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Abstract—In this paper, the 2-dimensional decentralized
parallel interference channel (IC) with 2 transmitter-receiver
pairs is modelled as a non-cooperative static game. Each
transmitter is assumed to be a fully rational entity with
complete information on the game, aiming to maximize its
own individual spectral efficiency by tuning its own power
allocation (PA) vector. Two scenarios are analysed. First,we
consider that transmitters can split their transmit power
between both dimensions (PA game). Second, we consider that
each transmitter is limited to use only one dimension (channel
selection CS game). In the first scenario, the game might have
either one or three NE in pure strategies (PS). However, two
or infinitely many NE in PS might also be observed with zero
probability. In the second scenario, there always exists either
one or two NE in PS. Using Monte-Carlo simulations, we show
that in both games there always exists a non-zero probability
of observing more than one NE. More interestingly, we show
that the highest and lowest network spectral efficiency at any of
the NE in the CS game are always higher than the ones in the PA.

Keywords: Interference Channel, Decentralized Network,
Nash Equilibrium, Braess Paradox, Spectrum Efficiency.

I. I NTRODUCTION

This article addresses the interaction of2 transmitters-
receiver links subject to mutual interference due to the use
of 2 common frequency bands. Here, each transmitter com-
municates only with its corresponding receiver aiming to
maximize its individual spectral efficiency (ISE) regardless
of the ISE achieved by the other link. We do not consider
neither transmitter nor receiver cooperation and any kind
of message exchanging between transmitters is completely
avoided. Thus, this interaction through mutual interference is
modelled by two different static strategic games. In the first
game, we consider that transmitters can simultaneously use
both channels (frequency bands). In the second game, we limit
each transmitter to use only one of the two available channels.
In the following, we refer to the former as the power allocation
(PA) game and the latter as channel selection (CS) game.
In both games, transmitters are assumed to be fully rational
entities with complete information. This assumption might
appear not practically appealing, however, our interest focuses
in identifying the set of Nash equilibria of each of the gamesin
order to compare the system spectral efficiency, i.e., the sum
of all the ISE, achieved in each game. Any mechanism or
algorithm for achieving NE under real-system implementation

constraints is considered out of the scope of this paper. The
interested reader is referred to [1], [2] and references therein.
Regarding the existence and uniqueness of the NE in the PA
game, many results are already known for more general cases
than the one described here. In the most general case, i.e.,
the K-transmitter MIMO decentralized interference channel,
the existence of the NE has been already proved in [2]. The
same holds for the interference relay channel described in
[3]. However, regarding the multiplicity of the NE in the PA
game, much less is known. For instance, in [2] sufficient but
not necessary conditions for the uniqueness are provided and,
aside from the result in [3], the exact number of NE in pure
strategies, even in the case with only two players, it is not
known.
Conversely to the PA game, no results are known with respect
to the existence or multiplicity of the NE. The relevance of
the CS game relies on the fact that under non-perfect channel
estimations, the water-filling PA [2] can not be implemented,
and thus, transmitters must either transmit over a single
channel e.g., Wi-Fi networks, or to use predefined power
allocation vectors. More importantly, it has been shown that
significant benefits from the global system point of view are
obtained by limiting the transmitters to use a reduced number
of channels, at least in the parallel multiple access channel [4],
[5]. This result implies the existence of a Braess type paradox
[6], since reducing the set of actions of each player leads toa
better global performance. The existence of this paradox has
been already reported for specific channel realizations in the
interference channel [7], [8].
The main contributions of this paper can be listed as follows.
(i) Contrary to previous beliefs [9], the number of NE in
the PA game is shown to be1 or 3 depending on the exact
channel realizations. However, with zero-probability, itis also
possible to observe either2 or infinitely many NE. This result
aligns with the number of NE in the interference relay channel
described in [3].(ii) Depending on the channel realizations,
any feasible channel selection in the CS game might be an
NE. Here, we provide conditions over the channel realizations
for every case. Moreover for any channel realization it always
exist at least one NE in pure strategy.(iii) The number of NE
in the CS game is either one or two depending on the channel
realizations.(iv) The best and worst average system spectral
efficiency achieved in equilibrium in the CS game is better



than the best and worst average system spectral efficiency
achieved in equilibrium in the PA game.
The paper is organized as follows. In Sec. II, we describe the
decentralized parallel interference channel addressed inthis
paper. In Sec. III, we present the formal game formulation of
both the PA game and CS game. In Sec. IV and V, we provide
the main results regarding the existence and multiplicity of
the NE in the PA game and CS game, respectively. In VI,
we use Monte-Carlo methods to identify the probability of the
different number of NE in both the PA and CS games. We also
compare using Monte-Carlo simulations the system spectral
efficiency achieved by both games. This paper is concluded
by Sec. VII.

II. SYSTEM MODEL

Consider a setK
4
= {1, 2} of transmitter-receiver pairs.

Each transmitter sends private information to its respective

receiver trough out a setS
4
= {1, 2} of orthogonal channels.

Here, the channel orthogonality is assumed in the frequency
domain and transmissions take place simultaneously, thus
communications are subject to mutual interference. Denoteby

yj =
(

y
(1)
j , y

(2)
j

)T

the 2-dimensional vector representing the
received signal at receiverj ∈ K. Hence,yj can be written
in the baseband at the symbol rate as follows,

yj =

2
∑

k=1

Hj,kxk + zj . (1)

Here,∀(j, k) ∈ K2, the matrixHj,k is the channel transfer
matrix from transmitterk to the receiverj, and Hj,k =

diag
(

h
(1)
j,k, h

(2)
j,k

)

. Besides∀(j, k, s) ∈ K2×S, h(s)
j,k represents

the channel realization between transmitterk and receiver
j over channels. In our analysis, flat fading channels are
assumed, i.e., each channel realization is time-invariantover
the whole channel use (e.g., frame length). The entriesh

(s)
j,k are

time-invariant realizations of a complex circularly symmetric
Gaussian random variable, with zero mean and unit variance.
The vectorxk =

(

x
(1)
k , x

(2)
k

)

is the vector of symbols

transmitted by transmitterk. For all s ∈ S, x
(s)
k represents

the symbol sent by transmitterk over channels. Here,xk

is a 2-dimensional complex circularly symmetric Gaussian
random variable with zero mean and covariance matrixP k =

E (xkx
∗
k) = diag

(

p
(1)
k , p

(2)
k

)

. For all (k, s) ∈ K × S, p(s)k

represents the transmit power allocated by transmitterk over
channels. Transmitters are power-limited, that is,

∀k ∈ K, p
(1)
k + p

(2)
k 6 pk,max, (2)

wherepk,max is the maximum transmit power of transmitter
k. A power allocation (PA) vector for transmitterk ∈ K

is any vector pk =
(

p
(1)
k , p

(2)
k

)

with non-negative en-
tries satisfying (2). The noise vectorzj , j ∈ K, is a 2-
dimensional zero mean Gaussian random variable with in-
dependent, equal variance real and imaginary parts. Here,
E
(

zjz
∗
j

)

= diag
(

(σ
(1)
j )2, (σ

(2)
j )2

)

, where, (σ(s)
j )2 repre-

sents the noise power in the receiverj over channels.

We denote the individual spectral efficiency (in [bps/Hz])
of each transmitterk as follows:

uk(pk,p−k) =
∑

s∈S

log2






1 +

p
(s)
k

∣

∣

∣h
(s)
k,k

∣

∣

∣

2

(σ
(s)
k )2 + p

(s)
−k

∣

∣

∣
h
(s)
k,−k

∣

∣

∣

2






.

(3)
In the following, we focus on the scenario where each trans-
mitter k ∈ K aims at maximizing its individual spectral
efficiency (3) by tuning its corresponding power policy. We
consider two problems:
(i) The Power Allocation (PA) Problem: where, each trans-
mitter k is allowed to tune its power allocation vectorpk

splitting the maximum available power into both channels, i.e.,
p
(s)
k ∈ [0, pk,max];

(ii) The Channel Selection (CS) Problem:where, each
transmitterk is limited into using only one channel at a time
with full power, i.e.,p(s)k ∈ {0, pk,max}.

III. N ORMAL-FORM GAME FORMULATION

The PA and CS problems described in Sec. II can be
respectively modelled by the following two non-cooperative
static games in strategic form (withi ∈ {a, b}):

G(i) =

(

K,
(

P
(i)
k

)

k∈K
, (uk)k∈K

)

. (4)

In both games, the set of transmittersK is the set of players.
An action of a given transmitterk is a particular PA scheme,
i.e., a 2-dimensional PA vectorpk =

(

p
(1)
k , p

(2)
k

)

∈ P
(i)
k ,

where P
(i)
k is the set of all possible PA vectors which

transmitterk can use either in the gameG(a) (i = a) or in the
gameG(b) (i = b). An action profile of the gamei ∈ {a, b} is
a super vector

p = (p1,p2) ∈ P(i),

whereP(i) is a set obtained from the Cartesian product of the
action sets, i.e.,P(i) = P

(i)
1 × P

(i)
2 .

The utility function for playerk in the gamesG(i) is denoted
by uk : P(i) → R, with i ∈ {1, 2} and corresponds to the
individual spectral efficiency of transmitterk (3).
The solution concept used in this paper is that of Nash
equilibrium (NE) [10]. A NE is an action profilep ∈ P(i),
i ∈ {1, 2}, such that, no player would increase its individual
utility by unilateral deviation.

Definition 1 (Pure Nash Equilibrium): In the non-
cooperative games in strategic formG(i), with i ∈ {a, b}, an
action profilep ∈ P(i) is an NE if it satisfies, for allk ∈ K

and for all p′
k ∈ P

(i)
k , that

uk(pk,p−k) > uk(p
′
k,p−k). (5)

Note that, from Def. 1, it becomes clear that, at the NE, each
player’s action is the best response to the actions taken by
all the other players. An alternative definition of the NE can
be stated using the concept of best response correspondence,
which we define as follows,



Definition 2 (Best-Response Correspondence): In the non-
cooperative games in strategic formG(i), with i ∈ {a, b}, the
relation BR

(i)
k : P

(i)
−k → P

(i)
k such that

BR
(i)
k

(

p−k

)

= arg max
q
k
∈P

(i)
k

uk

(

qk,p−k

)

, (6)

is defined as the best-response correspondence of playerk ∈

K, given the actionsp−k ∈ P
(i)
−k adopted by all the other

players.
Note that we denote by−k the user other thank. For all
i ∈ {a, b}, let the action profilep∗ ∈ P(i) be an NE and let the
correspondenceBR : P(i) → P(i) be defined byBR (p) =

{q ∈ P(i) : q1 ∈ BR
(i)
1 (p2) and q2 ∈ BR

(i)
2 (p1)}. Hence,

∀k ∈ K, it holds that

p∗ ∈ BR (p∗) . (7)

Finally, in both games, the PA vector of playerk, p′
k =

(

p
′(1)
k , p

′(2)
k

)

, such thatp′(1)k + p
′(2)
k < pk,max is strictly

dominated by a vectorpk =
(

p
′(1)
k + ε1, p

′(2)
k + ε2

)

satisfying

the power constraints (2) withi ∈ {a, b} and for all s ∈ S,
εs > 0. Then, without any loss of generality, for alli ∈ {a, b}

and for allk ∈ K, we can write the setsP(i)
k as follows,

P
(a)
k =

{(

p
(1)
k , p

(2)
k

)

∈ R
2 : p

(1)
k = αkpk,max and (8)

p
(2)
k = pk,max(1− αk), with αk ∈ [0, 1]

}

,

P
(b)
k =

{(

p
(1)
k , p

(2)
k

)

∈ R
2 : p

(1)
k = αkpk,max and (9)

p
(2)
k = pk,max(1− αk), with αk ∈ {0, 1}

}

.

In the following section, both Def. 1 and Def. 2 are used
to study the set of NE of both gamesG(i), with i ∈ {a, b}.

IV. T HE POWER ALLOCATION GAME

In this section, we analyse the existence and the uniqueness
of the NE in the PA gameG(a).

A. Existence of the NE

The main result regarding the existence of the NE is stated
in the following theorem.

Theorem 3 (Existence of NE in the PA Game): The game
G(a) has always at least one NE in pure strategies.
The proof of Theorem 3 follows immediately fromTheorem
1 in [11] . Note that, for allk ∈ K, the utility function (3)
of playerk is continuous and concave over the set of actions
P

(b)
k and the setP(b) is compact and convex. An alternative

proof can be obtained fromTheorem 3.2 in [3]or Theorem 1
in [12] .

B. Multiplicity of the NE

In this subsection, we determine the number of possible NE
which the gameG(a) can possess. In particular, it is found that,
with probability one, it is possible to observe only one or three
NE. Finally, some sufficient conditions for observing a unique
NE are stated.

Theorem 4 (Multiplicity of NE): The gameG(a) might
have either one, two, three or infinitely many NE in pure
strategies.

The proof of Theorem 4 follows the same line of the proof
of Theorem 3.3 in [3]and it is divided in two steps. First, we
obtain an explicit expression for the BR correspondence (Def.
2) for both players; second, the set of solutions of the fixed
point equation in (7) is determined. That is, for allk ∈ K,
let the action profilepk =

(

p
(1)
k , p

(2)
k

)

be written as follows

pk = pk,max (αk, 1− αk), with 0 6 αk 6 1, representing the
fraction of power that transmitterk uses over channel one.
Then, with a slight abuse of notation, (3) can be written as
follows,

uk(αk, α−k) = log

(

1 +
αkg

(1)
k,k

1 + α−kg
(1)
k,−k

)

+

log

(

1 +
(1 − αk)g

(2)
k,k

1 + (1− α−k)g
(2)
k,−k

)

, (10)

where,

g
(s)
j,k = pk,max

|hj,k|
2

(σ
(s)
j )2

. (11)

Hence, the best response of playerk to the actionp−k ∈ P
(a)
−k ,

denoted bypk,max (α
∗
k, (1− α∗

k)), with 0 6 α∗
k 6 1, can be

written in terms ofα−k. For instance,

BR
(a)
k (p−k) = BR

(a)
k (p−k,max (α−k, 1− α−k)) ,

= pk,max (α
∗
k, (1− α∗

k)) , (12)

whereα∗
k is the optimal fraction of transmit power transmitter

k must use over channel1. Following Def. 2, we obtain

α∗
k =







ckα−k + dk if ckα−k + dk ∈ [0, 1]
0 if ckα−k + dk < 0
1 if ckα−k + dk > 1

, (13)

where,

ck = −
1

2

(

g
(1)
k,−k

g
(1)
k,k

+
g
(2)
k,−k

g
(2)
k,k

)

(14)

dk =
g
(1)
k,k(1 + g

(2)
k,−k) + g

(2)
k,k(g

(1)
k,k − 1)

2g
(1)
k,kg

(2)
k,k

. (15)

Once an explicit expression has been obtained for the BR
correspondence of each player, the set of NE corresponds to
the set of solutions to the fixed point inclusion (7). In Fig. 1,
we plot the mappingsα∗

k : [0, 1] → [0, 1], as defined by (13).
Therein, any crossing point of both graphs is a solution of (7).
Note that from Fig. 1, it becomes evident that the number of
intersection points can be either1, 2, 3 or infinitely many.
For a further analysis, we denote byα† = (α†

1,α†
2) the

intersection point of the two lines,

γk : α1 = mkα2 + qk; (16)
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Fig. 1. The mappingsα∗

k
: [0, 1] → [0, 1], with k = 1 and k = 2 are

represented by the red straight line and the dashed green line, respectively.
The black dashed and dotted lines represent the lines in (16), with k = 1 and
k = 2, respectively. Fig. (a) and (b) represents the case of unique NE, Fig.
(c) and (d) represent the case of2 and3 NE, respectively. Fig. (e) represents
the case of infinitely many NE.

with k ∈ {1, 2}, wherem1 = c1, q1 = d1, m2 = 1
c2

and
q2 = − d2

c2
. Hence, it follows that,

α
†
2 = q2−q1

m1−m2
= d1c2+d2

1−c1c2
,

α
†
1 = m1α

†
2 + q1 = d2c1+d1

1−c1c2
.

(17)

A geometrical analysis of Fig. 1 leads to the following
conclusions:
(i) if α† 6∈ [0, 1]2 then there is only one NE, where one player
uses only one channel, while the other uses a water-filling PA
vector [13]. See Fig. 1 (a).
(ii) if the following two conditions are met:

• ∃k ∈ K, such thatα†
k ∈ {0, 1} andα†

−k ∈ [0, 1]
• |m1| > |m2|

then the game has two NE. See Fig. 1 (c).
(iii) if the two lines,γ1 andγ2, overlap, then the system has
infinitely many NE. See Fig. 1 (e).
(iv) if α† ∈ [0, 1]2 and m1

m2
> 1 then there are three NE. See

Fig. 1 (d)
(v) if α† ∈ [0, 1]2 and m1

m2
< 1 then there is only one NE.

See Fig. 1 (b).
Note that the next corollary follows immediately from conclu-
sions(ii) and (iii), since the channels are random variables
drawn from continuous distributions, and thus, the correspond-
ing conditions are zero probability events.

Corollary 5: The gameG(a) has, with probability one,
either one or three NE in pure strategies.
In the following, we provide sufficient conditions to observe
a unique NE.

Theorem 6 (Uniqueness of NE in the PA Game): The
gameG(a) has one NE if and only if at least one of the
following conditions is satisfied.

(a) (ρ
(1)
1 + ρ

(2)
1 )(ρ

(1)
2 + ρ

(2)
2 ) < 4 (18)

(b) ∃k ∈ K : α
†
k < 0 or α†

k > 1 (19)

where

∀(k, s) ∈ K × S, ρ
(s)
k =

|h
(s)
k,−k|

2

|h
(s)
k,k|

2
. (20)

The proof of Theorem 6 is as follows. From conditions(i)
- (iv), a sufficient condition to observe a unique NE can be
implied:

|m2| > |m1|. (21)

Then, following equation (20), it is possible to write

m1 = −
p2,max

2p1,max

(ρ
(2)
1 + ρ

(1)
1 ), (22)

and

m2 =
−2p2,max

p1,max(ρ
(2)
2 + ρ

(1)
2 )

, (23)

and thus, replacing (22) and (23) in (21) yields equation (18).
Condition (b) is inferred by graphical arguments. The direct
implication comes from (a) in Fig. 1, for the reverse one we
have to notice that, with probability one, we can observe either
one NE ((a) and (b) in Fig. 1) or three ((d) in Fig. 1). As a
consequence, the uniqueness of the NE implies (18) or (19).
Note that, (18) represents the geometric average of the al-
gebraic average of the ratios between the interfering and
direct channels. Interestingly, it shows also that, if the direct
channels are always stronger than the interfering ones, or if
one transmitter-receiver couple is isolated from the other(i.e.
∃(k, s) ∈ K × S : g

(s)
k,−k = 0), then the NE is unique. Finally,

we would like to point out the fact that condition (18) is in
accordance both with the one in [12] and in [14] for obseving a
unique NE. However, the condition in [12] appears to be more
restrictive, while the condition in [14] can be easily deducted
from (18), by settingρ(1)1 = 0 andρ(1)2 = 0.

V. CHANNEL SELECTION GAME

In this section, we study the channel selection gameG(b).
In this case, contrary to the PA the action space is a discrete
set, thus the existence of a pure NE is not deducible from the
application ofTheorem1 in [11] . Let the channel selection
vector of playerk, be denoted bypk = pk,max (αk, 1− αk),
with αk ∈ {0, 1}. In the following we will indifferently refer
to the Channel Selection NEp∗ = (p∗1, p

∗
2) asα∗ = (α∗

1, α
∗
2)

with α∗
k ∈ {0, 1}.

Hence, all the outcomes of the game can be described by
the table hereunder:

Tx1\Tx2 α2 = 1 α2 = 0
α1 = 1 (u1(1, 1), u2(1, 1)) (u1(1, 0), u2(0, 1))
α1 = 0 (u1(0, 1), u2(1, 0)) (u1(0, 0), u2(0, 0))

Fig. 2. Utility obtained by player1 and 2, whereuk is defined by (10).
Player1 chooses rows and player2 chooses columns.

In the following, we study the existence and the multiplicity
of the NE of the gameG(b).



A. Existence of the NE

The main result regarding the existence of the gameG(b) is
the following.

Theorem 7 (Existence of NE in the CS Game): The game
G(b) has always at least one NE in pure strategies.
The proof of Theorem 7 follows from showing that for any
vectorg =

(

g
(s)
j,k

)

(j,k,s)∈K2×S2
∈ R

8, there always exists an

outcomeα∗ = (α∗
1, α

∗
2), which is a NE. To prove it we will

perform an exhaustive search. Without any loss of generality,
let us assumeg(1)1,1 > g

(2)
1,1 then,

• if g
(2)
2,2 > g

(1)
2,2, thenα∗ = (1, 0) is a NE;

• if g
(2)
2,2 < g

(1)
2,2, then

– if g
(1)
2,2 < g

(2)
2,2(1 + g

(1)
2,1), thenα∗ = (1, 0) is a NE;

– if g
(1)
2,2 > g

(2)
2,2(1 + g

(1)
2,1), then

∗ g
(1)
1,1 > g

(2)
1,1(1 + g

(1)
1,2), thenα∗ = (1, 1) is a NE;

∗ g
(1)
1,1 < g

(2)
1,1(1 + g

(1)
1,2), thenα∗ = (1, 0) is a NE;

We analyse all the possible NE in the following subsection.

B. Multiplicity of the NE

In the gameG(b), depending on the channel realizations,
any of the four outcomes of the game can be a NE as shown
in Theorem 8. However, as we shall see, the game may have
either one or two NE.

Theorem 8 (NE inG(b)): Consider the gameG(b) and let
α∗ = (α∗

1, α
∗
2) identify the channel selectionp∗k =

pk,max(α
∗
k, 1− α∗

k)∀k ∈ K.Then
1) α∗ = (1, 1) is a NE if and only if

{

g
(1)
1,1 > g

(2)
1,1(1 + g

(1)
1,2)

g
(1)
2,2 > g

(2)
2,2(1 + g

(1)
2,1)

(24)

2) α∗ = (0, 0) is a NE if and only if
{

g
(2)
1,1 > g

(1)
1,1(1 + g

(2)
1,2)

g
(2)
2,2 > g

(1)
2,2(1 + g

(2)
2,1)

(25)

3) α∗ = (0, 1) is a NE if and only if
{

g
(2)
1,1(1 + g

(1)
1,2) > g

(1)
1,1

g
(1)
2,2(1 + g

(2)
2,1) > g

(2)
2,2

(26)

4) α∗ = (1, 0) is a NE if and only if
{

g
(1)
1,1(1 + g

(2)
1,2) > g

(2)
1,1

g
(2)
2,2(1 + g

(1)
2,1) > g

(1)
2,2

(27)

The proof of Theorem 8 is an immediate result from Fig. 2 and
Def. 1. An important conclusion which follows immediately
from Theorem 8 is the following.

Corollary 9 (Multiplicity of the NE in the CS game): The
gameG(b) has always either one or two NE in pure strategies.
This result follows from the fact that if there exists a player
with a dominant strategy, the gameG(b) has a unique NE. If
none of the players possesses a dominant strategy, the game
G(b) is an anti-coordination game with two NEα∗ = (1, 0)
andα∗ = (0, 1).
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Fig. 3. Probability of observing either one or three NE in thegameG(a).
We refer to type (a), the case where there exists a unique NE such that
∃k ∈ K : α∗

k
∈ {0, 1} (see Fig 1 (a)). Type (b) refers to the case where

there exists a unique NE and∀k ∈ K, α∗ ∈ [0, 1]2 (See Fig 1 (b)). Type
(d) refers to the case where there exists three NE.

VI. N UMERICAL RESULTS

The purpose of this section is two-fold. First, we provide
numerical approximations of the probability of observing
either one or three NE in the gameG(a), and the probability
of observing one or two NE inG(b). Second, we provide
numerical calculations of the utilities achieved in the games
G(a) and G(b), in order to evaluate which game brings the
highest system spectral efficiency at the equilibrium, i.e., the
sum of all individual spectral efficiencies (3).
In the first experiment, we generate106 vectors of channel
realizationsg =

(

g
(s)
j,k

)

(j,k,s)∈K2×S
∈ R

8 and, for each

realization, the number of NE of the corresponding game
is calculated. InG(a), when only one NE is observed, we
distinguish between the case where∃k ∈ K : α∗

k ∈ {0, 1} (see
Fig. 1 (a)) and the case whereα∗ ∈ [0, 1]

2 (See Fig. 1 (b)).
The results of this Monte Carlo simulation are reported in Fig.
4. AboutG(b), the results are reported in Fig. 5. As forG(a),
the probability of observing a multiple NE increases with the
SNR. This is easily explicable by noting that low SNR also
means that the interference is negligible when compared to the
the noise and vice-versa. As a consequence, when the noise is
the major concern (low SNR regime) the transmitter will try
to optimize its spectral efficiency by selecting the least noisy
channel regardless of the interference. When, on the contrary,
the major concern is the interference (high SNR regime) then
avoiding the channel used by the other transmitter becomes the
priority. Note that the gameG(a) has only one NE with a high
probability, however, three NE can be observed with a non-
negligible one. This result implies that designing algorithms
for achieving NE (see [1]) in decentralized networks requires
to tackle the problem of equilibrium selection, which is a
problem that has been neglected in most recent literature [1],
[2].
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Fig. 5. Probability of observing either one or two NE in the gameG(b).

In the second experiment, we generate106 vectors of
channel realizationsg =

(

g
(s)
j,k

)

(j,k,s)∈K2×S
∈ R

8 and for

each realization, the utility achieved in each of the NE of
the gamesG(a) and G(b) is calculated. In Fig. 4, we report
the average sum-utility achieved in any of the NE of the
gamesG(a) and G(b). Note that a higher spectral efficiency
is observed when transmitters are limited to use only one
channel. This result can be interpreted as a Braess paradox [6]
and generalizes the founds in [5], [7] and [8]. Here, reducing
the set of actions of each player leads to a higher sum-utility,
i.e., a higher system spectral efficiency.

VII. CONCLUSIONS

In this paper, we presented a game theoretical analysis
of the 2-dimensional parallel interference channel with two
transmitter-receiver pairs. Two games were analysed. First, the

power allocation game where transmitters can simultaneously
use both channels. Second, the channel selection game, where
transmitters use only one of the available channels at a time.
Here, the number of NE in the PA game has been proved to
be either1 or 3 depending on the exact channel realizations.
However, it has been also shown that with zero-probability,it
is possible to observe either2 or infinitely many NE. Regard-
ing the CS game, depending on the channel realizations, any
feasible channel selection might be a NE. Here, we provide
conditions over the channel realizations for every case. In
particular, the number of NE in pure strategies in the CS game
is either one or two depending on the channel realizations.
Finally, we showed, by using Monte-Carlo simulations, that
the best and worst average system spectral efficiency achieved
in equilibrium in the CS game is better than the best and worst
average system spectral efficiency achieved in equilibriumin
the PA game.
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