be a family of independent copies of (7,7~) which
is independent of W. We define ¢, .(zo) by

(
Zo + €<x0)8<$0>Wso,t if S0 S t S Tsq,x0

0 6> 7oy a0 Zost(10) = 0
@So,t('ro) =
7;)7a:0(f0)|zso,t(x0)|7 fO - f(gso,t(xO)a dso,t(xO)) if ¢ > Tso,moa Zso,t(xO) >0

\7;)7m0(f0)|230,t<x0)‘7 fO - f(gso,t(xO)u dSO,t(xO)) lft > TSO,I(N ZSQ,t<x0) < 0

Now, suppose that ¢s, (7o), , s, ,.(¥4-1) are defined and let {(V{ . (r), 75, . (r),r € DN
[s4, +00[} be a family of independent copies of (1,77) which is also independent of
o (7;%(7“),7;7%(7“),7’ eDNs;, oo, 1 <i<qg-—1, W) Since Tg 5t < oo, let i € [1,q — 1]
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and (s;, z;) such that Z,_; (x,) = Zs, 1, (2;) with to = T 5" We define ¢ .(z4) by

(

Tq + €(wq)e(wq) W, + if s <t <7,

0 it > 7o, w0 sy t(q) =0
Psgt(Tq) = Vo el U Zsgt (@), fog = [(Gsqt(74), dsy (zg)) it € [To, 2ys o]y Zsy(2g) >0
Vaowd S Zsgt(@)ls fo = F(Gsgt(Tg)s dsy () It € [Ts, 2g0 0], Zsgt(2g) <O

©s,.1(T:) it t >t
\

In this way, we construct (¢s.(z),s € Q,z € Gg).

Now, for all s € R,z € G, let g 4(v) = v+ é(x)e(x)Wsyp if s <t < 75, If t > 754, then by
Lemma (3), there exist v € Q,y € G such that v < gs,(x) and Z,,(z) = Z,,(y) V1 > gs(2).
In this case, we define ¢, ,(x) = ¢, +(y). Later, we will show that ¢ is a coalescing solution of

(B).

3.2.2 Construction of a stochastic flow of kernels K™ ™ solution of (E).

Let m*™ and m™ be two probability measures respectively on A, and Ay_,. Let UT,U~ be two

independent random variables on any probability space such that
Ut U (16)

Let (€2, A,IP) be a probability space rich enough and W = (W, s < t) be a real white noise
defined on it. We retain the notation introduced in the previous paragraph for all functions
of W. We consider a family {(U . (r),Ug . (7)), € DN [sp, +oo[} of independent copies of
(UT,U™) which is independent of W.

If t > 7y, 2 and Zg, ¢(xg) > 0 (resp. Zg, (o) < 0), let

Uso (o) = Uy 4, (fo) (resp. Uy, y(w0) = Uy, (fo)), fo = F(9so.t(x0), dsg.t (o).
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Write Ut (x0) = (Us3(0))1<i<p (resp. Uy, 1(x0) = (Ugy3(0))pr1<ian) if Zeg i (w0) > 0, > Tog g
(resp. Zsyi(xo) < 0,t > Ty, 4,) and now define

4
5$0+€($0)6(2:0)W50¢ lf S0 S t S Tso,xo

m* m— i1 Us+0 t(xo)aéilZso,t(:vo)\ if £ > Tyy200 Zsot(T0) > 0
K™ (x0) =

s0,t

N .
Zi:p+1 Uso t<x0)5€i|250,t(1'0)| if t > Ts0,205 Zso,t<x0) <0

& if ¢ > oy w0s Zsot (o) =0
Suppose that Kgff’m_(:po) K;"Z M (w4-1) ave defined and let {(US . (1), U, , (r)),r € DN
[s4, +00[} be a family of independent copies of (U™, U~) which is also independent of

o (U, (r), U . (r),reDN[s;,+oo[,1<i<q—1,W). If t > 7y, ,, and Z, ,(x4) > 0 (resp.

Zy,i(zg) < 0), we define U} ,(x,) = (Ui(xg))1<i<p (vesp. Uy, 1(zg) = (Us 4 (2q))ps1<i<n) by
analogy to ¢ = 0. Let i € [1,¢—1] and (s;, z;) such that Z,_ 4 (2,) = Zs, 4, (2;) with tg = T 57
Then, define

;

Oug+&(q)e(2g) W 1 if s, <t < 7Ty,
D UL @)z 20 e o >t > Ty a0y Zoya(Tg) > 0
Ks:ﬁ " (xg) = Zf;pﬂ Usq, (29)08,\ 2oy (ag)] 1 to > > Toy 2y Zsgt(4) <0
do if tg > > To, g Zogt(Tg) =0

Siyt

In this way, we construct (K;ﬁ’m* (),s € Q,z € Gg).

Now, for s € R,z € G, let KZf’m_ () = Opre@e@w,, if s <t < Tp It > 755, let
v € Quy € Gg such that v < gs4(z) and Z,,.(v) = Z,,(y) V r > gsu(x). Then, define
K7™ (2) = K™ (y).

In the next section we will show that K™ is a stochastic flow of kernels on G which solves

(E).
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3.2.3 Construction of (K™ " ) by filtering.

Let m* and m~ be two probability measures as in Theorem 2 and (Y©,U™), (¥7,U™) be two

independent random variables satisfying

Ut = (U )1<i<p & m*, U = U )pgi<n = m ,
P(Yh = &ut) =u', vie (L), (17)
and
Py~ =&lu-)=u7, Vje[p+1,N]. (18)

Then, in particular (¥*,57) and (UT,U ™) satisfy respectively (15) and (16).

On a probability space (€2, A4, P) consider the following independent processes

o W = (Ws;, s <t)a real white noise.

o {(V.(r), U (r)),r € DN[s,+oo|,(s,7) € Q x Gg} a family of independent copies of
(y*.u).

S,z

o {(Vo,(r), U, (r),r € DN[s,+oo[,(s,2) € Q x G} a family of independent copies of

Now, let ¢ and K™"m™ be the processes constructed in Sections 3.2.1 and 3.2.2 respec-
tively from (Y©,77,W) and (UT, U, W). Let o(UT,U~, W) be the o-field generated by
Ut (r), U (r),r € DN s, +ool, (s,2) € Q x Gg} and W. We then have the

Proposition 5. (i) For all measurable bounded function f on G, s <t € Ryx € G, with
probability 1,
mt,m= -
K™ f(x) = E[f(@se()le@™ U™, W)].
(ii) For all s,z, with probability 1, ¥t > s
lost(2)] =1 Zss(2)],  @si(x) € GT & Zoy(x) >0 and  ¢e4(z) € G~ & Z,4(z) <0.
(#ii) For all s,z # y, with probability 1
to :=1nf{r > s: ps.(v) = @s,(y)} =inf{r > s: Z, . (z) = Z; . (y) = 0}
and @s () = s, (y), Vr > to.
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Proof. (i) comes from (17), (18) and the definiton of our flows, (ii) is clear by construction. By

(ii) coalescence of p,.(x) and ¢,.(y) occurs in 0 and so (iii) is clear. O

Next we will prove that ¢ is a stochastic flow of mappings on G. It remains to prove that
properties (1) and (4) in the definition are satisfied. As in Lemma 1, property (4) can be

derived from the following

Lemma 5. Vit > s,¢ > 0,2 € GG, we have

lim P(d(@0.4(x), 54(y)) = €) = 0.

Yy—x

Proof. We take s = 0. Notice that for all z € R, we have
Your(z) =2+ Wiif 0<t<1p..

Fix ¢ > 0,2 € G7*\ {0} and y in the same ray as x with |y| > |z|,d(y,z) < §. Then
d(po(x), por(y)) = d(z,y) < 5 for 0 <t < 794 A Ty (= 7o,z in our case). By Proposition 5
(iii), we have @o(x) = wo+(y) if t > T}y, 1y|- This shows that

{d(poi(x), p0s(y)) = €} C{Toja| <t < Tjafy} a-5.
By Lemma 2,
P(d(0.1(2), por(y)) = €) < P(T0,e) <t < Thay ) = 0 as y =, [y > |z].
By the same way,
P(d(pos(x), poi(y)) = €) < P10y <t < Tayjy) = 0 as y — 2, [y| <|z].

The case x € G~ holds similarly. O

Proposition 6. Vs <t <u,x € G:

Os.u(®) = Qrulpsi(x)) a.s.
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Proof. Set y = ps4(z). Then, with probability 1, Vi > ¢, Y, (e(x)|z|) = Yi,(Ys(e(z)|x])) and
s0, a.s. Vr >t Z,.(v) = Zy,(y). All the equalities below hold a.s.

e 1Ist case: u < 7y,. We have 7, = inf{r > ¢, Z,,(y) =0} = inf{r > t, Z;,(z) = 0} = 7,,.
Consequently u < 7,y and ¢yu(2) = ()| Zsu(@)| = €(y)| Zeu(y)] = Lru(y) = Crul@si(@)).

e 2nd case: t < 7,, < u. We still have 7., = 7,5, and so ¢;,(y) = gsu(x). It is clear by
construction that: s, () = @ru(y) = Pru(@s(x)).

e 3rd case: Ty, <t,7, <u. Since 1, is a common zero of (Z;,(z)),>s and (Z;,(y)),>¢ before
u, it comes that g;.(y) = gs.u(x) and therefore ¢, () = @1u(y) = vrulpsi(2))-

e 4th case: 7y, < t,u < 7y,. In such a case, we have ¢;,(y) = €(y)|Ziu(y)| = €(y)|Zsu(x)|.
Since 7 — Z,,(z) does not touch 0 in the interval [¢,u] and ¢,:(z) = y, we easily see that

@s,u(x) = g(y)‘Zs,u<x)‘ = @t,u<y> O

Proposition 7. ¢ is a coalescing solution of (E).

Proof. We use these notations: Y, := Y{,(0), ¢, = ¢o.(0). We first show that ¢ is an
Wi(ay, -+ ,ay) on G. Define for alln > 1 : T3(Y) = 0,

: n 1 . . 1
T (Y) = inf{r = TR(Y), d(pr orp) = 55} = inf{r > THY), Y, = Vip| = o7}
. . 1
= inf{r > T V), |Y| = Vil = 53,k > 0.

Remark that |Y] is a reflected Brownian motion and denote 7}*(Y') simply by 7}'. From the
proof of Proposition 2, lim sup [T{52., — | = 0 a.s. for all K > 0. Set ¢} = 2"p7p. Then,
n—-+o0o t<K k
since almost surely ¢ — ¢, is continuous, a.s. Vi > 0, lirf 2%90112% iy = P By Proposition
n—-+0o0o
2, it remains to show that for all n > 0, (¢}, k > 0) is a Markov chain (started at 0) whose
transition mechanism is described by (8). If Y} = 2"V, then, by the proof of Proposition 2
(since SBM is a special case of W(aq,---,ay)), for all n > 0, (Y*)g>1 is a Markov chain on Z

started at 0 whose law is described by
1

Let £ > 1 and xo,..,xx € G such that xg = 2, = 0 and |zp — 2| = 1if h € [0,k — 1]. We
write

{SL’h,SL’hIO,hE [1,/{Z]}:{in0,..,xiq}, i0:0<i1 < "'<iq:/€
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and
{xp,2n #0,h € [1,k]} = {xn}nefior1,i-1) U U{Zh b hefiyr+1,ip1]-
Assume that
{%}he[iﬁl,z’ru C Djy, -+ ,{ZUh}he[z‘q_lﬂ,zk,l] C Dy, ,
and define

Ay = (V" = e(an)lznl), B = (e@j41) = Eos -5 €@, 111) = €y a)-

If i € [1,p], we have

k
(Prs1 = G = T, -+, pp = To) = n Ay m(Ykﬁl -y =1) nEn(5<SOZ+1) =€)
h=0

k
and (o = g, -, = x0) = ﬂAZﬂE Now
h=0

P(@kﬂ = €i|S00 =Ty, ", P = 0) = ?P(Ylﬁ-l Y= 1|Yk =0) = .

Obviously, the previous argument can be applied to show that the transition probabilities of
(e}, k > 0) are given by (8) and so ¢ is an W (ay, -+ ,ay) on G started at 0. Using (9) for ¢,
it follows that Vf € D(ay,---ay),

flo) = f(0) + /Ot f'(ps)dBg + % /Ot ["(ps)ds

where

t
Bﬁmm—mwoﬂm—hmwz/k@mmm
0

by Tanaka’s formula for symmetric local time. But Y solves (3) and therefore fot sgn(Ys)dYs =
fot sgn(Ys)W(ds). Since a.s. sgn(Ys) = (p;,) for all s > 0, it comes that Vf € D(ay, - - an),

Flgoda) = 1)+ [ £ lonaa)elona@)W(ds) +3 [ Foula))is

when 2 = 0. Finally, by distinguishing the cases ¢t < 79, and ¢ > 7 ,, we see that the previous

equation is also satisfied for x # 0. O

Corollary 1. K™ ™ s a stochastic flow of kernels solution of (E).
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Proof. By Proposition 5 (i) and Jensen inequality, K mTm” s a stochastic flow of kernels. The

fact that K™ " is a solution of (E) is a consequence of the previous proposition and is similar

to Lemma 4.6 [12]. O

Remarks 4. (i) Define K, (z,y) = K$+’m7(x) ® Oy, (y). Then K s a stochastic flow of

kernels on G?.

(@) If (m*,m™) = (02 22y, O2tr . o)), then

at’ ot @
st (.T) w4-E(x)e(x) Wt H{t<Ts .}
p v N s
+ (Z a_j-5€i|Zs,t(a:) 1{Zs,t(ar)>0} + Z a_i(sgz‘\zs,t(xﬂ1{Zs7t(x)§0})1{t>TS*x}
i=1 i=p+l

is a Wiener solution of (F).

p N

- ; (67 mt om—

(i) If (m™,m~) = (Za_+5(07..70,170,..,0)> Z ;5(0,..,0,1,0,..,@)’ then K™ ™" = 6,.
i=1 i=p+1

4 Unicity of flows associated to (F).

Let K be a solution of (EF) and fix s € R,z € G. Then (K;,(z));>s can be modified in such
a way, a.s., the mapping ¢t — K (x) is continuous from [s, +oo[ into P(G). We will always

consider this modification for (K (z))>s.

Lemma 6. Let (K, W) be a solution of (E). Then Vx € G,s € R, a.s.

K 1(2) = Spye@e@w,., if s <t < 7o, where 75, = inf{r > s, e(z)|z| + W, = 0}.

Proof. We follow [12] (Lemma 3.1). Assume that = # 0,2 € D;, 1 <i < p and take s = 0. Let
N

Bi = 1 and consider a set of numbers (5;)1<;j<n jxi such that Zﬁjaj = 0. If f(he;) = B;h for
j=1
all 1 <j < N, then f € D(oy,---,ay). Set 7, = inf{r; Ko ,(x)(U;xD,;) > 0} and apply f in

(E) to get
/ Y| Ko+(z,dy) = |x| + W, for all t < 7. (20)
D;i\{0}
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—lyl

By applying fi(y) = |y|*¢™* , k> 1in (E), we have for all ¢t > 0,

tATy

Kounaafule) = ful@) + [ Tom@Bau(ed@Wian +5 [ Kaufite)in

As k — o0, Koz, fr(x) tends to fot |y|?Ko.inz, (z,dy) by monotone convergence. Let A >
0,ze ® < A for all > 0. Since |f(v) — 2ly|| < (4+ A)ly|,

/0 o) (1) Ko (£ ) (2) W (ds) — / Lo (1) /G 2y Ko, dy) W (du)

as k — oo using (20) and dominated convergence for stochastic integrals ([15] page 142). From
|l (y)] < 2ew 1Yl 4 By, we get fomﬂ” Ko fi(z)du — 0 as k — oo. By identifying the limits,

we have
[ sl = 1ol = WP Koutody) =0 ¥ 1 < 5.
Di\{o}

This proves that for t < 7,, Ko(v) = 6pye@)w,. The fact that 7, = 7, easily follows. O
The previous lemma entails the following
Corollary 2. If (K, W) is a solution of (E), then o(W) C o(K).

Proof. For all x € Dy, we have Ko() = d¢i(joj+w,) if t < 7o, If fis a positive function on
G such that fi(h) = h, then W, = Kyf(xz) — |z| for all t < 7,,2 € D;. By considering a
sequence (z)r>o converging to oo, this shows that o(W,;) C o(Ko+(y),y € Dy). O

4.1 Unicity of the Wiener solution.

In order to complete the proof of Theorem 1, we will prove the following

Proposition 8. Fquation (E) has at most one Wiener solution: If K and K' are two Wiener

solutions, then for all s <t,x € G, K, (x) = K[ () a.s.

Proof. Denote by P the semigroup of W (ay, - ,ay), A and D(A) being respectively its gen-
erator and its domain on Cy(G). Recall the definition of D'(aq, -+, ay) from (10) and that

YVt >0 Pt(Co(G)) C D/(Ozl, v ,OzN) C D(A)
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(see Proposition 3). Define

S={f:G—R:f f f"eCy(G*) and are extendable by continuity at 0 on each ray,
lim, o f(z) = 0}.

For t > 0, h a measurable bounded function on G*, let \\h(x) = 2pihj(|z|), if € D;, where
h; is the extension of h; that equals 0 on | — 0o, 0]. Then, the following identity can be easily

checked using the explicit expression of P:
(Pf) = =Pif' +Xf" on G* forall feS. (21)

Fix f € §. We will verify that (P.f)' € S. For x = he; € G*, we have

(Pf) (= =—2Zaz/fy hptOydva/f y+hpt0ydy+/fy h)pe(0, y)dy

Clearly (P.f) € Cp(G*) and is extendable by continuity at 0 on each ray. Furthermore, a simple
integration by parts yields

/ fiy +h)p(0,y)dy = C/ fi(y + h)yp(0,y)dy for some C' € R
R R

and since lim, . f(z) = 0, we get lim, ,oo(P.f) (z) = 0. It is also easy to check that
(P.f)", (P.f)" € Cp(G*) and are extendable by continuity at 0 on each ray which shows that

(Pf) €8,
Let (K,W) be a stochastic flow that solves (E) (not necessarily a Wiener flow) and fix

x = he; € G*. Our aim now is to establish the following identity

Kool () = P+ [ Kau(DUPLuf o)W () (22)
where Dg(x) = e(x).¢'(x). Note that fo Kou(D(Pi—yf))(x)W (du) is well defined. In fact

/0 E[Kou(D(Pruf)) (@) du < / Pu(D(Prsf)) () < / (P Y|P

and the right-hand side is bounded since (21) is satisfied and f’ is bounded. Set g = P.f =
Pe Pe f. Then, since Pc f € Co(G) (limy o0 Pe f(2) = 0 comes from lim, . f(z) = 0), we have
g€ D(ag,--,ayn). Now

—_

n—

Kog(z) — Pg(x / Kou(D(Pi—ug))(z)W (du) = (K(),@Pt,@%l)tg - Ko,%Ptf%tg)(x)

i~
Il
o
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(p+1)t (p+1)t

— -1
Z . KOu ((Pt—u - Pt— (P+1)t) Z - KOu (Pt_mg)(x)w(du)
=0 n =0 " n

For all p € {0,..,n — 1}, gpn = P,_weneg € D'(ay, -+ ,aN) and so by replacing in (F), we get

(p+1)t (p+1)t

” KO,uDgp,n(x)W<du> = K07Mgp,n<x> - KO,%gp,n<x) - Lt KO,uAgp,n(x)du

(p+1)t
t o
= KO,Lnl)tgp,n@) - Ko,%tgp,n<x> - EKO,%Agp,n@) - ﬁt (Kou — KO,%)Agp,n@)du

Then we can write

Koag(x) — Fyg(r) - /0 Kou(D(Prug)) ()W (du) = Ai(n) + Az(n) + As(n),

where .
- t
An) ==Y KyulP sg—PF,_ging— —AP,_ingl(),
p=0 " '
n—1 (p+1)t
Ao(n) = — l/ KouD((Pry — P,_ e )g) (@)W (du),
p=0 %t "
n—1 (p+1)t
Ag(’]’l,) = /t (KO,u — Ko,%)APt,Mg@)du-
p=0""n

Using || Kouf||eo < |f|leo if f is a bounded measurable function, we obtain

n—1
t t
[Ai(n)[ < > NP,_wene[Prg—g— E-Ag]lloo <n|[Prg—g— E-AgHoo,
p=0 "
with
t Pig—yg t
n||Peg — g — —.Aglloo = .|| =222 — Agl|o (tn := —).
n n tn n

Since g € D(A), this shows that A;(n) converges to 0 as n — oo. Note that As(n) is the sum

of orthogonal terms in L?(2). Consequently

(p+1)t

145(n) 220 = ZH L7 KouD(Pis = P g) @W (@)

By applying Jensen inequality, we arrive at

-1 (p+1)t

s () By < 3 / PV2(2)du
p=0" "

n
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where V,, = (Pi—u9)’ — (P,_w+1:g)". By (21), one can decompose V,, as follows:

t

Vu - Xu + Yua Xu - _Pt—ug/ + P,(P-ﬁ-l)tg/a Yu - )\t—ugl - )\t, (p+1)t gl

Using the trivial inequality (a + b)* < 2a* + 2b?, we obtain: P, V?(r) < 2P, X?(x) + 2P,Y*(2)
and so

[142(n)[|72() < 2B1(n) + 2B (n)

(p+1)t (p+1)t
where Bi(n Z / P,X2(z)du, By(n Z / PY2(x

Ifpe(0,n—1] and ue 2, (P+1) L] then P, X2 () < P et p+1t(g’ — Py+1, ,¢)?(x). The change

of variable v = (p + 1)t — nu yields
t
Biln) < [ Prs(Ped — g @)
0
t
< [(RgP@) = 2P (g Peg) (@) + Py (@)
0

By writing F;_»(¢'Pxg')(z) as a function of p, we prove that lim, . Pi»(g'Prg’)(z) =
P,g"*(z). Since ¢’ is bounded, by dominated convergence this shows that Bj(n) tends to 0

as n — +o00. For By(n), we write

PY;:(z) = 2Za@pu D (=l2]) + pu((V))(l2]) = pu((V)) (—]21)

where (Y,); = 2pi_wg, — 2p, @+ g;, defined on R%. It was shown before that this quantity
tends to 0 as n — 400 when (p, g/) is replaced by (P, ¢’) in general and consequently Bsy(n)

tends to 0 as n — +o00. Now

(p+1)t

1
1As()ll 2o Z/ (Ko — Koy ) AP, tponeg(@)dul] 2.
p=0 w

n

Set hpn = AP, @+neg. Then hy,,, € D'(ay,--- ,ay) for all p € [0,n — 1] (if p = n — 1 remark

that hy,, = Ps AP< f). By the Cauchy-Schwarz inequality

1
2

n—1 (17+1)t
1 4a(m) 2 < VE {Z Lo E[<<Ko,u—Ko,¢>hp,n<x>>21du}
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If u € [2t, T,

n

IA

El((Kow — Koo hpa(@)) < By o (Kt by — (@)

IA

B(Kout (Kut by = 2hpn Kot i + 1y ) ()]

IN

1Py pthiy = 2P Py ot hpin + Py oo

IN

2l hpnllocl| Pyt o = Pl oo + 1Py hip = By oo
n n

Therefore ||A3(n)||12@) < VE(2Ci(n) + Cy(n))z, where

(p+1)t 1 (p+D)t

Znhpnuooﬁ 1P, sty st o Z T IR w22l
n =0" n
From [yl oo < 114l and [1P, st = iyl oo < 11, ot Ag = gl we gt
(p+1)t

t
)< ||Ag||ooz / 1P, Ag = Agllod < [[Agl [ 1175 Ag — gl
0

As Ag € Co(G), Cy(n) tends to 0 obviously. On the other hand, 2, € D(ay,- -, ay) (this
N

can be easily verified since h,,, is continuous and Z a;( pn)/(0+) = 0). We may apply (9) to

-1
= 12/ ||P%h;n—h2 l|loodz < —Z/ / ) lsodudz.

Now we Verlfy that hy ., by, are uniformly bounded with respect ton and 0 < p<n—1. In

fact |1y, ,lleo = 1240 nlloe < 2[|APs flloo. Write hy,, = tﬁﬂH%PiAP%f where P< AP f €

get

D'(ay,- -+ ,ay). Then, by (21), ||h ||« is uniformly bounded with respect to n,p € [0,n — 1]

and so the same holds for [|(h2,,)"||o. As a result Cy(n) tends to 0 as n — oo. Finally

Koug(z) = Pglz / Ko u(D(Pr—ug)) (@)W (du).

Now, let € go to 0, then Ky;g(z) tends to Ko f(x) in L?(Q2). Furthermore
t
I [ KD W (@)~ [ Koul DD (@)

< / Pu(Preng) — (P f) )2 ()l

0
Using the derivation formula (21), the right side may be decomposed as I, + J., where

t t
I = / Pu(Pi_ug — P f)?(2)du, J. = / PN wd — Meuf)? () du
0 0

31



By Jensen inequality, I, < tPi(¢' — f')*(z). Since ¢'(y) = —P.f'(y) + 2\ f'(y) — f'(y) as
e — 0, P(x,dy) a.s., we get I. — 0 as € — 0 by dominated convergence. Similarly J. tends
to 0 as € — 0. This establishes (22). Now assume that (K, W) is a Wiener solution of (F)
and let f € S. Since Ko, f(z) € L2(F2) | let Kouf(z) = Pif(x) + 3220, Jrf(z) be the

decomposition in Wiener chaos of Ky, f(x) in L? sense ([15] page 202). By iterating (22) (recall
that (P.f) € S ), we see that for all n > 1

I f(2) = / Py (D(Porsy - D(Pres, ) (@)dWors, - - AW,
0<s1< <8<t

If K’ is another Wiener flow satisfying (22), then Ko, f(x) and K, f(z) must have the same
Wiener chaos decomposition for all f € S, that is Ko f(r) = K, f(z) a.s. Consequently
Koif(z) = Ky, f(z) as. for all f € D'(ay, -+, ay) since this last set is included in & and the
result extends for all f € Cy(G) by a density argument. This completes the proof when x # 0.
The case x = 0 can be deduced from property (4) in the Definition 3. O

Consequence: We already know that K" given by (19) is a Wiener solution of (E). Since
o(W) C o(K), we can define K* the stochastic flow obtained by filtering K with respect to
o(W) (Lemma 3-2 (ii) in [11]). Then Vs < t,2 € G, K}, (v) = E[K(v)|lc(W)] a.s. As a

result, (K*, W) solves also (F) and by the last proposition, we have:
Vs <t,x € G, E[K(z)lo(W) =K} (z) as. (23)

From now on, (K,W) is a solution of (E) defined on (Q, A,P). Let P/* = E[K{'] be the
compatible family of Feller semigroups associated to K. We retain the notations introduced
in Section 3 for all functions of W (Ys+(2), Zs+(x), gst(x)---). In the next section, starting
from K, we construct a flow of mappings ¢° which is a solution of (£). This flow will play an

important role to characterize the law of K.

4.2 Construction of a stochastic flow of mappings solution of (F)

from K.
Let z € G, t > 0. By (23), on {t > 79, }, Ko(x) is supported on
{|Zo7t(.’lf)‘€_;', 1 S 1 S p} if Zo7t<x) >0
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and is supported on

{|Zos(z)|€;, p+1<i< N} if Zoy(x) <0.

In [11] (Section 2.6), the n point motion X™ started at (z1,---,x,) € G" and associated with
P has been constructed on an extension 2 x Q' of Q such that the law of w' — X" (w,w’) is
given by Ko (x1,dyr) -+ Koy(@n, dy,). For each (z,y) € G%, let (X[, Y¥)i>0 be the two point
motion started at (z,y) associated with P? as preceded. Then |X[| = |Zo(2), Y] = |Zo+(v)|
for all t > 0 and so

T :=inf{r > 0,X =Y’} <+oo as.

To (P"),>1, we associate a compatible family of Markovian coalescent semigroups (P™°),>1 as
described in [11] (Theorem 4.1): Let X™ be the n point motion started at (z1,---,z,) € G™.
We denote the ith coordinate of X;* by Xj(i). Let

Ty =inf{u >0, <y, X'(i)=X]()}, X" :=X"tel0,T1].
Suppose that X7 (i) = X7, (j) with @ < j. Then define the process
X (h) = X[(h) for h# j, X{7(j) = X" (i), 0 > Th.
Note that the ith coordinate of X™! and the jth one are equal. Now set
Ty = inf{u > Ty,3h < k,h # j, k # j, X'(h) = X' (k)}.

For t € [Ty, Ts], we define X" = X" 1 and so on. In this way, we construct a Markov process
X"™¢ such that for all i, j € [1,n], X™(:) and X™°(j) meet after a finite time and then stick to
gether. Let P/"“(z1,- - ,x,,dy) be the law of X;"“. Then we have:

Lemma 7. (P™°),>1 is a compatible family of Feller semigroups associated with a coalescing
flow of mappings ¢°.
Proof. By Theorem 4.1 [11], we only need to check that: V¢t > 0,e > 0,2 € G,

lim ({7 > 1} N {d(X7, Y/) > ¢}) =0 (C).

As | X7 = |Zou(x)|, |YY] = | Zou(y)| for all u > 0, we have {t < T*¥} C {t < T(a)a|,c(y)y|}- FOr
y close to z, {d(X},Y)") > e} C {inf(70, 70,) < t}. Now (C) holds from Lemma 2. O
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Consequence: Let v (respectively v¢) be the Feller convolution semigroup associated with
(P™)p>1 (respectively (P™€),>1). By the proof of Theorem 4.2 [12], there exists a joint real-
ization (K', K?) where K' and K? are two stochastic flows of kernels satisfying K! "% 6.,

K2'™ K and such that:
(i) Ksu(z,y) = KL, () ® K2,(y) is a stochastic flow of kernels on G2,
(ii) Forall s <t,x € G, KZ (x) = E[K,(x)|K?] as.

For s <'t, let

~

Fop=0(Kyps <u<v<t), Fiy=0(K,s<u<v<t), i=12

u,v)

Then ﬁs,t = F.,VFZ,. To simplify notations, we shall assume that ¢° is defined on the original
space (2, A,P) and that (i) and (ii) are satisfied if we replace (K*, K?) by (d,¢, K). Recall that
(i) and (i) are also satisfied by the pair (6, K™ ™ ) constructed in Section 3. Now

Ks1(x) = Eldge (| K] a.s. forall s<tuze€aqG, (24)
and using (23), we obtain
K(z) = Eldge wlo(W)] a.s. for all s <tz €@, (25)
with K" being the Wiener flow given by (19).

Proposition 9. The stochastic flow ¢° solves (E).

Proof. Fixt > 0,z € G. By (25), dy¢ ,(2) is supported on {[Zys(7)|€j,1 < j < N} a.s. and so

195.+(7)] = [Zo+()]. Similarly, using (25), we have
wo(r) € G & Zoy(x) > 0 and ¢f,(z) € G~ & Zoy(x) < 0. (26)

Consequently £(¢§ (7)) = sgn(Zos(x)) a.s. Since of (v) is an W(ay,- -+, ay) started at w, it
satisfies Theorem 3; Vf € D(ay, -, an),

fehu@) = f@)+ [ PN+ [ g as
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with By = |@o(x)| — Li(Jpo.(x)]) — |2| = |Zoy(x)] — Li(| Zo..(2)|) — |x|. Tanaka’s formula and
(26) yield
By = /O sgn(Zo.u())dZo,u(x) = /0 sgn(Zou(r))W (du) = /0 e(#5.u(@))W (du).

Likewise for all s < t,z € G, f € D(ay, -+ ,ay),

et = 5@+ [ el + 5 [ (e o
U

We will see later (Remark 3) that ¢° faw ¢ where ¢ is the stochastic flow of mappings

constructed in Section 3.

4.3 Two probability measures associated to K.

For all t > 75 ,, set
Vo' (@) = Koa(2) (D {0}) V1 < i < p
and
Vi (@) = Kao@)(Dy), Voy' (@) = Kou(@)(Di\ {0}) Vp+1<i<N -1

Vohi(@) = (V3 (@)1<isps Via () = (Vg (@)psrcisn, Vaulz) = (Vihi(@), V(@)
For s = 0, we use these abbreviated notations

Zi(x) = Zou(x), Vi (x) =Vi(z), Vi (2) =V(x), Vilz) = (Vi"(2), Vi (@)
and if z =0,

Zy = Zo4(0), Vi" =Vgh(0), Vim =V,(0), Vi= (V" V7).

By (23), Vz € G, s < t, with probability 1

KS,t(x) = 53&+€(z)5( )Wstl{t<frsx}
N

ZVLt )01 Zes@) VZon@r>0y + D Vir (€)051 201 (@) L {Zes@)<0)) L {t5r s}
i=p+1

Define

Fli=oKus<v<u<t), Fy=oWos<v<us<i)
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and assume that all these o-fields are right-continuous and include all P-negligible sets. When
s = 0, we denote F(ﬁ,f&[; simply by FX, F/V. Recall that for all s € R,z € G, the mapping
t — K (x) defined from [s, +-o00[ into P(G) is continuous. Then the following Markov property
holds.

Lemma 8. Let z,y € G and T be an (F)i>o stopping time such that Kor(x) = 6, a.s. Then

Ko.+7(x) is independent of FX and has the same law as Ko (y).

As a consequence of the preceding lemma, for each € G, Ky.1-,,(x) is independent of ]-"TK(L N
and is equal in law to K;.(0).

Consider the following random times:
T=inf{r>0:2.=1}, L=sup{rel0,7]: 7 =0}
and the following o-fields:
Fi_ =0(Xp, X is bounded (F}");>o — previsible process),

Fry = 0(Xp, X is bounded (F}");>0 — progressive process).

Then Fr, = F;_ (Lemma 4.11 in [12]). Let f : RY — R be a bounded continuous function
and set X; = E[f(V;)|o(W)]. Thanks to (24), the process r — V. is constant on the excursions
of r — Z,. By following the same steps as in Section 4.2 [12], we show that there is an F"-
progressive version of X that is constant on the excursions of Z out of 0 (Lemma 4.12 [12]).
We take for X this version. Then Xr is Fr; measurable and E[X7|F;_| = E[f(Vr)] (Lemma
4.13 [12]). This implies that V7 is independent of o (V) (Lemma 4.14 [12]) and the same holds
if we replace T by inf{t > 0: Z, = a} where a > 0.

Define by induction Tg,, = 0 and for k& > 1:

Spn=mf{t>T} , 72, =27"}, T =if{t >S5} 7, =0}
Set V', = Vi, . Then, we have the following
’ k,n

Lemma 9. For alln, (V" )1 is a sequence of i.i.d. random variables. Moreover, this sequence

1s independent of W.
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Proof. Forall k > 2, V! is <7(K07T1:r_1 +(0),t > 0) measurable and V", is &, measurable
which proves the first claim by Lemma 8. Now, we show by induction on ¢ that (Van, s V)

’ q7n

is independent of o(W). For ¢ = 1, this has been justified. Suppose (Van, LV

q—l,n) is

independent of o(W') and write

o(Wou,u>0) = 0(Zpp+

UALg—1,n

u>0)Vo(Z, e u>0).

u

Since (V/7F,,---, V"

1) 18 .7-"7{(+ measurable and

q—1,n
u

0(Zyr, o u>0)Vo(Veh) ColEyps  i(0),t20),

we conclude that (V¥ ---,V,} ) and o(W) are independent. O

q7n

Let m;" be the common law of (V/:,rn)kzl for each n > 1 and define m™ as the law of V;*

under P(.|Z; > 0). Then, we have the

Lemma 10. The sequence (m)}),>1 converges weakly towards m™. For allt > 0, under P(-|Z; >

0), V;" and W are independent and the law of V™ is given by m*.

Proof. For each bounded continuous function f : R? — R,

E[f(VtJr)|W]1{Zt>O} = nhj%oZE[l{te[SJr T [}f(VkJ,rn”W}

3 k,n'"k,n

— nhj%ozl{te[ F T (/ fdm:;)
3

~ Lz i [ fdm + 2, (0)

with lim ¢,(¢) = 0 a.s. Consequently

n— 0o
tim [ fdmf = 5 BV 0]
n— 0o P(Z; > 0)
The left-hand side does not depend on ¢, which completes the proof. O
We define analogously the measure m™ by considering the following stopping times: Tj,, = 0
and for k£ > 1:

Spn=f{t 2T, : Zy=—27"}, T, =inf{t >S5, :Z =0}
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Set Vi, = VS;_ and let m, be the common law of (V,  )i>1. Denote by m~ the law of Vi~

under P(.|Z; < 0). Then, the sequence (m,, ),>1 converges weakly towards m~. Moreover, for

all ¢ > 0, the law of V;” under P(.|Z; < 0) is given by m~. As a result, we have

BLF(VO)IW zeoy = Lizieny / fdm-

for each measurable bounded f : RV~=? — R. If we follow the same steps as before but consider

(Zusgm o (x),u > 0) for all z, we show that the law of V(/y(z) under P(.|Zo.(z) > 0,t > 70,)

does not depend on ¢ > 0. Denote by m; such a law. Then, thanks to Lemma 8, m; does not

depend on x € G. Thus m} = m™ for all z and

Elf (VN (@) W]z, )>045m0..1 = 1{Ze(e)>0,45m0.} / fdm™*

for each measurable bounded f : R? — R. Similarly

E[ha/;ti(x))|W]1{Zt(l“)<07t>7'o,x} = 1{Zt(m)<07t>7'0,x} / hdm™

for each measurable bounded h : RV"? — R,

4.4 Unicity in law of K.

Define
p(x) = |z]e1 1 meaty + [Tl€pr1l{zea- wr0y, T € G.
Fix v € G, 0 < s <t and let v, = p(pf ,(z)). Then:

—

(i) ¢s,(x) =z + é(z)e(x)Ws, for all r < 7, (from Lemma 6).

(ii) Too = Top@) and ¢ ,.(z) = ¢$ . (p(z)) for all 7 > 7, , since ¢ is a coalescing flow.

C

(27)

(28)

(1i) Topg (@) = Tsw. and @S (9§ (7)) = ¢¢ . (z,) for all r > 7., by (ii) and the independence

of increments of ¢°.

(iv) On {t > 7y}, 6, (1) = 65, (95, (2) = 5 () by the flow property of ¢* and (iii).

(v) Clearly 7., = inf{r > s, Z,(z) = 0} a.s. Since {10, < s < gou(z)} C {t > 75.,} as.,

we deduce that

P(5,4(2) = ¢54(2:) 1100 < 8 < gou(2)) = 1.
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(vi) Recall that ]-A"O,S and .71"57,5 are independent (K is a flow) and ]:—O,t = -7:—073 V .7:"57,5. By (24),

we have K (z,) = E[0,c (2, Fg5] and as a result of (v),

P(K4(z5) = Kou(x)|m02 < 5 < gou(z)) = 1. (29)

Lemma 11. LetP; ,, ... 5, be the law of (Ko(21),- -+, Kot(xn), W) wheret > 0 and x4, -+ , 2, €

G. Then, Py, ... 2, is uniquely determined by {P, .,u > 0,z € G}.

n

Proof. We will prove the lemma by induction on n. For n = 1, this is clear. Notice that if
t < 7., then Ko(z2) is o(W) measurable and if ¢ > Tiy™, then Ko, (21) = Ko(22). Suppose
the result holds for n > 1 and let x,,; € G. Then by the previous remark, we only need to
check that the law of (Ko¢(x1), -+, Koi(2nt1), W) conditionally to A = { sup 7., <1 <
To' "'} only depends on {Py ., u > 0,2 € G}. Remark that on A, {go,t(al:f)l,g;E i<n+1}
are distinct and so by summing over all possible cases, we may replace A by
E={ sup 7o, <t<Tg g™ gou(r1) <+ < gou(rn) < gou(Tns1)}
1<i<n+1

Recall the definition of f from Section 3.2 and let S = f(go(2n), Got(Tnt1)), Es = EN{S = s}
for s € D. Then it will be sufficient to show that the law of (Ko (x1), -, Kot(Tnt1), W)
conditionally to Es only depends on {P, ., u > 0,2 € G} where s € D is fixed such that s < t.

On E,

(1) (Kog(z1), -, Kot(xyn), W) is ameasurable function of (Vi(zy),- -+, Vi(z,), W) as (Vi (x;),r >

Toz;) 18 constant on the excursions of (Z,(x;),r > 74, ).

(ii) There exists a random variable X, ;; which is .7:(% measurable and satisfies Ko (2,11) =

K (Xn41) (from (29)).

Clearly, the law of (Vy(z1), - -+, Vs(2y,), Ks4(Xpn+1), W) is uniquely determined by {Ps 4, ... ., Pi—s,y, ¥ €
G}. This completes the proof. O

Proposition 10. Let (K™ ™ W') be the solution constructed in Section 3 associated with

(m*,m™). Then K ' pemtme
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Proof. From (27) and (28), (Ko(x), W) faw (K&+’m_ (), W) for all t > 0 and = € G. Notice
that all the properties (i)-(v) mentioned just above are satisfied by the flow ¢ constructed in
Section 3 and consequently K™ " satisfies also (29) using the same arguments. By following

the same steps as in the proof of Lemma 11, we show by induction on n that
law mt m~ mt m~
(KO,t(xl)v"' >K07t(xn)7W) = (Ko,t 7 (1‘1),-" 7K0,t 7 (xn)vwl)
forall t > 0,2y, ,2, € G. This proves the proposition. O

Remark 3. When K is a stochastic flow of mappings, then by definition

This shows that there is only one flow of mappings solving (E).

4.5 The case o =1 N > 2.

Let K" be the flow given by (19), where Z,,(z) = e(x)|z| + W, — W,. It is easy to verify that
KW is a Wiener flow. Fix s € R, € G. Then, by following ideas of Section 3.2, one can

construct a real white noise W and a process (X7, > s) which is an W(ay,--- ,ay) started

at x such that

o (i)forallt >s,f € D(ayg, -+ ,an),
F(X2) = fla) + / () (X2 / P N s

e (ii) for all t > s, K" (z) = E[0x=,

o(W)] a.s.

By conditioning with respect to (W) in (i), this shows that K" solves (F). Now, let (K, W)
be any other solution of (F) and set P* = E[KS??]. From the hypothesis at = 2, we see that

= h(z)+W;.

Denote by (X1, X*2) the two-point motion started at (zi,7s) € G? associated to P?. Since

~— N

h(x) = e(z)|z| belongs to D(ay, - - - , ay) and by applying h in (E), we get Ko h(x

| X*i| is a reflected Brownian motion started at |z;| (Theorem 3), we have E[| X[ [?] =t + |z:]°.

40



From the preceding observation E[h(X[")h(X[?)] = E[Koih(x1)Koh(z2)] = h(z1)h(xe) + ¢
and therefore
E[(h(X]") = h(X[*) = h(z1) + h(22))*] = 0.

This shows that h(X}") — h(X[?) = h(x1) — h(z2). Now we will check by induction on n that
P™ does not depend on K. For n = 1, this follows from Proposition 3. Suppose the result holds
for n and let (a1, -+ ,xny1) € G" such that h(z;) # h(x;),i # j. Let 7,, = inf{r > 0: X% =
0} = inf{r > 0: h(X7) =0} and (z;,x;) € GT x G~ such that h(z;) < h(zy), h(zy) < h(x))
for all (xy,x,) € Gt x G~ (when (x;, ;) does not exist the proof is simpler). Clearly 7,, is a

function of X for all h,k € [1,n + 1] and so for all measurable bounded f : G"*1 — R,

T Tn+1 . . T
fOXG - X )1{t<rxi,inf1§k§n+1 Top=Ts;} 18 & function of X*

and

Tl Tn+1 . . €T
fx X )1{t<71j7inf1§k§n+1T%:sz} is a function of X*.

where ¢ > 0 is fixed. This shows that E[f(X;", -+, X;""") 1 ycint, o cyy 7, )] Oly depends on

P!. Consider the following stopping times

So=_inf 7, Sep =inf{r>5,:3j€[l,n+1, X7 =0,Xg’ #0},k>0.

1<i<n+1
Remark that (Sg)k>o is a function of X*» for all h € [1,n 4 1]. By summing over all possible
cases we need only check the unicity in law of (X7, , X;""") conditionally to A = {S, <
t < Spy1, Xg' = 0} where k > 0,h € [I,n + 1] are fixed. Write A = BN {t — S < T} where
B={S,<t,Xg" =0} ={S <t,Xg #0ifi #h} and T = inf{r > 0,35 # h: X]g = 0}.

On A, X/ is a function of (Xg', X;") and therefore for all measurable bounded f : G"*' — R,

FXP - X" )14 may be written as g((X§' )izn, X;")1a

k
where g is measurable bounded from G™*! into R. By the strong Markov property for X =
(X* oo X)) we have

1B —5,<r19 (X )izn, XTI F5 ] = 1ptb(t — Sk, (X&' )irn)
where
IP(% Y, 7yn) = E[1{u<inf{r20;3je[17n},ijzo}}g(ylv s Un, Xg)]
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This shows that E[f(X;", -+, X;""")14] only depends on the law of (X*);;. As a result,
P (21, ,p41),dy) is unique whenever h(wz;) # h(z;),i # j and by an approximation
argument for all (zy,- -+ ,x,41) € G™"!. Since a stochastic flow of kernels is uniquely determined

by the compatible system of its n-point motions, this proves (2) of Theorem 2.

5 Appendix: Freidlin-Sheu formula.

In this section, we shall prove Theorem 3. We begin by

Preliminary remarks. We recall that if Y is a semimartingale satisfying (Y) = (|Y|) then
Li(Y) = Ly(|Y]). Let Ly(Y) be the (non symmetric) local time at 0 of Y and « € [0,1]. If Y
is a SBM(a), then Ly(Y) = 2aL;(Y) by identifying Tanaka’s formulas for symmetric and non
symmetric local time for Y.

Let @) be the semigroup of the reflecting Brownian motion on R and define &(x) = |z|. Then
X; = @(Z;) and it can be easily checked that P,(f o @) = Q.f o @ for all bounded measurable
function f : R — R which proves (i). (ii) is an easy consequence of Tanaka’s formula for local
time.

(iii) Set 7, = inf{r > 0,7, = 0}. For t < 7., (9) holds from It6’s formula applied to the
semimartingale X. By discussing the cases t < 7, and ¢ > 7,, one can assume that z = 0 and
so in the sequel we take z = 0.

For all ¢ € [1,N], define Z; = |Z;|\1(z,ep,y — |Ze|1{z¢p;y- Then Z; = &(Z,) where &'(z) =
2| Lizeny — |2|1gzgp,y- Let @ be the semigroup of the SBM (c;). Then the following relation
is easy to check: Py(fo®') = Q!f o ® for all bounded measurable function f : R — R which
shows that Z% is a SBM(«;) started at 0. We use the notation (P) to denote the convergence
in probability.

Let § > 0. Define 70 = 65 = 0 and for n > 1

0° = inf{r > 7°_,,|Z.| = 6}, =inf{r > 0°, 7, = 0}.
Let f € C3(G*) and t > 0. Then
f(Z Z F(Zgs ne) = F(Zogne) = Q) + Q5 + Q3
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where

o) N oo

Q? = Z(f(ZegH/\t) 75/\t ZZ(W (0+) 1{96 <t,295+ eD;}s
n=0 i=1 n=0 ntl

QQ Zzéf (0+) 1{95+1<tzé €D;}s Q:s Zf (Z 5/\t f(ZeéL/\t)-
i=1 n=0 ntl

We first show that Q9 = 0 (P) and for thls erte Q) = 171) + Q‘(Sl’z) with

1 = Z Z n+1 Zs) — 5f{(0+))1{62+1§t,Z92+1eDi}a

n=0 =1

oo N
ZZ (Z1) — Zé/\t))l{65+l>tz 1eDi}-

n=0 =1

Since f € CZ(G*), we have

5
Vi € LN [ () = 0= £5) = £0) = 35:(0).
(i) There exists M > 0 such that Vi € [1, N], u>0:|f/(u) — f/(0+)] < Mu.

Consequently
oo N 00
NM§?
Q| = ZZ — i (04) e, <02, el S T Ligs, <tr-
n=0 i=1 " n=0

N 1
It is known that 52 L, <ny o §Lt<X) (P) ([15]) and therefore Q‘(SM) . 0 (P).

n=0
Let C > 0 such that Vi € [1,N], u>0:|f;(u) — f:(0)] < Cu. Then

oo N
‘Q?m)‘ = ‘Z Z f(z gAt))1{02+1>t7205+16Di}|
n=0 i=1 "
oo N
< Z Z |fz Xt ~(0)|l{rg<t<02+l,295+1eDi}
n=0 =1 "
S CXt Z 1{7—;§<t<92+1} <Co
n=0

which shows that Q51 R 0 a.s. and so Q° P 0 (P).
_)

Now define Q° (2,1) = 52 Ligs <, Zys, €D} Since Z Ligs <, Zys, D) is the number of upcross-
n=0 n=0
ings of Z' from 0 to ¢ before time ¢, we have Q(2 0 —— $Ly(Z") (P). Using our preliminary
a

remarks, we see that Q2 Zaz F1(04))Le(X) (P).

¢
We now establish that Q3 7 / f'(Zs)dBs + 5/ f"(Z)ds (P). For this write Q3 =
- 0 0
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Q‘(Sg’l) + Q‘(;&Q) with

0 c© N
Qlsy = D (Zeg) = F(Zop) sy = D D (F0) = fil0) Lstazpem
n=0 n=0 i=1
Qlany = Y _(f(Z) = [i(0)H{n € N: 05 <t <70, Zys € D;}.

It is clear that #{n € N: 6° <t < 79 s Zgs € Dy} . L{z,epnfo1} as. and so Q0 (3,2) converges
to f(Z,) — f(0) as § = 0 a.s. Define 70" = 60" = O and

0% = inf{r > 70°, Z, = 6¢;}; 0 =inf{r > 0%, Z. =0}, n > 1

Using >2.7 1{Tg§tyz@%€Di} =20 Lioicy, we get Q(?, 1 = Dm0 2imt (F(0) = fil0)) 1 iy
On the other hand

S UK i)~ S )) = S 1) = T gD ey + DX = HOD gy
n=0 n=0 n=0

and therefore
N
ZZ filXogin) = i Xgsi,) Z fi(X0) = £:(0)) x #{n € N, 02" < ¢ < 727},
1=1 n=0 i—=1

Since f#{n € N, 0% <t < 721} o 1{z,ep\fo}} a.s., we deduce that
ﬁ

0920 Z Z (X 5i0) = Fil Xgsin)) +0(1) as.

=1 n=0

For all i € [1, N], let f; be C? on R such that f; = fion Ry, f, =f/, fi' = f on R

7

Now a.s.

Vs € [0,1], Zlemm ing(8) = Lzeepaion-

By dominated convergence for stochastlc mtegrals

t
Zfl Xoging = [ilXgpin,) :/ Zle‘“AtTn /\t $)d fi( X, m/o Liziepapopdfi(Xs) ().
Fmally

t 1 [t N t 1
| r@yas. g [ rzyas = 3 [ ey (OB + 3 1(X.)ds)
0 0 i=1 70
N t ~
= Z/ Liz.ep\(oyydfi( Xs).
i=1 70
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by Itd’s formula and using the fact that dL,(X) is carried by {s : Z, = 0}. Now the proof of

Theorem 3 is complete.
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