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Abstract

A new approach to non-linear state estimation based on belief function theory and
interval analysis is presented. This method uses belief structures composed of a finite
number of axis-aligned boxes with associated masses. Such belief structures can rep-
resent partial information on model and measurement uncertainties, more accurately
than can the bounded error approach alone. Focal sets are propagated in system
equations using interval arithmetics and constraint satisfaction techniques, thus gen-
eralizing pure interval analysis. This model was used to locate a land vehicle using
a dynamic fusion of GPS measurements with dead reckoning sensors. The method
has been shown to provide more accurate estimates of vehicle position than does the
bounded error method while retaining what is essential: providing guaranteed com-
putations. The performances of our method were also slightly better than those of a
particle filter, with comparable running time. These results suggest that our method is
a viable alternative to both bounded error and probabilistic Monte-Carlo approaches
for vehicle localization applications.

Keywords: Data fusion, State Estimation, Dempster-Shafer theory, Evidence the-
ory, Interval analysis, Bounded error estimation, Localization.



1 Introduction

Estimating the state of a dynamical system based on noisy sensor measurements
is a common problem in various areas such as mobile robot navigation or target
tracking [2][23]. If several sensors or other information sources are available, then
data fusion algorithms have to be used. A critical issue when designing such systems
is the representation of uncertainties that pervade both sensor measurements and the
state space model itself. Two broad categories of state estimation methods can be
distinguished in that respect.

Methods in the first category are based on a probabilistic description of uncertainty
and assume measurement noise and state perturbations to be realizations of random
variables with known statistical properties. This is the mainstream approach. In
a linear context, the most popular method is by far the application of the Kalman
filter [27], which assumes model and observation noise to be normal. In non-linear
cases, the two main methods are based on the Extended Kalman filter (EKF) and
the Particle filter (PF). The EKF linearizes the state and measurement equations
and then applies the Kalman filter to obtain state estimates [4, 20], assuming process
and observation noises to be normal. The state posterior probability distribution is
approximated using a Gaussian distribution that is propagated analytically through
linearized system equations. However, linearization is inherently local and may fail to
produce reliable estimates, especially when the state model is highly non-linear. The
statistical interpretation of covariance matrices is also unclear in this approach, as the
statistical properties of perturbations though non-linear equations are not well-known.
Recently, sequential Monte Carlo methods for recursive Bayesian filtering, or particle
filter (PF) methods have emerged as useful tools for problems requiring non-linear
dynamic state estimation [7][15][23]. The PF estimator usually provides more accurate
information about the state posterior probability distribution than does the EKF,
especially if it takes a multimodal shape or if noise distributions are non-Gaussian.
The efficiency and accuracy of the PF method depends mostly on the number of
particles used in the estimation and on the propagation used to re-allocate weights
to these particles at each iteration. To cope with high uncertainty of measurement, a
large number of particles have to be used, especially when the number of dimensions
of the state vector is high; this may be an issue for real-time implementation of the
PF method. Several authors have tried to overcome these shortcomings by combining
approaches (see [23] and references therein) or by adapting the size of sample sets
during the estimation process [19].

The second group of methods corresponds to state bounding. Assuming that all
variables belong to known compact sets, these methods attempt to build simple sets,
such as ellipsoids or boxes, guaranteed to contain all state vectors consistent with given
constraints [26]. In a linear context, this approach has been investigated by several
authors since the 1960’s (see, e.g., [6, 8, 29, 32, 37, 38, 43] and references therein). In
the non-linear context, the methodology is less developed. Non-linear state-bounding
methods have been presented in [3][24][26][28]. Recently, a relatively simple and fast
method based on constraint propagation and interval analysis was introduced and
applied to vehicle localization by [21][22]. The main interest in the bounded-error
approach arises from the fact that it allows so-called validated computations: com-
putations with guaranteed accuracy taking into account all possible sources of error,

1



from data imprecision to rounding errors due to computer calculations. The major
drawback of this approach is the difficulty of determining noise bounds. Indeed, if
the bounds are too tight, the data may become inconsistent with the system equa-
tions, in which case, the method fails to provide a solution. On the other hand, if
the bounds are overestimated, the estimated state becomes very imprecise, and the
method becomes overly pessimistic. A related problem with this approach is its lack
of robustness against outlying observations, which may be a severe limitation in cases
where sensor information is unreliable.

In this paper, we propose to replace the set-based representation of uncertainty
used in the state bounding approach by a more general formalism based on belief
functions. The theory of belief functions, also known as Dempster-Shafer (DS) or
Evidence theory, was introduced by Dempster[11] in statistical inference, and was
further developed by Shafer [39] and Smets [40] as a theory of epistemic uncertainty.
The theory of belief functions makes it possible to model various states of knowledge,
ranging from complete ignorance to probabilistic uncertainty [46]. A belief function
may be viewed both as a generalized set [17] and as a generalized probability measure:
DS theory thus encompasses set-based as well as probabilistic formalisms.

Until now, the application of belief functions to state estimation has been limited.
Dempster [12] showed that computations in the Kalman filter can be interpreted in
a graphical model in terms of the propagation of Gaussian belief functions (a special
kind of belief function characterized by a normal density over linear subspaces). Ristic
and Smets [41] have provided another interpretation of the Kalman filter under a belief
function paradigm and have presented an approach to joint tracking and classification
based on continuous belief functions. Mahler [31] has also discussed various extensions
of the Kalman filter that make it possible to handle uncertainties expressed by belief
functions. The main motivations of this study have been to cope with situations where
the available information about the system under study or about sensor measurements
is too weak to be easily handled using a purely probabilistic approach. However,
these situations have been confined mostly to linear models; this may be explained by
the fact that the manipulation of continuous belief functions is delicate and quickly
becomes intractable when applied to more complex models.

In this paper, we propose a different approach — one that generalizes the bounding
approach to state estimation. Taking as a starting point the bounded error state
estimation method proposed in [22], we present a data filtering and fusion method
that uses Dempster-Shafer mass functions to assign belief masses to a finite number
of focal sets, taking the form of axis-aligned boxes. Such mass functions can be seen as
“generalized boxes” composed of a collection of boxes with associated weights. Focal
sets are propagated in the system equations using interval arithmetics and constraint
satisfaction techniques [26]. Applied to state estimation in dynamical systems, this
approach allows us to compute a belief function for the system state at each time
step. This approach extends the pure interval approach, making it more robust and
accurate, while retaining the validity of computations.

The article is organized as follows. Section 2 first presents the background on
interval analysis and bounded error state estimation. The necessary concepts in belief
function theory are then recalled in Section 3. Our approach is introduced in Section 4,
and in Section 5 we apply our method to dynamic land vehicle localization using GPS,
gyrometer and odometer measurements. Finally, we conclude and discuss the main
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contributions of the paper in Section 6.

2 Interval Analysis

In this subsection, we briefly recall the main concepts pertaining to interval analysis
and constraint satisfaction techniques that will be used in the rest of this work.

2.1 Basic Concepts

Usually, interval analysis is used to model quantities that vary around a central value
within certain bounds [26]. A (closed) real interval, denoted [x], is defined as a closed
and connected subset of R:

[x] = [x, x] = {x ∈ R | x ≤ x ≤, x}, (1)

where x and x are the minimal and maximal bounds of [x]. Set theory operations,
such as intersection or union, can be applied to intervals. The intersection of two
intervals is always an interval, whereas the union is not. The interval union of two
intervals [x] and [y] can be defined as the interval hull of [x] ∪ [y], i.e., the smallest
interval containing [x] ∪ [y], which is denoted as follows [26]:

[x] ⊔ [y] = [[x] ∪ [y]] . (2)

The four classical arithmetic operations can be extended to intervals. For any such
binary operator ⋄, the interval [x] ⋄ [y] is defined for any intervals [x] and [y] as [26]

[x] ⋄ [y] = [{x ⋄ y ∈ R|x ∈ [x], y ∈ [y]}] . (3)

When ⋄ is continuous, as is the case for the arithmetic operations, the set {x ⋄ y ∈
R|x ∈ [x], y ∈ [y]} is an interval; we thus have the following equivalent definition for
[x] ⋄ [y]:

[x] ⋄ [y] = {x ⋄ y ∈ R|x ∈ [x], y ∈ [y]}. (4)

When ⋄ is one of the four arithmetic operations, then the bounds of [x] ⋄ [y] can
be computed from the bounds of [x] and [y] using simple formulas. The following
equations hold [26][33]:

[x] + [y] = [x+ y, x+ y] (5)

[x]− [y] = [x− y, x− y] (6)

[x] · [y] = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)]. (7)

If the bounds of [x] and [y] are positive, we also have

[x]/[y] = [x/y, x/y]. (8)

Elementary functions such as exp, ln, sin, etc., can also be extended to intervals. If f
is a function from R to R, its interval counterpart [f ] is defined by:

[f ]([x]) = [{f(x)|x ∈ [x]}]. (9)
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Figure 1: Images of a box [x] by a function f , a pessimistic inclusion function [f ] and
the minimal inclusion function [f ]∗.

Again, if f is continuous, then [f ]([x]) is simply equal to f([x]). For instance,

[exp]([x]) = [exp(x), exp(x)]. (10)

For non-monotonic functions, however, the computation of [f ]([x]) is usually not as
simple.

An interval real vector [x] of R
n, also called a box, is defined as a Cartesian product

of n intervals:
[x] = [x1]× . . .× [xn]. (11)

Geometrically, it may be figured as an n dimensional, axis-aligned parallelepiped. The
set of n-dimensional interval real vectors will be denoted IR

n. The notions recalled
above may be easily extended to boxes. For instance, the interval hull of a subset A
of R

n is the smallest box of R
n containing A. It is noted [A]. The interval union of

two boxes [x] and [y] may be computed as:

[x] ⊔ [y] = ([x1] ⊔ [y1])× . . .× ([xn] ⊔ [yn]). (12)

Classical operations for real vectors can be extended to interval vectors. For instance,

[x] + [y] = ([x1] + [y1])× . . .× ([xn] + [yn]). (13)

Let f be a function from R
n to R

m. It is often useful to compute the image f([x]) of
a box [x] by f . This image is usually not a box (see Figure 1), and its expression may
be difficult to obtain. However, it may sometimes be approximated by an inclusion
function. An interval function [f ] from IR

n to IR
m is said to be an inclusion function

for f if
f([x]) ⊆ [f ]([x]), ∀[x] ∈ IR

n. (14)

Inclusion functions may be very pessimistic, as shown by Figure 1. The inclusion
function [f ] is minimal if, for any x, [f ]([x]) is the interval hull of f([x]). The minimal
inclusion function for f is unique and may be noted as [f ]∗.

Finding inclusion functions that can be evaluated reasonably quickly and such that
[f ]([x]) is not too large for most x is one of the main purposes of interval analysis [26].
Different algorithms have been proposed to reduce the size of boxes enclosing f([x]).
For the fusion problem considered here, we have chosen to use constraint propagation
techniques [26], because of the great redundancy of data and equations.
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Figure 2: A CSP in R
2.

2.2 Contraint Satisfaction Problems

Consider n variables xi, i ∈ {1, . . . , n} linked by m relations (or constraints) of the
form

fj(x1, . . . , xn) = 0, j = 1, . . . ,m. (15)

If we denote by x the vector (x1, x2, · · · , xn)T and by f the function whose coordinate
functions are the fis: f = (f1, f2, · · · , fm)T , we can write these m constraints in vector
notation as

f(x) = 0. (16)

Let us assume that vector x is known to belong to some prior domain [x], and we
want to compute the set of all x in the prior domain verifying the constraints. This
defines a constraint satisfaction problem (CSP), which can be denoted as

H : (f(x) = 0,x ∈ [x]). (17)

The solution set of H is defined as:

S = {x ∈ [x] | f(x) = 0}. (18)

Note that S is not necessarily a box. Using interval methods, solving the CSP implies
finding a box [x]′ that constitutes an outer approximation of S, i.e., such that S ⊆
[x]′ ⊆ [x]. Figure 2 illustrates a simple CSP with two variables and a single constraint.

Contracting H means replacing [x] by a smaller domain [x]′ such that S ⊆ [x]′ ⊆
[x]. A contractor C for H is any operator that can be used to contract H. Several
methods for building contractors are described in [26, Chapter 4], including Gauss
elimination, the Gauss-Seidel algorithm and linear programming, among others. Each
of these methods may be more suitable for some types of CSP. Although the approach
introduced in this paper is not bound to any particular contractor, we will focus on
the forward-backward propagation (FBP) technique [42][9][10][26][25]. This method
was chosen because it is known to be especially efficient in cases of high redundancy of
data and equations — a situation that will be encountered in the application described
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Figure 3: Graph corresponding to the CSP of Example 1.

in Section 5. Furthermore, this method can handle any kind of non-linearity and its
implementation is quite simple. However, other contractors could be used as well.

The FBP contractor is based on the propagation of primitive constraints for real
variables. A constraint is said to be primitive if it involves a single operator (such as
+,−, ∗ or \) or a single function (such as cos, sin or sinh). The method proceeds by
contracting H with respect to each of the primitive constraints until convergence on
a minimal domain. The complete description of the FBP algorithm goes beyond the
scope of this paper. It can be found in [26, page 77]. Here, it will simply be described
though an example.

Example 1 Let us consider the constraint z = x exp(y) and the initial domain [z] =
[0, 3], [x] = [1, 7] and [y] = [0, 1]. The constraint is not primitive, as it involves one
arithmetic operation and one elementary function. However, it can be decomposed
into two primitive constraints by introducing an auxiliary variable a:

{
a = exp(y)
z = a · x.

(19)

The domain of a may be initialized by [a] = [0,+∞). The FBP algorithm alternates
between two phases, called forward and backward propagation.

In the forward propagation phase, the domains of a and z are contracted using
(19). This is achieved in two steps F1 and F2:

• F1: [a]← [a] ∩ [exp]([y]) = [0,+∞) ∩ [1, e] = [1, e]

• F2: [z]← [z] ∩ [x] · [a] = [0, 3] ∩ [1, 7] · [1, e] = [1, 3].

Then, backward propagation is performed, updating the domains associated with
all variables. This is achieved in three steps B3, B4 and B5:

• B3: [x]← [x] ∩ ([z]/[a]) = [1, 7] ∩ [1, 3]/[1, e] = [1, 3]

• B4: [a]← [a] ∩ ([z]/[x]) = [1, e] ∩ [1, 3]/[1, 3] = [1, e]

• B5: [y]← [y] ∩ [ln]([a]) = [0, 1] ∩ [0, 1] = [0, 1].
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After one forward-backward propagation cycle, the domains of the variables have
thus been reduced to [z] = [1, 3], [x] = [1, 3] and [y] = [0, 1]. It can be verified that
these domains are no longer changed after another iteration of the procedure. Figure
3 shows a graphical representation of the problem, where each node corresponds to a
variable; there is a link between two nodes if the corresponding variables are linked by
a primitive constraint. It may be shown that the FPB contractor yields the smallest
possible domain if this graph contains no cycle [25].

2.3 Bounded Error Estimation

In this section, we briefly present the bounded error state estimation method (BEE)
introduced in [21][22]. Consider a non-linear dynamical system represented in state
space by the following discrete-time equations:

xk+1 = f(xk,uk) (20)

zk+1 = g(xk+1), (21)

where f : R
nx × R

nu × R
nv −→ R

nx is a possibly non-linear function that relates the
state xk+1 at time k+1 to the previous state xk at time k with the input uk. Function
g : R

nx × R
nw −→ R

nz expresses the relationship between the observed output zk+1

and the state xk+1. Note that we could easily consider a more complex model includ-
ing, for instance, additional state and measurement perturbation variables. However,
the simple model above will be sufficient to illustrate this approach, as well as for the
application we develop in Section 5.

When working with bounded errors, the initial state x0 is assumed to belong to
some prior box [x0] ⊂ IR

nx and, at each time step k, the input uk and the measurement
vector zk are assumed to belong to boxes [uk] and [zk], respectively. The problem
considered in [22] is to provide at each time step k + 1 a guaranteed estimate of the
state xk+1, in the form of a box [xk+1] that certainly contains the true state vector
xk+1, assuming the system equations (20-21) to be correct and taking into account all
the information available at time step k. This problem can be seen as a CSP

H0:k+1 : (F(ξ0:k+1) = 0, ξ0:k+1 ∈ [ξ0:k+1]), (22)

with ξ0:k+1 = (xk+1, . . . ,x0,uk, . . . ,u0, zk+1, . . . , z1) and

F : ξ0:k+1 → (xk+1 − f(xk,uk), . . . ,x1 − f(x0,u0), zk+1 − g(xk+1), . . . , z1 − g(x1)) .
(23)

The FBP contractor described in the previous section can be applied to this problem
after all the constraints in H0:k+1 have been decomposed into primitive ones. The
forward and backward propagations are then iterated until convergence.

In practice, however, considering all equations from step 0 to k + 1 is often not
feasible in real-time, as noted in [22]. This problem can be solved by considering only
variables and constraints within a limited time window. In the simplest (and fastest)
variation considered here, we start from the previous state estimate [xk] at step k,
and we determine [xk+1] from [xk], [uk], [zk+1] and the constraints (20)-(21) between
time steps k and k + 1. Formally, this corresponds to the following CSP:

Hk+1 : (F(ξk+1) = 0, ξk+1 ∈ [ξk+1]), (24)
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with ξk+1 = (xk+1,xk,uk, zk+1) and

F : ξk+1 → (xk+1 − f(xk,uk), zk+1 − g(xk+1)) . (25)

The method is summarized in Algorithm 1.

Algorithm 1 Bounded Error Estimation (BEE) algorithm

Input: [xk],[uk], [zk+1]
Output: [xk+1]
1: Read the input uk and its error. Deduce [uk].
2: Read the output zk+1 and its error. Deduce [zk+1].
3: [xk+1]← (−∞,+∞)nx

4: while at least one variable is contracted do

5: % Forward propagation %
6: [xk+1]← [xk+1] ∩ [f ]([xk], [uk])
7: [zk+1]← [zk+1] ∩ [g]([xk+1])
8: % Backward propagation %
9: Back-propagate the constraint xk+1 − f(xk,uk) = 0

10: Back-propagate the constraint zk+1 − g(xk+1) = 0
11: end while

In steps 1 and 2, intervals are determined around the input uk and the output zk+1

using error bounds. These bounds depend on the sensors used and are assumed to be
known. As noted in [22], they may sometimes be determined from constructor data
sheets, or they may be derived from estimated imprecision provided by the sensors in
real time.

Initially, nothing is known about xk+1: [xk+1] is thus initialized as the largest
possible box in step 3. Boxes [xk+1], [xk], [uk] and [zk+1] are then contracted using the
FBP algorithm described in the previous section. Step 6 corresponds to a prediction
step, as it computes a new set estimate of xk+1 from the current set estimates of xk

and uk. We can remark that an inclusion function [f ] for f has to be used, as the image
of [xk] and [uk] by f is usually not a box. Similarly, step 7 computes the intersection
between the “predicted output” [g]([xk+1]) computed from [xk+1] using an inclusion
function [g] for g and the measured output. These two steps are illustrated in Figure
4.

Steps 9 and 10 correspond to the backward propagation phase of the FBP algo-
rithm. They consist in contracting all boxes, including [xk] and [uk], by expressing the
corresponding variables as functions of the other variables. As already noted in Sec-
tion 2.2, the FBP algorithm requires that all constraints be decomposed into primitive
ones.

The algorithm stops when no interval is contracted during the most recent itera-
tion. The function computed by this algorithm will be denoted as follows:

[xk+1] = C (f ,g, [xk], [uk], [zk+1]) . (26)

As noted in [22], the main difficulty in using this algorithm, and the bounded
error approach in general [26, Chapter 6], is the determination of error bounds. If
they are overestimated, then the estimation may be overly pessimistic, resulting in
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Figure 4: Forward propagation in the BEE algorithm. A set estimate of xk+1 is
computed using the current set estimates of xk and uk. The “predicted output”
[g]([xk+1]) is then intersected with the measured output, which allows us to contract
[zk+1]. The constraints are then back-propagated to contract [xk+1],[xk] and [uk].
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highly imprecise state estimates. On the other hand, if they are underestimated, then
inconsistencies can occur in step 7 of Algorithm 1, as the intersection between the
predicted and measured output can become empty, in which case the procedure has
to be stopped.

In this paper, we propose to cope with this problem by using a more general
formalism to describe the uncertainty of the variables of interest. This formalism,
referred to as the theory of belief functions or the Dempster-Shafer theory, can be
seen as generalizing both probability theory and set theory. It will allow us to describe
errors no longer by single boxes, but by families of boxes with associated belief masses.
This formalism is introduced in the next section.

3 Theory of Belief Functions

The Dempster-Shafer (DS) theory of belief functions [39] is a formal tool suitable for
representing partial knowledge as well as uncertain and imprecise information. It is
based on the formalism of belief functions, which generalize both set-based represen-
tations (including interval analysis) and probabilistic representations. In this section,
we introduce the main concepts of this theory and some necessary notions that will
be used in the proposed approach.

3.1 Basic Definitions

Let ω denote a variable taking values in a domain Ω called the frame of discernment.
Let A1, . . . , Ap be p subsets of Ω. A discrete mass function m with focal sets A1, . . . , Ap

is a function from 2Ω to [0, 1] verifyingm(Ai) = mi > 0 for all i ∈ {1, . . . , p}, m(A) = 0
for all A 6∈ {A1, . . . , Ap}, and:

p∑

i=1

mi = 1. (27)

A mass function is said to be normal if m(∅) = 0, categorical if p = 1 and consonant
if the focal sets are nested. In the following, all mass functions will be assumed to be
normal, unless otherwise specified.

In most presentations of DS theory, Ω is assumed to be finite. However, the
theory remains basically unchanged if Ω is infinite (even uncountable), as long as the
number of focal sets remains finite. If Ω = R, the focal sets are usually assumed to be
intervals [18][45][35]. In the multidimensional case where Ω = R

n, this approach can
be extended by assuming focal sets to be n-dimensional boxes. The case of a discrete
probability distribution is recovered when each Ai is reduced to a point. We also note
that categorical mass functions are in one-to-one correspondence with subsets of Ω:
to each subset A ⊆ Ω corresponds a mass function mA such that mA(A) = 1. A
mass function can thus be seen as a generalized set [16]. This observation is the basis
of the extension of interval analysis into the realm of belief functions, which will be
presented in the next section.

Given a normal mass function m with focal sets A1, . . . , Ap, the corresponding
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belief and plausibility functions are defined, respectively, as:

bel(A) =
∑

{i|Ai⊆A}

mi (28)

pl(A) =
∑

{i|Ai∩A6=∅}

mi, (29)

for all A ⊆ Ω. In particular, if m is consonant, it may be shown [39] that

pl(A ∪B) = max(pl(A), pl(B)), ∀A,B ⊆ Ω. (30)

In this case, the plausibility function pl associated with m is thus a possibility measure,
in the sense of possibility theory as introduced by Zadeh [47][17]. The corresponding
possibility distribution π is then the function from Ω to [0, 1] defined by π(x) =
pl({x}), for all x ∈ Ω.

Mass functions may be used to model different situations of uncertainty about the
values of variables describing a given problem. In the so-called multivalued mapping
framework initially introduced by Dempster [11], we have an underlying space Ψ =
{ψ1, . . . , ψp} and a multivalued mapping Γ : Ψ → 2Ω such that Γ(ψi) = Ai, for
i = 1, . . . , p, where, for simplicity, the Ais are assumed to be all distinct. We assume
our beliefs on Ψ to be modeled by a probability measure P , with P (ψi) = mi. For
instance, P might represent some stochastic mechanism that selects an element from
Ψ. If ψi is selected, all we know about ω is that it is in Ai. Our beliefs concerning Ω
may then be represented by the mass function induced by P through the multivalued
mapping Γ, so that m(Γ(ψi)) = P (ψi) = mi for all i ∈ {1, . . . , p}. We then have

bel(A) = P ({ψi ∈ Ψ | Γ(ψi) ⊆ A}) (31)

and
pl(A) = P ({ψi ∈ Ψ | Γ(ψi) ∩A 6= ∅}), (32)

for all A ⊆ Ω.
The elements of Ψ may be viewed as different ways of explaining or interpreting

the evidence that we have for a given problem, or as different mechanisms that may
have produced this evidence. In some cases, they may be given a precise physical
interpretation. For instance, assume that ω is a measurement error and Ω ⊆ R. The
sensor that delivers the measurement can be in the nominal state (ψ1) or in a defective
state (ψ2). In the first case, all we know is that |ω| ≤ b, whereas in the second case
ω can take any value in Ω. The probability that the sensor is in the nominal state is
m1. This information about ω may be represented as a mass function m such that
m([−b, b]) = m1 and m(Ω) = 1−m1.

3.2 Extending Interval Analysis to Mass Functions

In [44], Yager proposed a simple scheme for extending arithmetic and other operations
to mass functions (see also [36]). This approach will be summarized in this section.
Because our goal here is to generalize interval analysis, all mass functions will be
assumed to have interval focal sets.
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Let us assume that we have two real variables x and y, and our knowledge about
these variables is modeled by mass functions denoted by mx and my, respectively. We
are interested in the value of z = x⋄y, where ⋄ is a binary operator from R

2 to R. Ifmx

and my are categorical and such that mx([x]) = 1 and my([y]) = 1 for some intervals
[x] and [y] in IR, then interval analysis can be applied and our knowledge about z can
be represented by a categorical mass function mz with focal interval [x] ⋄ [y], defined
by (3). In the more general case, where mx and my are mass functions with arbitrary
numbers of focal intervals, then some extension of interval analysis has to be proposed,
based on additional assumptions.

Let us assume that mx and my are induced by multivalued mappings Γx and
Γy from underlying spaces Ψx and Ψy, with [xi] = Γx(ψx

i ) for i = 1, . . . , px and
[yj ] = Γy(ψy

j ) for j = 1, . . . , py. Let us further assume that our beliefs about Ψx and
Ψy are modeled by probability measures P x and P y, and that the joint probability
measure P x,y for Ψx ×Ψy is simply the product of P x and P y:

P x,y(ψx
i , ψ

y
j ) = P x(ψx

i )P y(ψy
j ) = mx

im
y
j , (33)

for all i and j. If P x and P y correspond to some stochastic mechanisms selecting
elements from Ψx and Ψy, then (33) simply means that these two mechanisms are
independent. Under these assumptions, what can we say about z?

If we know that ψx
i and ψy

j have been selected, then all we know about x, y and z
is that x ∈ [xi], y ∈ [yj ], and z = x ⋄ y ∈ [xi] ⋄ [yj ]. As this happens with probability
mx

im
y
j , we can see that our beliefs about z can be represented by the mass function

mz, defined as follows:

mz([z]) =
∑

{i,j|[xi]⋄[yj ]=[z]}

mx
im

y
j , (34)

for all [z] ∈ IR, which generalizes (3).
This approach can easily be extended to the case of a function of n variables. Let

f be a function from R
n to R, z = f(x1, . . . , xn), and [f ] an inclusion function for f .

Assume that our knowledge of each variable xi is represented by a mass function mxi .
If each mxi([xi]) = 1 for some interval [xi], then our knowledge of z can be represented
by:

[z] = [f ]([x1], . . . , [xn]). (35)

In the general case, using the same line of reasoning as above, we can derive a mass
function mz on z under assumption of independence, using the following formula:

mz([z]) =
∑

{i1,...,in|[z]=[f ]([xi1
],...,[xin ])}

mx1

i1
. . .mxn

in
. (36)

Example 2 Assume that mx and my have the following expressions:

mx([1, 2]) = 0.7, mx([0, 3]) = 0.3, (37)

my([0, 1]) = 0.6, my([0, 2]) = 0.4. (38)

Let z be a variable related to x and y by the equation z = x exp(y). What are our
beliefs regarding z? Using (36), a mass function mz on z is then derived as

mz([1, 2] · [exp]([0, 1])) = mz([1, 2e]) = 0.7× 0.6 = 0.42 (39)
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mz([1, 2] · [exp]([0, 2])) = mz([1, 2e2]) = 0.7× 0.4 = 0.28 (40)

mz([0, 3] · [exp]([0, 1])) = mz([0, 3e]) = 0.3× 0.6 = 0.18 (41)

mz([0, 3] · [exp]([0, 2])) = mz([0, 3e2]) = 0.3× 0.4 = 0.12. (42)

3.3 Summarization

Despite its success as a model of human reasoning under uncertainty, one of the
arguments often raised against the theory of belief functions is its relatively high
computational complexity. Indeed, the number of focal sets obtained when computing
a function of n mass functions using (36) grows exponentially with n, which may lead
to serious problems when both the number of steps in the computations and the size
of focal sets become large [13].

A natural way to decrease this complexity is therefore to decrease the number of
focal sets by grouping similar or unimportant ones. This strategy is at the basis of
the summarization method [30], in which the focal sets with the smallest mass are
aggregated and the sum of their masses transferred to their union.

More precisely, let m be a mass function on Ω with p focal sets A1, . . . , Ap, p > 1.
We note, as before, mi = m(Ai), i = 1, . . . , p. Assume that the focal sets are ordered
such that m1 ≥ m2 ≥ . . . ≥ mp, and let 1 ≤ q < p. A mass function m′ with q focal
sets can be constructed from m as follows:

m′(Ai) = mi, i = 1, . . . , q − 1, (43)

m′(A0) =

p∑

i=q

mi, (44)

where A0 is defined as
⋃p

i=q Ai, or
⊔p

i=q Ai when the Ai are intervals or boxes.
The summarization method is a simple approximation method making it possible

to control the complexity of computations in DS theory by bounding the number
of focal sets. More sophisticated approximation schemes have been proposed in, for
example, [13] and [14]. Such refined schemes allow a better approximation at the
cost of higher computing cost. The simpler and faster summarization method will be
adopted in this paper.

3.4 Expectations

Let us assume in this subsection that Ω = R, and our state of knowledge regarding
some variable x is represented by a mass function m. How can the concept of the
expected value of x be defined in this context? An answer to this question is more
easily found by interpreting m as defining a set of probability measures P such that

bel(A) ≤ P (A) ≤ pl(A), (45)

for any measurable subset A of R. A probability measure P verifying the above
inequalities is said to be compatible with m; the set of such probability measures will
be noted as P(m).
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The lower and upper expectations [11] of x with respect to m may then be defined,
respectively, as

E∗(m) = inf
P∈P(m)

E(P ), (46)

E
∗(m) = sup

P∈P(m)
E(P ). (47)

When the focal sets are real intervals [xi], then the lower-upper expectation interval
[E](m) = [E∗(m),E∗(m)] (hereafter referred to as the interval expectation of m) may
be shown [11] to be equal to

[E](m) =

p∑

i=1

mi · [xi]. (48)

A particular value in this interval may be selected by averaging the center ci of each
focal interval [xi], which will be denoted:

E(m) =

p∑

i=1

mici. (49)

The quantity E(m) happens to be the expectation with respect to the pignistic prob-
ability measure associated with m [40, 35]; it will be referred to as the pignistic
expectation of m.

Equations (48) and (49) can easily be extended to the multidimensional case where
Ω = R

n. The interval expectation of m is then an n-dimensional box, and its pignistic
expectation is a vector of R

n.

4 Belief State Estimation

As mentioned in Section 2.3, this interval framework guarantees the validity of the
calculations under the assumptions that the system equations are correct and mea-
surement errors remain within given bounds. However, this approach may be very
conservative, which may result in very imprecise estimates of state variables. As
noted in [22], “the major implementation problem of such an approach is to determine
correctly the bounds of the noises. Indeed, if these bounds are underestimated, the
contractor may lead to no solution. On the contrary, if the bounds are overestimated,
the estimated boxes can be very large (the estimates are then very pessimistic)”.

In this section, we propose to solve this problem by replacing intervals by general
mass functions with focal intervals. The construction of mass functions using prior
knowledge of measurement error will first be addressed in Section 4.1. The bounded
error estimation method recalled in Section 2.3 will then be extended to the Dempster-
Shafer framework in Subsection 4.2. A simple illustrative example is given in Appendix
A.

4.1 Construction of Mass Functions

As recalled in Section 1, classical state estimation techniques such as the Kalman filter
and its extensions assume process and observation noises to be normal. In contrast,

14



the BEE method (Section 2.3) makes the much weaker assumption that perturbations
are bounded and that nothing is known except the bounds. While the former approach
is very restrictive, the latter may be argued to be too conservative — as noted at the
beginning of this section — leading to overly imprecise estimates of the system state.
In many cases, however, additional realistic assumptions about error distributions can
be made: for instance, we can assume some measure of central tendency such as the
mode, the mean or the median to be equal to zero. As will be shown below, the belief
function formalism allows to us to refine the BEE approach by making use of such
additional assumptions.

Let us consider a continuous real random variable X characterized by a probability
distribution PX with known support [a, b] and mode c ∈ (a, b). Let π denote the
triangular possibility distribution

π(x) =






x−a
c−a

if a ≤ x < c,
b−x
b−c

if c ≤ x < b,

0 otherwise.

(50)

As shown in [5], the following inequalities hold for every measurable set A:

Π(A) ≤ PX(A) ≤ 1−Π(A), (51)

where A denotes the complement of A, and Π is the possibility measure associated
with π:

Π(A) = sup
x∈A

π(A). (52)

The possibility distribution π can thus be seen as an approximation of the set of
probability measures with support [a, b] and mode c. Such a continuous possibility
measure can be itself approximated by a discrete mass functionm with p focal intervals
defined as follows.

For any α ∈ (0, 1], the α-cut of π is the set of values x such that π(x) ≥ α. This
is the interval [πα] with bounds:

πα = a+ α(c− a) (53)

πα = c+ (1− α)(b− c). (54)

By convention, let [π0] = [a, b]. Let us consider p− 1 distinct values for α: 0 = α0 <
α1 < α2 < . . . < αp−1 < 1, and let m be the consonant mass function with focal
intervals [παk ], k = 0, . . . , p− 1, defined by:

m([π0]) = α1, (55)

m([πα1 ]) = α2 − α1, (56)

... (57)

m([παp−1 ]) = 1− αp−1. (58)

The principle of this construction is illustrated in Figure 5. In this figure, there are
two α-cuts, [πα1 ] and [πα2 ], associated with α1 and α2 respectively. By considering
these α-cuts and [π0] = [a, b], we can construct a mass function with p = 3 focal
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Figure 5: Approximation of a triangular possibility distribution π by a discrete con-
sonant mass function. The focal set of m are defined as the support of [π0] of π,
and α-cuts [παk ] for k = 1, . . . , p − 1 (p = 3 in this figure). The resulting possibility
distribution π′ dominates π.

elements: m([π0]) = α1,m([πα1 ]) = α2 − α1 and m([πα2 ]) = 1− α2. It is clear that m
corresponds to a possibility distribution π′ that approximates π, and such that π′ ≥ π.
Consequently, if bel and pl denote, respectively, the belief and plausibility functions
associated with m, the following inequalities hold for every event A:

bel(A) ≤ PX(A) ≤ pl(A), (59)

which means that m can be considered an approximation of the set of probability
measures with known support [a, b] and mode c.

We may remark that, in the above formalism, all values outside the interval [a, b]
are considered to be absolutely impossible. In many cases, such an assumption may
be argued to be too strong. For instance, if X denotes a measurement error, the
bounds a and b may be derived from knowledge of the measurement process, which
may be valid most of the time except in rare situations (for instance, in case of sensor
failure). To account for the fact that values outside [a, b] are not impossible but have
very small plausibilities, we may discount m by a small discount rate ǫ [39, page 251].
Discounting m means transferring to the frame Ω a fraction ǫ of the mass m(A) given
to all proper subsets A of Ω. The resulting mass function ǫ is thus defined as

ǫm(A) =

{
(1− ǫ)m(A) if A ⊂ Ω,

(1− ǫ)m(Ω) + ǫ if A = Ω.
(60)

We note that ǫbel(A) = (1− ǫ)bel(A) ≤ bel(A) and ǫpl(A) = (1− ǫ)pl(A) + ǫ ≥ pl(A)
for all strict subsets A of Ω. Consequently, discounting has the effect of enlarging the
intervals [bel(A), pl(A)], and (59) remains valid.
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Example 3 Let U be a real random variable modeling the observation noise in some
measurement process. Assume that expectation of U is zero, and its standard deviation
σ is given. In bounded error approaches, it is common to take the interval [−3σ,+3σ]
as the support of U . If we assume that the mode of U is zero, then we can better
approximate its probability distribution by a symmetrical triangular possibility distri-
bution, which can itself be approximated by the following discrete mass function with
p = 3 focal intervals:

m([−3σ, 3σ]) = 1/3, (61)

m([−2σ, 2σ]) = 1/3, (62)

m([−σ, σ]) = 1/3. (63)

Obviously, a better approximation of the continuous triangular possibility distribution
can be obtained by increasing the number p of focal intervals, at the expense of higher
computational complexity. Discounting m at rate ǫ and assuming Ω = R yields the
following discounted mass function:

ǫm([−3σ, 3σ]) = (1− ǫ)/3, (64)
ǫm([−2σ, 2σ]) = (1− ǫ)/3, (65)

ǫm([−σ, σ]) = (1− ǫ)/3 (66)
ǫm(R) = ǫ. (67)

4.2 Extending the BEE Approach

Let us consider again the dynamical system described by Equations (20)-(21). How-
ever, in contrast with the interval analysis performed in Section 2.3, we now assume
the initial state x0 as well as the input vector uk and the observation vector zk at
each time step k to be described by mass functions with interval focal sets. To denote
a mass function, the variable will be indicated as a superscript, and the time step as
a subscript. For instance, mx

k will denote the mass function regarding the state xk at
time step k.

The BEE algorithm can be generalized using the extension of interval analysis to
belief functions, as recalled from Section 3.2. We recall that Algorithm 1 computes a
box estimate [xk+1] of the state at each time step k+ 1 from the imprecise input [uk]
and the output [zk+1], using (26). The theory recalled from Section 3.2 allows us to
extend function C from intervals to mass functions.

Let pxk , pu and pz denote, respectively, the number of focal sets of mx
k , mu

k , mz

(without loss of generality, we assume the mass functions on u and z to be computed
using the procedure described in Section 4.1, with a constant number of focal inter-
vals). The i-th focal element of mx

k will be noted as [xi
k], and similarly for the other

mass functions. Using (36), Equation (26) can be generalized to

mx
k+1([x]) =

∑

{i,j,ℓ|[x]=C(f ,g,[xi
k
],[uj

k
],[zℓ

k+1
])}

mx
k([xi

k]) ·m
u
k ([uj

k]) ·m
z
k+1([z

ℓ
k+1]). (68)

The detailed procedure is described in Algorithm 2. It can be summarized as
follows. The algorithm depends on three parameters: the number of focal elements
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Algorithm 2 Belief State Estimation (BSE) algorithm.

Input: mx
k , mu

k , mz
k+1, p

u, pz, q
Output: mx

k+1, [x̂k+1], x̂k+1

1: Read the input uk and its error. Deduce mu
k with pu focal elements

2: Read the output zk+1 and its error. Deduce mz
k+1 with pz focal elements

3: r ← 0
4: for i = 1 to pxk do

5: for j = 1 to pu do

6: for ℓ = 1 to pz do

7: r ← r + 1
8: [xr

k+1]← C
(
f ,g, [xi

k], [u
j
k], [z

ℓ
k+1]

)
.

9: mx
k+1([x

r
k+1])← mx

k([xi
k]) ·m

u
k ([uj

k]) ·m
z
k+1([z

ℓ
k+1])

10: end for

11: end for

12: end for

13: Normalize mx
k+1

14: Summarize mx
k+1 to keep at most q focal elements.

15: % Computation of interval and point estimates %
16: [x̂k+1]← [E](mx

k+1)
17: x̂k+1 ← E(mx

k+1)

pu and pz for the input and the output, respectively, and the maximum number q of
focal elements for mx

x+1 used by the summarization algorithm recalled from Section
3.3. In steps 1 and 2, the mass functions on the input at time k and on the output
at time k + 1 are constructed using the method described in Section 4.1. The BEE
algorithm (Algorithm 1) is then applied for each choice of focal element of [xi

k] of

mx
k , focal interval [uj

k] of mu
k and focal element [zℓ

k+1] of mz
k+1 (steps 4-12). The

belief mass assigned to the r-th focal element [xr
k+1] of mx

k+1 is the product of the

masses assigned to [xi
k], [uj

k] and [zℓ
k+1] (line 9). Once the whole mass function mx

k+1

has been computed, it is normalized (step 13) and summarized (step 14) using the
summarization algorithm described in Section 3.3 with a maximum number q of focal
elements. Normalization consists in dividing each mass assigned to a non empty
focal set by 1 −mx

k+1(∅) and setting mx
k+1(∅) to zero. Finally, interval and pignistic

expectations are computed using (48) and (49).
A simple illustrative example is given in Appendix A.
This algorithm, hereafter referred to as the Belief State Estimation (BSE) algo-

rithm, thus amounts to running the BEE algorithm several times (Algorithm 1). The
maximum number of runs of BEE at each time step is pxpzq: the choice of these three
parameters is thus crucial for controlling the execution time of the algorithm. The
sensitivity to these three parameters of the results will be studied in the experiments
presented in Section 5.

As explained in Section 3.2, Equation (68) results from the assumption of inde-
pendence between mass functions mx

k([xi
k]), m

u
k ([uj

k]) and mz
k+1, in the precise sense

outlined in Section 3.2. This hypothesis is the counterpart of the statistical inde-
pendence assumptions that are commonly accepted when models are designed with
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random perturbations.
As a final remark, we note that the above algorithm may fail if each call to the BEE

procedure in step 8 returns the empty set, in which case the normalization operation
performed in step 13 is undefined. Such a situation may arise if the input uk or the
output zk+1 are outliers and are inconsistent with the current state estimate encoded
in mass function mx

k . To avoid such a situation, we may discount mu
k and/or mx

k+1

by a small rate ǫ using (60), making the estimation procedure robust against outliers.

5 Application

In this section, we apply the belief state estimation (BSE) algorithm introduced above
to dynamic localization of a land vehicle. The application and the data are identical
to those used in [22] and [1]1. We will first introduce the problem and describe the
experimental settings and then present the simulation results.

5.1 Problem Description

As noted in [22], dynamic localization of a land vehicle in outdoor environments is
a key issue in many applications. It consists of computing, at each time step k, an
estimation of the vehicle position based on sensor measurements. Usually, two kinds
of sensors are used: dead reckoning sensors (such as odometers, gyrometers, etc.)
and absolute sensors, such as telemeters, goniometers, vision or Global Positioning
System (GPS), among others. A major issue is to exploit the complementarity and
redundancy between these sensors in order to achieve higher precision, availability and
integrity. For instance, the quality of GPS positioning depends on the configuration
of visible satellites, and GPS information can even become unavailable because of
masking effects occurring in forests, tunnels, cities, etc. Fusing GPS information with
dead reckoning sensor measurements makes it possible to filter the GPS estimates,
thus increasing the performance of the localizer.

The conventions and notations used in this section are illustrated in Figure 6. The
mobile frame origin M is chosen as the middle of the rear axle. Let (xk, yk) be the
position of the vehicle and θk its heading angle at time step k. Let xk = (xk, yk, θk)

T

be the state of the vehicle. As shown in [22], its evolution can be described by the
following state equations:






xk+1 = xk + δS,k cos(θk +
δθ,k

2 )

yk+1 = yk + δS,k sin(θk +
δθ,k

2 )
θk+1 = θk + δθ,k,

(69)

where δS,k and δθ,k denote, respectively, the elementary displacement and rotation
of the vehicle at time step k. These quantities can be obtained with good precision
with two rear-wheel ABS sensors and a fiber optic gyrometer, respectively. They are
considered as the input to the system. With previous notations, we can thus denote
uk = (δS,k, δθ,k)

T .

1We thank Philippe Bonnifait and his group for providing and allowing us to use these data.
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Figure 6: Vehicle representation at time steps k and k + 1.

The measure of the position zk = (xGPS , yGPS) is obtained by a GPS receiver,
after converting each estimated point (longitude, latitude) in a Cartesian local frame
[21]. We note that the heading angle θk is not observed.

5.2 Experimental Settings

The results reported here were obtained using real sensor measurements collected using
an experimental car (see [22] for details about the sensors and data processing). The
vehicle was equipped with two GPS receivers: a Trimble AgGPS 132 to estimate its
position in real time, and a high-precision Thales Navigation GPS receiver to compute
estimation errors. The Thales receiver was used in post-processed kinematic (PPK)
mode with a local base (a Trimble 7400). This system was able to provide reference
positions at a sampling rate of 1 Hz. Because the constellation of the satellites was
satisfactory during all the trials, kinematic ambiguities were resolved, and an accuracy
of a few centimeter was achieved. To avoid confusion, this reference data will be
referred to as “PPK”, while the term “GPS” will be reserved for data from the Trimble
AgGPS 132 GPS receiver.

Experiments were carried out on a test track in Versailles (France). We report
hereafter the analysis of a 4.7 km trajectory with a mean speed of 50 km/h (see the
left-hand side of Figure 7). The zoomed part of the trajectory (right-hand side of
Figure 7) shows the GPS and estimated positions.

As in [22] and [1], the GPS error bounds were taken to be plus or minus three times
the estimated standard deviation computed in real time by the receiver. Assuming
the mode on the GPS error to be zero, mass functions mx

0 and mz
k were constructed

to approximate triangular possibility distributions, as explained in Section 4.1. The
heading angle θ was initialized as [θ0] = [0, 2π]. The error bounds of the input vector
uk were computed from characteristics of the ABS sensor and the gyrometer (±3
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Figure 7: Test trajectory (left), with a zoom on part of the trajectory (right) showing
the GPS positions (solid line) and the estimated positions (*).

degrees for δθ,k).
The three parameters of the BSE algorithm are pz, pu and q. In the results

presented in the next section, the default values of these parameters are pz = 4,
pu = 1 and q = 20. A sensitivity analysis of the influence of these parameters will
also be presented.

5.3 Results

Figure 8 shows the focal sets of mx
k at time steps k = 10 and 100. In this figure, the

vehicle trajectory estimated by the GPS alone is plotted as a solid line and the esti-
mated positions given by the BSE method are plotted as black (∗) points. The interval
expectation [E](mx

k) is represented in bold. For the sake of clarity, only the focal sets
with mass greater than 0.05 are shown. The summarization process is illustrated by
Figure 9, which shows the focal sets of mx

k before and after summarization.
Figures 10 and 11 show the interval errors on x and y for the GPS as well as the

BEE and BSE methods. We can see that the BSE method provides narrower intervals
that still contain the true positions along both coordinates. The BSE method is also
much less affected than is the BEE method by degradation of the GPS signal due to
masking effects, as occurred around time steps 150, 210 and 400.

Figures 12 and 13 show the distance (in meters) between estimated and actual
positions of the vehicle for the following estimation methods: GPS, BEE and BSE
(Figure 12); GPS, particle filter (PF) and BSE (Figure 13). Implementation and
parameterization of the PF method were the same as reported in [1]. The PF was run
with 1000 particles. We can see that the BSE method is clearly much more accurate
than BEE. The difference is smaller between PF and BSE, with a small advantage
exhibited by BSE most of the time.

These results are confirmed by Table 1, which reports the mean squared errors
(MSE) on both coordinates x and y as well as the mean one-step running time (on a
PC with Matlab) for the GPS, the PF (with 1000, 2000 and 3000 particles), bounded
error estimator (BEE) and the belief state estimator (BSE) with the default parameter
values (pz = 4, pu = 1 and q = 20). We can see that the BSE method significantly
outperforms the BEE method, and is also slightly more accurate than the PF method,
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Figure 8: Focal sets of the mass function for xk, with mass greater than 0.05, at
time steps k = 10 (up) and k = 100 (down). The GPS and estimated positions are
shown as a solid lines and * symbols, respectively. The interval expectation [E](mx

k)
is represented in bold. The vehicle is moving downwards.
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Figure 9: Focal sets of the mass function on xk before (left) and after (right) summa-
rization. The line width is proportional to the mass.

Figure 10: Interval errors on x for GPS (dashed line), BSE (bold line) and BEE (thin
line).
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Figure 11: Interval errors on y for GPS (dashed line), BSE (bold line) and BEE (thin
line).
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Figure 12: Distance in meters between the estimated and actual vehicle positions for
the GPS (bold line), BEE (dotted line) and BSE (thin line).
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Figure 13: Distance in meters between the estimated and actual vehicle positions for
the GPS (bold line), PF (dotted line) and BSE (thin line).
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Table 1: Mean squared errors (MSE) on x and y, and one-step running times for the
GPS without filtering, and the following methods: particle filter (PF) with 3000, 2000,
1000 particles, bounded error estimation (BEE) and belief state estimation (BSE) with
q = 15 and 20.

GPS PF(3000) PF(2000) PF(1000) BEE BSE (20)

MSE on x (m2) 0.134 0.119 0.121 0.125 0.123 0.118

MSE on y (m2) 0.374 0.215 0.232 0.243 0.249 0.199

Running time (ms) - 639 526 401 136 409

Table 2: Mean squared errors (MSE) on x and y (in m2), and average one-step running
times (in ms) for the belief state estimation (BSE).

pz pu q running time MSE on x MSE on y

1 1 1 136 0.123 0.249

2 1 10 158 0.121 0.240

3 1 10 198 0.120 0.236

4 1 10 241 0.120 0.229

2 2 10 199 0.121 0.236

2 4 10 236 0.120 0.229

2 6 10 316 0.120 0.221

4 1 15 386 0.120 0.225

4 1 20 409 0.118 0.199

4 1 22 426 0.118 0.197

4 1 25 452 0.116 0.197

with comparable running time. Increasing the number of particles in the PF improves
its performance, at a higher computational cost.

Table 2 displays the average one-step-ahead running times as well as the mean
squared errors on both spatial coordinates for the BSE algorithm with different choices
for the three parameters pz, pu, q. The setting pz = pu = q = 1 corresponds to the
BEE method. Parameter q seems to have a critical impact on both computational
cost and performance. However, increasing it beyond 20 does not significantly improve
estimation accuracy.

We can remark that simulations were done in Matlab on a PC computer and that
the code was not optimized. Consequently, the reported running times in Tables 1
and 2 can only be used to compare the methods. We can conclude from these first
results that our approach is no more costly, but slightly more accurate than the PF
approach for the kind of application considered here. Although more costly than the
BEE, our algorithm remains compatible with a real-time implementation.
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6 Conclusion

This paper has proposed a new approach to non-linear state estimation based on belief
function theory and interval analysis. This method uses mass functions composed of a
finite number of axis-aligned boxes with associated masses. Such mass functions can
encode partial information for model and measurement uncertainties more accurately
than the bounded error approach alone. Focal sets are propagated in the system
equations using interval arithmetics and constraint satisfaction techniques, thus gen-
eralizing pure interval analysis. Applied to state estimation in dynamical systems,
this approach makes it possible to compute a belief function for the system state at
each time step.

This method was applied to the localization of a land vehicle based on the dynamic
fusion of GPS measurements with ABS sensors and a gyrometer. The method was
shown to provide more accurate estimates of vehicle position than did the bounded
error method, while retaining the essential property of interval analysis of providing
guaranteed computations (as the box provided by the BEE method is always one of
the focal sets computed by the BSE method). The performance of the BSE approach
is also slightly better than that of the particle filter method, with comparable running
time. This suggests that our method might be a viable alternative to both bounded
error and probabilistic Monte-Carlo approaches to non-linear state estimation, at least
for the kind of applications considered here. The preliminary results reported in this
paper will obviously have to be confirmed by further experiments related to more
complex estimation problems.

A further advantage of the belief function approach is that it makes possible com-
bining computed belief structures with additional information, such as digital road
network data, which can also be represented in the belief function framework. A
belief-function based map matching method that constructs a belief structure from a
set of candidate roads extracted from an existing local map has already been presented
in [34]. Further results in this direction will be reported in future publications.
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A Illustrative Example

To illustrate the computations performed in the BSE algorithm, let us consider as
a very simple illustrative example the linear motion of a vehicle on an axis x. The
vehicle position xk at each time step k is assumed to be governed by the following
equations: {

xk+1 = xk + uk · T
zk+1 = xk+1,

(70)

where uk is the vehicle speed at time step k measured by an odometer sensor with
an uncertainty of ±3 m/s, zk is the measured position of the vehicle given by a GPS
receiver and T is the time sampling taken, equal to 1 s.

At each time step k, we receive mass functions mu
k on the vehicle speed and mz

k on
its position. Furthermore, an initial estimate of the position x0 at time k = 0 is given
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in the form of a mass function mx
0 . Assume that mx

0 , mu
0 and mz

1 have the following
expressions:

mx
0([−6, 6]) = 1/2, mx

0([−3, 3]) = 1/2 (71)

mu
0([17, 23]) = 1, (72)

mz
1([27, 33]) = 1/2, mz

1([24, 39]) = 1/2. (73)

We will detail the calculations needed to compute the mass function mx
1 regarding

the position x1 of the vehicle at time step k = 1. Because mx
0 and mz

1 have two focal
intervals each and mu has only one, the FBP algorithm has to be run four times,
corresponding to the four different ways of choosing one focal interval for each of the
three BSs. Calculations are detailed below.

1. [x1
0] = [−6, 6], [z1

1 ] = [27, 33]. The forward steps of the FBP algorithm are as
follows:

[x1]← (−∞,+∞) ∩ ([−6, 6] + [17, 23]) = [11, 29]. (74)

[z1]← [27, 33] ∩ [11, 29] = [27, 29], (75)

[x1
1]← [27, 29]. (76)

We can verify that this interval is no longer contracted by further steps of the
FBP algorithm. The corresponding mass is:

mx
1([27, 29]) = 1/2 · 1/2 = 1/4. (77)

2. [x1
0] = [−6, 6], [z2

1 ] = [24, 39]. The forward steps of the FBP algorithm are:

[x1]← (−∞,+∞) ∩ ([−6, 6] + [17, 23]) = [11, 29]. (78)

[z1]← [24, 39] ∩ [11, 29] = [24, 29], (79)

[x2
1]← [24, 29]. (80)

Again, this interval is not contracted by further steps of the FBP algorithm.
The corresponding mass is:

mx
1([24, 29]) = 1/2 · 1/2 = 1/4. (81)

3. [x2
0] = [−3, 3], [z1

1 ] = [27, 33]. The forward steps of the FBP algorithm are:

[x1]← (−∞,+∞) ∩ ([−3, 3] + [17, 23]) = [14, 26]. (82)

[z1]← [27, 33] ∩ [14, 26] = ∅, (83)

[x3
1]← ∅. (84)

We thus have
[x3

1] = ∅, (85)

and
mx

1(∅) = 1/2 · 1/2 = 1/4. (86)
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4. [x2
0] = [−3, 3], [z2

1 ] = [24, 39]. The predicted state at k = 1 is the same as above:
[x1] = [14, 26], and the intersection with [z2

1 ] yields:

[z1]← [24, 39] ∩ [14, 26] = [24, 26]. (87)

We thus have [x4
1] = [24, 26]. Again, this interval is not contracted by the FBP

algorithm. The corresponding mass is:

mx
1([24, 26]) = 1/2 · 1/2 = 1/4. (88)

We thus obtain a non normal mass function with 4 focal intervals. After normalization,
we get:

mx
1([27, 29]) = 1/3, mx

1([24, 29]) = 1/3, mx
1([24, 26]) = 1/3. (89)

The interval expectation of x1 is

[E](mx
1) = ([27, 29] + [24, 29] + [24, 26])/3 = [25, 28], (90)

and its pignistic expectation is

E(mx
1) = (28 + 26.5 + 25)/3 = 26.5. (91)
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