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On the Nash Equilibria in Decentralized Parallel
Interference Channels

Luca Rose

Alcatel - Lucent Chair in Flexible Radio
Supelec, France.

luca.rose@supelec.fr

Abstract—In this paper, the 2-dimensional decentralized
parallel interference channel (IC) with 2 transmitter-receiver
pairs is modelled as a non-cooperative static game. Each
transmitter is assumed to be a fully rational entity with
complete information on the game, aiming to maximize its
own individual spectral efficiency by tuning its own power
allocation (PA) vector. Two scenarios are analysed. Firstwe
consider that transmitters can split their transmit power

between both dimensions (PA game). Second, we consider tha

each transmitter is limited to use only one dimension (chanel
selection CS game). In the first scenario, the game might have
either one or three NE in pure strategies (PS). However, two
or infinitely many NE in PS might also be observed with zero
probability. In the second scenario, there always exists #ier
one or two NE in PS. Using Monte-Carlo simulations, we show
that in both games there always exists a non-zero probabilit
of observing more than one NE. More interestingly, we show
that the highest and lowest network spectral efficiency at ay of
the NE in the CS game are always higher than the ones in the PA.

Keywords: Interference Channel, Decentralized Network,
Nash Equilibrium, Braess Paradox, Spectrum Efficiency.

|. INTRODUCTION

This article addresses the interaction ®ftransmitters-
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constraints is considered out of the scope of this paper. The
interested reader is referred to [1], [2] and referencerethe
Regarding the existence and uniqueness of the NE in the PA
game, many results are already known for more general cases
than the one described here. In the most general case, i.e.,
the K-transmitter MIMO decentralized interference channel,
the existence of the NE has been already proved in [2]. The

'same holds for the interference relay channel described in

[3]. However, regarding the multiplicity of the NE in the PA
game, much less is known. For instance, in [2] sufficient but
not necessary conditions for the uniqueness are provided an
aside from the result in [3], the exact number of NE in pure
strategies, even in the case with only two players, it is not
known.

Conversely to the PA game, no results are known with respect
to the existence or multiplicity of the NE. The relevance of
the CS game relies on the fact that under non-perfect channel
estimations, the water-filling PA [2] can not be implemented
and thus, transmitters must either transmit over a single
channel e.g., Wi-Fi networks, or to use predefined power
allocation vectors. More importantly, it has been showrt tha
significant benefits from the global system point of view are

receiver links subject to mutual interference due to the usétained by limiting the transmitters to use a reduced numbe
of 2 common frequency bands. Here, each transmitter coof-channels, at least in the parallel multiple access cHddhe
municates only with its corresponding receiver aiming tfb]. This result implies the existence of a Braess type paxad

maximize its individual spectral efficiency (ISE) regastie

[6], since reducing the set of actions of each player leads to

of the ISE achieved by the other link. We do not considdretter global performance. The existence of this paradsx ha
neither transmitter nor receiver cooperation and any kidmken already reported for specific channel realizationfién t
of message exchanging between transmitters is completiterference channel [7], [8].

avoided. Thus, this interaction through mutual interfeeeris

The main contributions of this paper can be listed as follows

modelled by two different static strategic games. In the fir§;) Contrary to previous beliefs [9], the number of NE in
game, we consider that transmitters can simultaneously uke PA game is shown to bk or 3 depending on the exact
both channels (frequency bands). In the second game, wee lictiannel realizations. However, with zero-probabilitysialso
each transmitter to use only one of the two available channgdossible to observe eithéror infinitely many NE. This result

In the following, we refer to the former as the power allogati

aligns with the number of NE in the interference relay channe

(PA) game and the latter as channel selection (CS) gamdescribed in [3].(i¢) Depending on the channel realizations,

In both games, transmitters are assumed to be fully ratiormaly feasible channel selection in the CS game might be an
entities with complete information. This assumption mightlE. Here, we provide conditions over the channel realinatio
appear not practically appealing, however, our interestides for every case. Moreover for any channel realization it gsva

in identifying the set of Nash equilibria of each of the garnmes exist at least one NE in pure strate@sii) The number of NE
order to compare the system spectral efficiency, i.e., the sin the CS game is either one or two depending on the channel
of all the ISE, achieved in each game. Any mechanism cegalizations.(iv) The best and worst average system spectral
algorithm for achieving NE under real-system implementati efficiency achieved in equilibrium in the CS game is better



than the best and worst average system spectral efficiencyWe denote the individual spectral efficiency (in [bps/Hz])

achieved in equilibrium in the PA game. of each transmittet as follows:

The paper is organized as follows. In Sec. Il, we describe the @ 1.0 2
decentralized parallel interference channel addressetiisn Di " | ek

paper. In Sec. lll, we present the formal game formulation of uk (P, P_y) = Zlog2 L+ i ® L 2

both the PA game and CS game. In Sec. IV and V, we provide s€S (o) +p25 hk,fk‘

the main results regarding the existence and multiplicity o (3

the NE in the PA game and CS game, respectively. In VI the following, we focus on the scenario where each trans-
we use Monte-Carlo methods to identify the probability af thmitter £ € K aims at maximizing its individual spectral
different number of NE in both the PA and CS games. We algdficiency (3) by tuning its corresponding power policy. We
compare using Monte-Carlo simulations the system specteg@insider two problems:
efficiency achieved by both games. This paper is concludéd The Power Allocation (PA) Problem: where, each trans-
by Sec. VII. mitter & is allowed to tune its power allocation vectpr,
splitting the maximum available power into both channets, i

(s) .
H A . . . P S [Ovpk,maz]y

Consider a setC = {1,2} of transmitter-receiver pairs. (j;) The Channel Selection (CS) Problem:where, each
Each transmitter sends private information to its respectitransmitterk is limited into using only one channel at a time
receiver trough out a s 2 {1,2} of orthogonal channels. with full power, i_e_'pl(:) € {0, pr.maz }-
Here, the channel orthogonality is assumed in the frequency
domain and transmissions take place simultaneously, thus [1l. N ORMAL-FORM GAME FORMULATION
communications are subject to mutual interference. Debpte  The PA and CS problems described in Sec. Il can be

Il. SYSTEM MODEL

T
y; = (ylgl),yf? the 2-dimensional vector representing therespectively modelled by the following two non-cooperativ

received signal at receiver € K. Hence,y, can be written static games in strategic form (withe {a, b}):
in the baseband at the symbol rate as follows,

, Gl — (/c, (Péi)) ,(uk)ke,c) . (4)
kek
yj: E Hj_,k:ck—l-zj. (1) . )
1 In both games, the set of transmittégsis the set of players.

Here,V(j. k) € k2, the matrix H ., is the channel transfer An action of a given transmittet is a particular PA scheme,

matrix from transmitterk to the receiverj, and H,, = |-, a2-dimensional PA vectop, = (Pz(cl)apz(f)) e P,
diag g:zgl,z,hgz,z . Besidesv(j, k,s) € K? xS, hgs,i represents where 73,51) is the set of all possible PA vectors which
the channel realization between transmitterand receiver transmitterk can use either in the gan@® (i = a) or in the

j over channels. In our analysis, flat fading channels ar@ameg®) (i = b). An action profile of the gamee {a, b} is
assumed, i.e., each channel realization is time-invagaet @ Super vector _

the whole channel use (e.g., frame length). The enhj%&are p=(p1,py) € P,

time-invariant realizations of a complex circularly s;}mrite

Gaussian random variable, with zero mean and unit varian
1 (2

gxg]erep(i) is a set obtair(u)ad fro(rr; the Cartesian product of the
. ti ; (1) — pli i
The vectorz;, = (:vk , Ty, ) is the vector of symbols action sets, 1.e.p * =P, x P; . o
“ The utility function for player in the gameg(¥) is denoted
transmitted by transmittek. For all s € S, z;” represents by ur : P — R, with + € {1,2} and corresponds to the
the symbol sent by transmittér over channels. Here, z; individual spectral efficiency of transmittér (3).

is a 2-dimensional complex circularly symmetric Gaussiafthe solution concept used in this paper is that of Nash
random variable with zero mean and covariance ma#jx= equilibrium (NE) [10]. A NE is an action profilp € P,
E (zpx;) = diag (p;(gl),p;(f))- For all (k,s) € K x S, p;(f) i € {1,2}, such that, no player would increase its individual
represents the transmit power allocated by transmittever utility by unilateral deviation.
channels. Transmitters are power-limited, that is, Definition 1 (Pure Nash Equilibrrig{rr;): In the non-
1 2 cooperative games in strategic forgh*, with i € {a, b}, an

ke K, 5 0 < prmas (2) actign profilegp e P9 is an lg\]lE if it satisfies, for{alk}e K
where pi max is the maximum transmit power of transmitterand for all pj, € 73,51), that
k. A power allocation (PA) vector for transmittéy € K ,
is any vectorp, = (p{",p®) with non-negative en- uk(Pg; Poy) Z U (Phs Py). ®)
tries satisfying (2). The noise vectar;, j € K, is a2- Note that, from Def. 1, it becomes clear that, at the NE, each
dimensional zero mean Gaussian random variable with iptayer's action is the best response to the actions taken by
dependent, equal variance real and imaginary parts. Hes,the other players. An alternative definition of the NE can
E(z;2;) = diag ((o§1))2, (o—§2))2), where, (a§3))2 repre- be stated using the concept of best response correspondence
sents the noise power in the receijeover channek. which we define as follows,



Definition 2 (Best-Response Correspondence): In the non-Theorem 4 (Multiplicity of NE): The gam&® might
cooperative games in strategic forgi?), with i € {a,b}, the have either one, two, three or infinitely many NE in pure

relation BREJ) : 73(_1,)C — P,ii) such that strategies.
@ The proof of Theorem 4 follows the same line of the proof
BR,” (p_;) = arg max g (a1, P &) (6) of Theorem 3.3 in [3Jand it is divided in two steps. First, we
q,€P,’

obtain an explicit expression for the BR correspondencé.(De
is defined as the best-response correspondence of player 2) for both players; second, the set of solutions of the fixed
K, given the actiong _, € 73(_11)C adopted by all the other point equation in (7) is determined. That is, for &lle K,
players. let the action profilep,, = pg),pf) be written as follows
Note that we denote by-k the user other thak. For all p, = p; .. (ar, 1 — az), with 0 < oy, < 1, representing the

i € {a, b}, let the action profilp* € P be an NE and let the fraction of power that transmittek uses over channel one.
correspondencBR : P — P be defined byBR (p) = Then, with a slight abuse of notation, (3) can be written as
{qg € PD : ¢ € BR(p,) and g, € BRY(p1)}. Hence, follows,

Yk € K, it holds that

(1)
arg
P EBR(). @M wlowa) = log <1 ’ 7“@) :
L+ o rgy g
Finally, in both games, the PA vector of playkr p), = (2)
(1) 1(2) h thaty'() ’(2) : il (1 —ar)gx
Dp >Pp ), such thatp,” + p,” < prmax IS strictly log | 1+ ) ,(10)
, /(1) 1(2) e 14+ (1—a-k)gy
dominated by a vectg, = (p, ' +€1,p, " + €2 ) satisfying ’
the power constraints (2) with e {a,b} and for alls € S, Where, )
€s > 0. Then, without any loss of generality, for alk {a,b} g(;) = pi Rk _ (11)
and for allk € K, we can write the set®"” as follows, PETEE (g2
a 1 2 1
P = {(pé )} )) eR?: p\") = arprmax and (8) Hence, the best response of plajeo the actiorp_,, € P,

denoted bypi max (¢, (1 — ), with 0 < of < 1, can be

(2) _ . ;
Py = Promax(l = ak), with ay, € [0, 1]}’ written in terms ofa_. For instance,

ph = o (2)) eR2:plM) = max @and (9 a a
% {(pk Py Py = Dk, 9) BR(p_,) = BR (p_jmax (@i — ay)),
pl(f) = pk,max(l — Ozk), with oy, € {O, 1}} . =  Pk,max (O‘Za (1 - O‘Z)) ) (12)

In the following section, both Def. 1 and Def. 2 are usedhereq; is the optimal fraction of transmit power transmitter

to study the set of NE of both gam@s”, with i € {a,b}. k& must use over channel Following Def. 2, we obtain
IV. THE POWERALLOCATION GAME ek +di if cpa_g +di €[0,1]

In this section, we analyse the existence and the uniquenes$t — 0 ']t CkQ—k + Zk <0 SNCE)
of the NE in the PA gamg®. 1 It cpa—p+dp>1
A. Existence of the NE where, ) @)

The main result regarding the existence of the NE is stated cp = 1 gkvl—k + gkvz—k (14)
in the following theorem. 2 g,(“,)C g,(“,)C

Theorem 3 (Existence of NE in the PA Game): The game
G(*) has always at least one NE in pure strategies. 92%2(1 + g]i?zk) + g](f])g (91(:,11 —1)
The proof of Theorem 3 follows immediately frortheorem dr, = 50D /@) : (15)
1 in [11]. Note that, for allk € K, the utility function (3) Ik, k9k.k

of(glayerk is continugus and concave over the set of act_i0|@§nCe an explicit expression has been obtained for the BR
P, and the Sefp@ is compact and convex. An alternativecorrespondence of each player, the set of NE corresponds to
proof can be obtained frofiheorem 3.2 in [3Jor Theorem 1 the set of solutions to the fixed point inclusion (7). In Fig. 1

in [12]. we plot the mappings. : [0,1] — [0,1], as defined by (13).

B. Multiplicity of the NE Therein, any crossing point of both graphs is a solution df (7

Note that from Fig. 1, it becomes evident that the number of

In this subsection, we determine the number of possible Nfgersection points can be either 2, 3 or infinitely many.
which the game®) can possess. In particular, it is found thateg; 4 further analysis, we denote by’ = (af,af) the
with probability one, it is possible to observe only one aeth jntersection point of the two lines, e
NE. Finally, some sufficient conditions for observing a wéq

NE are stated. Vet a1 = Mpaa + gi; (16)



a1 (@) o1 (b) where
: k Y= : 20
1 ‘ 1 1 V(k,s) € K xS, py |h1(:;c|2 (20)
I‘i‘ (€51 (e) "\‘ ’
"“ 21 ! The proof of Theorem 6 is as follows. From conditiofi$
4 - (), a sufficient condition to observe a unique NE can be
] . o implied:
a1 L Qo oal b Q2 21)
) (©) [mz| > |mal. (
1 . =1 Then, following equation (20), it is possible to write
\\\\\“.'. - _ p2,mam (2) (1) 22
— L (i +p1), (22)
> and
1 ax ' 1 @2 —2p2 mazx
. . " . ma = (2 ) (1) l (23)
Fig. 1. The mappingsy; : [0,1] — [0,1], with X = 1 andk = 2 are 1 mam(pQ )
represented by the red straight line and the dashed greenréspectively.

The black dash_ed and_ dotted lines represent the lines in\{d®) k = 1 and and thus, replacing (22) and (23) in (21) yields equatior).(18

k = 2, respectively. Fig. (a) and (b) represents the case of enNfd, Fig. Condition (b) is inferred b raohical arquments. The direct

(c) and (d) represent the caseand3 NE, respectively. Fig. (e) represents ~ONAIlIO (b) is i y grapni gu . I

the case of infinitely many NE. implication comes from (a) in Fig. 1, for the reverse one we
have to notice that, with probability one, we can observeeeit

one NE ((a) and (b) in Fig. 1) or three ((d) in Fig. 1). As a
with & € {1,2}, wherem; = ¢1, ¢ = di, my = = an

2 consequence, the uniqueness of the NE implies (18) or (19).
g2 = —%£. Hence, it follows that, Note that, (18) represents the geometric average of the al-
e gebraic average of the ratios between the interfering and

O‘? - e T lae ) (17) direct channels. Interestingly, it shows also that, if theat
a;p = My +q = %ﬁ;; channels are always stronger than the interfering oned, or i

A geometrical analysis of Fig. 1 leads to the followin®n€ transmitter- recelver couple is isolated from the other
conclusions: d(k,s) e xS g,C ’ . = 0), then the NE is unique. Finally,
(i) if af ¢ [0,1]2 then there is only one NE, where one playewe would like to point out the fact that condition (18) is in
uses only one channel, while the other uses a water-filling R&cordance both with the one in [12] and in [14] for obseving a
vector [13]. See Fig. 1 (a). unique NE. However, the condition in [12] appears to be more

(i7) if the following two conditions are met: restrictive, while the c(o)ndition in [(1A)f] can be easily dethuc
. 1 1
« 3k € K, such tha| € {0,1} anda!, € [0,1] from (18), by settingo; * = 0 andp, * = 0.
= Ima > fms| V. CHANNEL SELECTION GAME
then the game has two NE. See Fig. 1 (c). '

(ii7) if the two lines,y; and~,, overlap, then the system has In this section, we study the channel selection gagffe.
infinitely many NE. See Fig. 1 (e). In this case, contrary to the PA the action space is a discrete
(iv) if af € [0,1]? and i > 1 then there are three NE. Seeset, thus the existence of a pure NE is not deducible from the
Fig. 1 (d) application ofTheoreml1 in [11]. Let the channel selection
(v) if af € [0,1]? and k< 1 then there is only one NE. vector of playerk, be denoted by, = pi max (ax, 1 — ax),
See Fig. 1 (b). with «y, € {0, 1}. In the following we will indifferently refer
Note that the next corollary follows immediately from camcl to the Channel Selection NE* = (p},p}) asa* = (af, )
sions (i) and (iii), since the channels are random variablesith o} € {0,1}.
drawn from continuous distributions, and thus, the comeslp
ing conditions are zero probability events.

Corollary 5:  The gameG(®) has, with probability one,

Hence, all the outcomes of the game can be described by
the table hereunder:

either one or three NE in pure strategies. T \Tas ag =1 as =10
In the following, we provide sufficient conditions to observ a; =1 | (u1(1,1),uz(1,1)) | (u1(1,0),u2(0,1))
a unique NE. a1 =0 | (u1(0,1),u2(1,0)) | (u1(0,0),u2(0,0))
Theorem 6 (Uniqueness of NE in the PA Game): The
gameg (@) has one NE if and only if at least one of theFig. 2. Utility obtained by playen and 2, wherewy, is defined by (10).
foIIowmg conditions is satisfied. Player1 chooses rows and play@rchooses columns.
(@ () o) <4 8

In the following, we study the existence and the multipjicit
() 3kek:al<0oral>1 (19) of the NE of the gamg®).



A. EX'Stence Of the NE Pr of Nash equilibria

o
©

The main result regarding the existence of the gaite is IEE Ei?ﬂi E‘Ej
the following. .l e
Theorem 7 (Existence of NE in the CS Game): The gat 07 T
(®) i i R .
G has always at least one NE in pure strategies. o —
The proof of Theorem 7 follows from showing that for any
vectorg = (g(s) € R®, there always exists an gos
IR ) (j,k,s)EK2xS2 . ) £
outcomea™® = (al,agﬁ, which is a NE. To prove it we will & oar
perform an exhaustive search. Without any loss of gengrali 03 |
let us assum@1 1 > g§21) then, 0 ]
o if 92 2 > 92 2, thena* = (1,0) is a NE; e aun DEUE SUUE NS
0.1
o if g22<g22,then W
0 I I I I I I I I I
- |f 92 2 < 92 2(1 + 921 ) thena* = (1, O) |S a NE, 0 2 4 6 Sigial!oNoli(s)eRatiol[gB] “ 1 8 2

)
(W)
— if 922>922(1+921

% g(l) > g( (1+ g , thena* = (1,1) is a NE;  Fig. 3. Probability of observing either one or three NE in gaemeg ().
% 1) % 1) (1 . We refer to type (a), the case where there exists a unique NE that
* 911 <91, 1(1 +912), thena™ = (1,0) isa NE; 3k e K : af € {0,1} (see Fig 1 (a)). Type (b) refers to the case where

We analyse all the p055|ble NE in the following subsectionthere exists a unique NE antk € K, a* € [0,1]? (See Fig 1 (b)). Type
(d) refers to the case where there exists three NE.
B. Multiplicity of the NE

In the gameG®), depending on the channel realizations,
any of the four outcomes of the game can be a NE as shown VI. NUMERICAL RESULTS
in Theorem 8. However, as we shall see, the game may haveq rose of this section is two-fold. First, we provide
either one or two NE. ) , ®) numerical approximations of the probability of observing
*Theoremjs (':IE iG™)): Consider the gamej™™ aTd et gither one or three NE in the gangé®), and the probability
o = *(0‘170‘22 identify the channel selectiom;, = 4 ghserving one or two NE irg(®). Second, we provide
Prmaz (0, 1 = ak?Vk € IC.Then . numerical calculations of the utilities achieved in the gam
1) a* =(1,1) is a NE if and only if G@ and g®, in order to evaluate which game brings the

)
), then
2)

S (2)(1 n (1)) highest system spectral efficiency at the equilibrium, ilee
{ g%ll) 9%21) g%l) (24) sum of all individual spectral efficiencies (3).
922 > 922(1+927) In the first experiment, we generat@® vectors of channel
2) a* = (0,0) is a NE if and only if realizationsg = (gj(slg hseins R® and, for each
s)E X
(2) (1) (2) realization, the number ‘of NE of the corresponding game
g1 > 911(1+g15)
o) ) % (25) is calculated. InG®, when only one NE is observed, we
922 > 9221 +9571) distinguish between the case whellec K : o € {0,1} (see
3) a* = (0,1) is a NE if and only if Fig. 1 (a)) and the case whete* € [0,1]* (See Fig. 1 (b)).
@) ) ) The results of this Monte Carlo simulation are reported o Fi
gal+g15) > g1 26) + AboutG®), the results are reported in Fig. 5. As 6%,
gglg(l + g; )) > gé% the probability of observing a multiple NE increases witke th

N . SNR. This is easily explicable by noting that low SNR also
4) a* = (1,0) is a NE if and only if means that the interference is negligible when compareukto t
(1) (2) (2) the noise and vice-versa. As a consequence, when the noise is
g11(1+91%) > g1 @27) ; : ; .
)1 4 (1)) < 1) the major concern (low SNR regime) the transmitter wlll try
922(1+ 65, 92,2 to optimize its spectral efficiency by selecting the leassyo
The proof of Theorem 8 is an immediate result from Fig. 2 anthannel regardless of the interference. When, on the agntra
Def. 1. An important conclusion which follows immediatelythe major concern is the interference (high SNR regime) then
from Theorem 8 is the following. avoiding the channel used by the other transmitter becohnees t
Corollary 9 (Multiplicity of the NE in the CS game): The priority. Note that the gamé(® has only one NE with a high
gameG® has always either one or two NE in pure strategiesrobability, however, three NE can be observed with a non-
This result follows from the fact that if there exists a playenegligible one. This result implies that designing alduoris
with a dominant strategy, the gangé®) has a unique NE. If for achieving NE (see [1]) in decentralized networks regsiir
none of the players possesses a dominant strategy, the gémneackle the problem of equilibrium selection, which is a
G® is an anti-coordination game with two N&* = (1,0) problem that has been neglected in most recent literatdre [1
anda* = (0,1). [2].
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In the second experiment, we generdie® vectors of

channel realizationg = (ggs,z (beyeKaxns © R® and for
IR ) (j.k,s)ER2XS

power allocation game where transmitters can simultarigous

use both channels. Second, the channel selection gameg wher
transmitters use only one of the available channels at a time

Here, the number of NE in the PA game has been proved to
be eitherl or 3 depending on the exact channel realizations.
However, it has been also shown that with zero-probabitity,

is possible to observe eithror infinitely many NE. Regard-
ing the CS game, depending on the channel realizations, any
feasible channel selection might be a NE. Here, we provide
conditions over the channel realizations for every case. In
particular, the number of NE in pure strategies in the CS game
is either one or two depending on the channel realizations.
Finally, we showed, by using Monte-Carlo simulations, that
the best and worst average system spectral efficiency achiev
in equilibrium in the CS game is better than the best and worst
average system spectral efficiency achieved in equilibiiium
the PA game.
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