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We study the first exit times form a reduced domain of attraction of a stable fixed of the Chafee-Infante equation when perturbed by a heavy tailed Lévy noise with small intensity.

Introduction

Energy balance models with random perturbations may provide crucial probabilistic insight into paleoclimatological phenomena on a conceptual level (see [START_REF] Arnold | Hasselmann's Program revisited: The analysis of stochasticity in deterministic climate models[END_REF], [START_REF] Imkeller | Energy balance models: viewed from stochastic dynamics[END_REF]). Following the suggestion by [START_REF] Ditlevsen | Observation of a stable noise induced millennial climate changes from an ice-core record[END_REF] and [START_REF] Ditlevsen | Anomalous jumping in a double-well potential[END_REF], in [START_REF] Imkeller | Metastable behaviour of small noise Lévy-driven diffusions[END_REF] the authors determine asymptotic first exit times for one-dimensional heavytailed Lévy diffusions from reduced domains of attraction in the limit of small intensity. Exponential moments not being available, the arguments leading to these results do not employ large deviations methods, as opposed to [START_REF] Godovanchuk | Asymptotic probabilities of large deviations due to large jumps of a Markov process[END_REF]. [START_REF] Imkeller | Metastable behaviour of small noise Lévy-driven diffusions[END_REF] shows that in contrast to the case of Gaussian diffusions the expected first exit times are polynomial in terms of the inverse intensity. In this article these finite dimensional results are generalized to a class of reaction-diffusion equations, the prototype of which is the Chafee-Infante equation.

Let X ε be the solution process of the stochastic Chafee-Infante equation driven by εL, an additive regularly varying Lévy noise of index α ∈ (0, 2) at intensity ε > 0. In this work we study the laws of the asymptotic first exit times τ ± (ε) of X ε from a (slightly reduced) domain of attraction of the deterministic Chafee-Infante equation u = X 0 in the small noise limit ε → 0. We show that there exists a polynomial scale λ ± (ε) ≈ ε α linking the Lévy measure of L and the domain of attraction of u, such that λ ± (ε)τ ± (ε) d → τ , where τ ∼ EXP [START_REF] Arnold | Hasselmann's Program revisited: The analysis of stochasticity in deterministic climate models[END_REF]. In particular [τ ± (ε)] ≈ 1 ε α in the limit of small ε.

This contrasts sharply with corresponding results in the case of Gaussian perturbation [START_REF] Faris | Large fluctuations for a nonlinear heat equation with noise[END_REF], where large deviations estimates in the spirit of Freidlin and Ventsell are used to show exponential growth of first exit times in the limit of small ε. Applied in a climatological context, the Chafee-Infante equation is able to describe energy-balance based reactiondiffusion equations, in which latitudinal heat transport is possible, and states of the system can be seen as temperature distributions on the interval between south and north pole. In this setting, our result suggests a probabilistic interpretation of fast transitions between different climate states corresponding to the stable equilibria observed in ice core time series of temperature proxies of [START_REF] Claussen | Earth System Models of Iintermediate Complexity: Closing the gap in the spectrum of climate system models[END_REF].

In the following sections we outline the partially tedious and complex arguments needed to describe the asymptotic properties of the exit times. Detailed proofs in particular of the more technical parts are given in the forthcoming [START_REF] Debussche | Metastability for the Chafee-Infante equation with small heavy-tailed Lévy noise[END_REF]. 

Preliminaries and the main result

ν : B(H) → [0, ∞] satisfying ν(A) < ∞ ⇔ A ∈ B(H), 0 / ∈ Ā.
Let (L(t)) t 0 be a càdlàg version of a pure jump Lévy process in H with a symmetric Lévy measure ν ∈ M0(H) on its Borel σ-algebra B(H) satisfying

H min{1, y 2 }ν(dy) < ∞ and ν(A) = ν(-A), A ∈ B(H), 0 / ∈ Ā,
and which is regularly varying with index α = -β ∈ (0, 2) and limiting measure µ ∈ M0(H). For a more comprehensive account we refer to [START_REF] Bingham | Regular variation[END_REF] and [START_REF] Hulk | Regular variation for measures on metric spaces[END_REF].

Fix π 2 < λ = (πn) 2 and f (z) = -λ(z 3 -z) for z ∈ Ê. The object of study of this article is the behaviour of the solution process X ε in H of the following system for small ε > 0. For x ∈ H consider

∂ ∂t X ε (t, ζ) = ∂ 2 ∂ζ 2 X ε (t, ζ) + f (X ε (t, ζ)) + ε L(t, ζ), t > 0, ζ ∈ [0, 1], X ε (t, 0) = X ε (t, 1) = 0, t > 0, X ε (0, ζ) = x(ζ), ζ ∈ [0, 1].
(2.1) We summarize some results for the solution u(t; x) = X 0 (t; x) of the deterministic Chafee-Infante equation (ChI). It is well-known that the solution flow (t, x) → u(t; x) is continuous in t and x and defines a dynamical system in H. Furthermore the solutions are extremely regular for any positive time, i.e. u(t) ∈ C ∞ (0, 1) for t > 0. The attractor of (ChI) is explicitly known to be contained in the unit ball with respect to the norm | • |∞ (see for instance [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF], Chapter 5.6).

Proposition 2.1. For λ > 0 denote by E λ the set of fixed points of (ChI). Then for any λ > 0 and initial value x ∈ H there exists a stationary state ψ ∈ E λ of the system (ChI) such that

lim t→∞ u(t; x) = ψ.
Furthermore if π 2 < λ = (kπ) 2 , k ∈ AE, there are two stable fixed points and all elements of E λ are hyperbolic. In addition, the stable and the unstable manifolds of any unstable fixed point of E λ intersect transversally.

This relies on the fact that there is an energy functional, which may serve as a Lyapunov function for the system. A proof of the first part can be found in [START_REF] Faris | Large fluctuations for a nonlinear heat equation with noise[END_REF], [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF], and of the second part in [START_REF] Henry | Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations[END_REF]. Definition 2.2. For λ > π 2 the solution of system (ChI) has two stable stationary states denoted by φ + and φ -. The full domains of attraction are given by

D ± := {x ∈ H | lim t→∞ u(t; x) = φ ± }, and 
D ± 0 := D ± -φ ± ,
and the separatrix by

S := H \ D + ∪ D -.
Due to the Morse-Smale property the separatrix is a closed C 1 -manifold without boundary in H of codimension 1 separating D + from D -, and containing all unstable fixed points. For more refined results we refer to [START_REF] Raugel | Global attractors in partial differential equations[END_REF] and references therein.

Definition 2.3. Writing B δ (x) for the ball of radius δ > 0 in H with respect to the | • |∞-norm centered at x, denote for δ1, δ2, δ3 ∈ (0, 1)

D ± (δ1) :={x ∈ D ± | ∪ t 0 B δ 1 (u(t; x)) ⊂ D ± }, D ± (δ1, δ2) :={x ∈ D ± | ∪ t 0 B δ 2 (u(t; x)) ⊂ D ± (δ1)}, D ± (δ1, δ2, δ3) :={x ∈ D ± | ∪ t 0 B δ 3 (u(t; x)) ⊂ D ± (δ1, δ2)}. (2.2) 
For γ ∈ (0, 1) the sets D± (ε γ ) := D ± (ε γ , ε 2γ ) and D ± (ε γ , ε 2γ , ε 2γ ) will be of particular importance. We define the reshifted domains of attraction by

D ± 0 (δ1) :=D ± (δ1) -φ ± , (2.3) 
D ± 0 (δ1, δ2) :=D ± (δ1, δ2) -φ ± , (2.4) 
D ± 0 (δ1, δ2, δ3) :=D ± (δ1, δ2, δ3) -φ ± , (2.5) 
and the following neighborhoods of the separatrix S

D0 (ε γ ) := H \ D+ (ε γ ) ∪ D-(ε γ ) , D * 0 (ε γ ) := D ± 0 (ε) \ D0(ε γ , ε 2γ ) + B ε 2γ (0).
In [START_REF] Debussche | Metastability for the Chafee-Infante equation with small heavy-tailed Lévy noise[END_REF] it is shown that the union over all ε > 0 for each of the sets D ± (ε γ ), D± (ε γ ) and D ± (ε γ , ε 2γ , ε 2γ ) exhausts D ± . Furthermore D ± (ε γ ) and D± (ε γ ) are positively invariant under the deterministic solution flow, and

D± (ε γ ) + B ε 2γ (0) ⊂ D ± (ε γ ) and D ± (ε γ , ε 2γ , ε 2γ ) + B ε 2γ (0) ⊂ D± (ε γ ). Proposition 2.4. Given the Chafee-Infante parameter π 2 < λ = (kπ) 2
for all k ∈ AE there exist a finite time Trec = Trec(λ) > 0 and a constant κ = κ(λ) > 0, which satisfy the following. For each γ > 0 there is ε0 = ε0(γ) > 0, such that for all 0 < ε ε0, Trec + κγ| ln ε| t and

x ∈ D ± (ε γ ) |u(t; x) -φ ± |∞ (1/2)ε 2γ .
This results relies on the hyperbolicity of the fixed points and the fine dynamics of the deterministic solution flow. In [START_REF] Debussche | Metastability for the Chafee-Infante equation with small heavy-tailed Lévy noise[END_REF] it is proved in the stronger Hilbert space topology of H. The preceding theorem follows then as a corollary.

We denote the jump increment of L at time t 0 by ∆tL := L(t)-L(t-), and decompose the process L for ρ ∈ (0, 1) and ε > 0 in the following way. We call η ε the "large jump" compound Poisson process with intensity βε := ν ε -ρ B c 1 (0) and jump probability measure ν(• ∩ ε -ρ B c 1 (0))/βε, and the complementary "small jump" process ξ ε := L -η ε . The process ξ ε is a mean zero martingale in H thanks to the symmetry of ν with finite exponential moments. We define the jump times of η ε as

T0 := 0, T k := inf t > T k-1 ∆tL > ε -ρ , k 1,
and the times between successive large jumps of η ε t recursively as t0 = 0 and

t k := T k -T k-1 , for k 1. Their laws L(t k ) are exponential EXP (βε).
We shall denote the k-th large jump by W0 = 0 and A proof can be found in [START_REF] Peszat | Stochastic partial differential equations with Lévy noise (an evolution equation approach[END_REF], Chapter 10. By localization this notion of solution is extended to the heavy-tailed process L. In [START_REF] Debussche | Metastability for the Chafee-Infante equation with small heavy-tailed Lévy noise[END_REF] this will be carried out in detail.

W k = ∆T k L for k 1.
Corollary 2.6. For x ∈ H equation (2.1) has a càdlàg mild solution (X ε (t; x)) t 0 , which satisfies the strong Markov property. Definition 2.7. For γ ∈ (0, 1), ε > 0, and the càdlàg mild solution X ε (•; x) of (2.1) with initial position x ∈ D± (ε γ ) we define the first exit time from the reduced domain of attraction

τ ± x (ε) := inf{t > 0 | X ε (t; x) / ∈ D ± (ε γ )}.
We now introduce the following two hypotheses, which will be required in our main theorem. They are natural conditions on the regularly varying Lévy measure ν with respect to the underlying deterministic dynamics in terms of its limit measure µ. See [START_REF] Hulk | Regular variation for measures on metric spaces[END_REF] for the relationship between ν and µ, and (2.9) below for the particular scaling function 1 ǫ needed here. (H.1) Non-trivial transitions: µ D ± 0 c > 0.

(H.2) Non-degenerate limiting measure: For α ∈ (0, 2) and Γ > 0 according to Proposition 3.4 let

0 < Θ < 2 -α 2α , ρ ∈ ( 1 2 , 2 -α 2 -(1 -Θ)α ), 0 < γ < (2 -α)(1 -ρ) -Θαρ 2(Γ + 2) .
(2.6) For k = ± and η > 0 there is ε0 > 0 such that for all 0 < ε ε0

µ H \ (D + (ε γ , ε 2γ , ε 2γ ) ∪ D -(ε γ , ε 2γ , ε 2γ )) + B ε 2γ (0) -φ k < η.
(2.7) While (H.1) ensures that there actually are transitions also by "large" jumps with positive probability, (H.2) implies that the slow deterministic dynamics close to the separatrix does not distort the generic exit scenario of X ε . For comparable finite dimensional situations with absolutely continuous Lévy measure ν ≪ dx these hypotheses are always satisfied. For ε > 0 we define the characteristic rate of the system (2.1) by

λ ± (ε) := ν 1 ε D ± 0 c . (2.8)
According to [START_REF] Bingham | Regular variation[END_REF] and [START_REF] Hulk | Regular variation for measures on metric spaces[END_REF] for ν chosen above there is a slowly varying

function ℓν = ℓ : [0, ∞) → [0, ∞) such that for all ε > 0 λ ± (ε) = ε α ℓ( 1 ε ) µ (D ± 0 ) c , and βε = ε αρ ℓ( 1 ε ρ ) µ (B c 1 (0)) . (2.9) 
We may now state the main theorem.

Theorem 2.8. Given the Chafee-Infante parameter π 2 < λ = (kπ) 2 for all k ∈ AE, we suppose that Hypotheses (H.1) and (H.2) are satisfied.

Then for any θ > -1

lim ε→0+ sup x∈ D± (ε γ ) exp -θλ ± (ε)τ ± x (ε) = 1 1 + θ .
The supremum in the formula can be replaced by the infimum.

The theorem states that in the limit of small ε, suitably renormalized exit times from reduced domains of attraction have unit exponential laws.

The Small Deviation of the Small Noise Solution

This section is devoted to a small deviations' estimate. It quantifies the fact, that in the time interval between two adjacent large jumps the solution of the Chafee-Infante equation perturbed by only the small noise component deviates from the solution of the deterministic equation by only a small ε-dependent quantity, with probability converging to 1 in the small noise limit ε → 0. Define the stochastic convolution ξ * with respect to the small jump part ξ ε by ξ * (t) = t 0 S(t -s)dξ ε (s) for t 0 (see [START_REF] Peszat | Stochastic partial differential equations with Lévy noise (an evolution equation approach[END_REF]). In order to control the deviation for Y ε -u for small ε > 0, we decompose Y ε = u + εξ * + R ε . By standard methods we obtain in [START_REF] Debussche | Metastability for the Chafee-Infante equation with small heavy-tailed Lévy noise[END_REF] the following lemmas.

Lemma 3.1. For ρ ∈ (0, 1), γ > 0, p > 0 and 0 < Θ < 1 there are constants C > 0 and ε0 > 0 such that for 0 < ε ε0 and T 0

È sup t∈[0,T ] εξ * t ε p C T ε 2-2p-(2-(1-Θ)α)ρ .
Define for T > 0, Γ > 0 and γ > 0 the small convolution event

ET (ε (Γ+2)γ ) := { sup r∈[0,T ] ||εξ * (r)|| < ε (Γ+2)γ } ε > 0.
By perturbation arguments, the stability of φ ± , Proposition 2.4 and Lemma 3.1 we may estimate the remainder term R ε for small ε. Lemma 3.2. There is a constant Γ > 0 such that for ρ ∈ (1/2, 1), γ > 0, there exists ε0 > 0 such that for 0 < ε ε0, T > 0, x ∈ D ± (ε γ ) on the event ET (ε (Γ+2)γ ) we have the estimate

sup t∈[0,T ] |R ε (t; x)|∞ 1 4 ε 2γ .
We next combine Proposition 2.4, Lemma 3.1 and Lemma 3.2, to obtain the following proposition on small deviations on deterministic time intervals. Proposition 3.3. There is a constant Γ > 0 such that for 0 < α < 2 given the conditions

0 < Θ < 2 -α α , ρ ∈ (1/2, 2 -α 2 -(1 -Θ)α ), 0 < γ < (2 -α)(1 -ρ) -Θαρ 2(Γ + 2) ,
there exist ε0 > 0 and C > 0 such that for any T > 0, 0 < ε ε0 and

x ∈ D ± (ε γ ) È sup s∈[0,T ] |Y ε (s; x) -u(s; x)|∞ (1/2)ε 2γ C T ε 2-2(Γ+2)γ-(2-(1-Θ)α)ρ .
(3.1) This can be generalized to the first jump time T1 replacing T . Proposition 3.4. There is a constant Γ > 0 such that for 0 < α < 2 given the conditions

0 < Θ < 2 -α α , ρ ∈ (1/2, 2 -α 2 -(1 -Θ)α ), 0 < γ < (2 -α)(1 -ρ) -Θαρ 2(Γ + 2) ,
there exist constants ϑ = ϑ(Θ, ρ, γ, α) > α(1 -ρ), C ϑ > 0 and ε0 > 0, which satisfy for all 0 < ε ε0

È ∃ x ∈ D ± (ε γ ) : sup s∈[0,T 1 ] |Y ε (s; x) -u(s; x)|∞ (1/2)ε 2γ C ϑ ε ϑ .
Proof. Let Γ > 0 large enough such that the hypotheses of Lemma 3.2 are satisfied. Then with the given constants there exist constants C θ > 0 and ε0 > 0 such that for 0 < ε ε0

È ∃ x ∈ D ± (ε γ ) : sup s∈[0,T 1 ] |Y ε (s; x) -u(s; x)|∞ (1/2)ε 2γ ∞ 0 È ∃ x ∈ D ± (ε γ ) : sup s∈[0,t] |Y ε (s; x)-u(s; x)|∞ (1/2)ε 2γ βεe -βεt dt C θ ε 2-2(Γ+2)γ-(2-(1-Θ)α)ρ-αρ . Fix ϑ = 2 -2(Γ + 2)γ -(2 -(1 -Θ)α)ρ -αρ. One checks that ϑ > α(1 -ρ).
For x ∈ D ± (ε γ ) define the small perturbation event

Ex := { sup s∈[0,T 1 ] |Y ε (s; x) -u(s; x)|∞ (1/2)ε 2γ }.
Corollary 3.1. Given the assumptions of Proposition 3.4 there is a constant ϑ = ϑ(α, Θ, γ, ρ) with ϑ > α(1 -ρ), C ϑ > 0, and ε0 > 0 such that for all 0 < ε ε0

sup x∈D ± (ε γ ) 1(E c x ) C ϑ ε ϑ .
Corollary 3.2. Let C > 0, and let the assumptions of Proposition 3.4 be satisfied. Then there is a constant ε0 > 0 such that for all 0 < ε ε0, θ > -1

e -θλ ± (ε)T 1 sup x∈D ± (ε γ ) 1(E c x ) C βε βε + θλ ± (ε) λ ± (ε) βε . (3.2)

Asymptotic first exit times

In this section we derive estimates on exit events which then enable us to obtain upper and lower bounds for the Laplace transform of the exit times in the small noise limit.

Estimates of Exit Events by Large Jump and Perturbation Events

To this end, in this subsection we first estimate exit events of X ε by large jump exits on the one hand, and small deviations on the other hand. Denote the shift by time t on the space of trajectories by θt, t 0. For

any k ∈ AE, t ∈ [0, t k ],
x ∈ H we have

X ε (t + T k-1 ; x) = Y ε (t; X ε (0; x)) • θT k-1 + εW k 1{t = t k }. (4.1)
In the following two lemmas we estimate certain events connecting the behavior of X ε in the domains of the type D ± (ε γ ) with the large jumps η ε in the reshifted domains of the type D ± 0 (ε γ ). We introduce for ε > 0 and x ∈ D± (ε γ ) the events

Ax :={Y ε (s; x) ∈ D ± (ε γ ) for s ∈ [0, T1] and Y ε (T1; x) + εW1 ∈ D ± (ε γ )}, Bx :={Y ε (s; x) ∈ D ± (ε γ ) for s ∈ [0, T1] and Y ε (T1; x) + εW1 / ∈ D ± (ε γ )}, Cx :={Y ε (s; x) ∈ D ± (ε γ ) f. s ∈ [0, T1] a. Y ε (T1; x) + εW1 ∈ D ± (ε γ ) \ D± (ε γ )}, A - x :={Y ε (s; x) ∈ D ± (ε γ ) for s ∈ [0, T1] and Y ε (T1; x) + εW1 ∈ D± (ε γ )}. (4.2)
We exploit the definitions of the reduced domains of attraction in order to obtain estimates of solution path events by events only depending on the driving noise.

Lemma 4.1 (Partial estimates of the major events). Let Trec, κ > 0 be given by Proposition 2.4 and assume that Hypotheses (H.1) and (H.2) are satisfied. For ρ ∈ 1 2 , 1 , γ ∈ (0, 1 -ρ) there exists ε0 > 0 so that the following inequalities hold true for all 0 < ε ε0 and

x ∈ D ± (ε γ ) i) 1(Ax)1(Ex)1{T1 Trec + κγ| ln ε|} 1{εW1 ∈ D ± 0 }, (4.3) 
ii)

1(Bx)1(Ex)1{T1 Trec + κγ| ln ε|} 1{εW1 / ∈ D ± 0 (ε γ , ε 2γ )}, (4.4) 
iii)

1(Cx)1(Ex)1{T1 Trec + κγ| ln ε|} 1{εW1 ∈ D * 0 (ε γ )}. (4.5) Additionally, for x ∈ D ± (ε γ ) we have iv) 1(Bx)1(Ex)1{ εW1 (1/2)ε 2γ }1{T1 > Trec + κγ| ln ε|} = 0, (4.6) 
v) 1(Cx)1(Ex)1{ εW1 (1/2)ε 2γ }1{T1 Trec + κγ| ln ε|} = 0. (4.7)
In the opposite sense for

x ∈ D± (ε γ ) vi) 1(Ex)1{T1 Trec + κγ| ln ε|}1{εW1 / ∈ D ± 0 } 1(Bx), (4.8 
) vii) 1(Ex)1{T1 Trec + κγ| ln ε|}1{εW1 ∈ D ± 0 (ε γ , ε 2γ , ε 2γ )} 1(A - x ). (4.9) 
With the help of Lemma 4.1 we can show the following crucial estimates.

Lemma 4.2 (Full estimates of the major events). Let Trec, κ > 0 be given by Proposition 2.4 and Hypotheses (H.1) and (H.2) be satisfied. For ρ ∈ 1 2 , 1 , γ ∈ (0, 1 -ρ) there exists ε0 > 0 such that the following inequalities hold true for all 0 < ε ε0, κ > 0 and

x ∈ D ± (ε γ ) ix) 1(Ax) 1{εW1 ∈ D ± 0 } + 1{ εW1 > 1 2 ε 2γ }1{T1 < Trec + κγ| ln ε|} + 1(E c x ), x) 1(Bx) 1{εW1 / ∈ D ± 0 (ε γ , ε 2γ )} + 1{T1 < Trec + κγ| ln ε|} + 1(E c x ), xi) sup y∈ D± (ε γ ) 1{Y ε (s; y) / ∈ D ± (ε γ ) for some s ∈ (0, T1)} sup y∈ D± (ε γ ) 1(E c y ), xii) 1(Ax)1{Y ε (s; X ε (0, x)) • θT 1 / ∈ D ± (ε γ ) for some s ∈ (0, T1)} 1 {εW1 ∈ D * 0 (ε γ )} + 1{T1 < Trec + κγ| ln ε|} + sup y∈ D± (ε γ ) 1(E c y ) • θT 1 + 1(E c x ).
In the opposite sense for

x ∈ D± (ε γ ) xiii) 1(A - x ) 1{εW1 ∈ D ± 0 (ε γ , ε 2γ , ε 2γ )} -1{T1 < Trec + κγ| ln ε|} -2 1(E c x ), xiv) 1(Bx) 1{εW1 / ∈ D ± 0 }(1 -1{T1 < Trec + κγ| ln ε|}) -1(E c x ).
The next lemma ensures that after having relaxed to B ε 2γ (φ ± ) the solution X ε jumps close to the separatrix only with negligible probability for ε → 0+.

Lemma 4.3 (Asymptotic behavior of large jump events). Let Hypotheses (H.1) and (H.2) be satisfied and 1/2 < ρ < 1 -2γ. Then for any C > 0 there is ε0 = ε0(C) > 0 such that for all 0 < ε ε0

I) µ (D ± 0 ) c µ(B c 1 (0)) -C ε α(1-ρ) λ ± (ε) βε µ((D ± 0 ) c ) µ(B c 1 (0)) + C ε α(1-ρ) , II) È εW1 > (1/2)ε 2γ 4ε α(1-ρ-2γ) , III) È εW1 ∈ ( D± 0 (ε γ )) c (1 + C) λ ± (ε) βε , IV ) È(εW1 ∈ D * 0 (ε γ )) C λ ± (ε) βε , V ) È(εW1 ∈ D c 0 (ε γ , ε 2γ , ε 2γ )) (1 + C) λ ± (ε) βε .
A detailed proof is given in [START_REF] Debussche | Metastability for the Chafee-Infante equation with small heavy-tailed Lévy noise[END_REF].

Asymptotic Exit Times from Reduced Domains of Attraction

We next exploit the estimates obtained in the previous subsection and combine them with the small deviations result of section 3, to identify the exit times from the reduced domains of attraction with large jumps from small neighborhoods of the stable equilibria that are large enough to cross the separatrix. Then for all θ > -1 and C ∈ (0, 1 + θ) there is ε0 = ε0(θ) > 0 such that for 0 < ε ε0

sup x∈ D± (ε γ ) exp -θλ ± (ε)τ ± x (ε) 1 + C 1 + θ -C .
Proof. By (H.2) Γ > 0 can be chosen large enough to fulfill the hypotheses of Proposition 3.4. Let C > 0 be given. We drop the superscript ±. Since the jumps of the noise process L exceed any fixed barrier È-a.s., τx(ε) is È-a.s. finite. Therefore we may rewrite the Laplace transform of τx(ε) for

ε > 0, giving sup x∈ D(ε γ ) e -θλ(ε)τx(ε) = ∞ k=1 e -θλ(ε)T k sup x∈ D(ε γ ) 1{τx(ε) = T k } + sup x∈ D(ε γ ) e -θλ(ε)τx(ε) 1{τx(ε) ∈ (T k-1 , T k )} = I1 + I2. (4.10)
Using the strong Markov property, the independence and stationarity of the increments of the large jumps Wi we obtain for k 1

e -θλ(ε)T k sup x∈ D(ε γ ) 1{τx(ε) = T k } e -θλ(ε)T 1 sup y∈D(ε γ ) 1 (Ay) k-1 e -θλ(ε)T 1 sup y∈D(ε γ )
1 (By) .

In the subsequent Claims 1-4 we estimate the preceding factors with the help of Lemma 4.2.

Claim 1: There exists ε0 > 0 such that for all 0 < ε ε0

x e -θλ(ε)T 1 sup

y∈D(ε γ ) 1(Ay) βε βε + θλ(ε) 1 - λ(ε) βε (1 -C/5) .
In fact: in the inequality of Lemma 4.2 ix) we can pass to the supremum in y ∈ D(ε γ ), and integrate to obtain, using the independence of (Wi)i∈AE and (Ti)i∈AE

e -θλ(ε)T 1 sup y∈D(ε γ ) 1(Ay) e -θλ(ε)T 1 1{T1 < Trec + κγ| ln ε|} È ε W1 > (1/2)ε 2γ + e -θλ(ε)T 1 È(εW1 ∈ D0) + e -θλ(ε)T 1 sup y∈D(ε γ ) 1(E c y ) =: K1K2 + K3K4 + K5.
The terms K1, K3 and K4 can be calculated explicitly, for K2 we apply Lemma 4.3 II). For K5 we use Corollary 3.2 and Lemma 4.3 I) ensuring that there is ε0 so that we have for 0 < ε ε0

K5 C/10 βε βε + θλ(ε) λ(ε) βε . ( 4 

.11)

Claim 2: There is ε0 > 0 such that for all 0 < ε ε0

e -θλ(ε)T 1 sup y∈D(ε γ ) 1 (B(y)) (1 + C) βε βε + θλ(ε) λ(ε) βε .
Indeed, in a similar manner and with the help of Lemma 4.2 x) and Lemma 4.3 III) we obtain that there is ε0 > 0 such that for all 0 < ε ε0

e -θλ(ε)T 1 sup y∈D(ε γ ) 1 (B(y)) (1 + C) βε βε + θλ(ε) λ(ε) βε .
In order to treat the summands of the second sum of (4.10) we have to distinguish the cases θ 0 and θ ∈ (-1, 0), as well as k = 1 and k 2. Let us first discuss the case θ 0.

Claim 3: There is ε0 > 0 such that for all 0 < ε ε0

sup x∈ D(ε γ ) e -θλ(ε)τx(ε) 1{τx(ε) ∈ (0, T1)} C/5 βε βε + θλ(ε) λ(ε) βε .
This statement is proved by means of Lemma 4.2 xi) and Corollary 3.1.

Claim 4: There exists ε0 > 0 such that for any k 2

sup x∈ D(ε γ ) e -θλ(ε)τx(ε) 1{τx(ε) ∈ (T k-1 , T k )} βε βε + θλ(ε) 1 - λ(ε) βε (1 -C/5) k-2 C/5 βε βε + θλ(ε) λ(ε) βε .
To show this, we use the strong Markov property and Lemma 4.2 xii), as in the estimate for the first summand to get for k 2 and θ 0 It remains to discuss the case θ ∈ (-1, 0) in a similar way. This is detailed in [START_REF] Debussche | Metastability for the Chafee-Infante equation with small heavy-tailed Lévy noise[END_REF].

sup x∈ D(ε γ ) e -θλ(ε)T k-1 1{τx(ε) ∈ (T k-1 , T k )} e -θλ(ε)T 1 sup y∈D(ε γ ) 1(Ay) k-2 (K3K9 + K1 + 2K5) .
Combining Claims 1-4 we finally find an ε0 > 0 such that for (4.10) and all 0 < ε ε0 The series converges if and only if C < θ + 1. We treat the terms appearing in (4.13) in a similar way as for the upper estimate.

Claim 1: There is ε0 > 0 such that for all 0 < ε ε0 e -θλ(ε)T 1 inf x∈ D(ε γ )

1(A - x ) βε βε + θλ(ε) 1 -(1 + C) λ(ε) βε .
To prove this, we apply Lemma 4.1 xiii), take the infimum over y ∈ D(ε γ ) and integrate to get e -θλ(ε)T The series converges if and only if -(1 + C) < θ.

Let H = H 1 0

 1 (0, 1) be normed by ||u|| := |∇u| for u ∈ H, where | • | is the norm in L 2 (0, 1) and C0([0, 1]) the space of continuous functions u : [0, 1] → Ê with u(0) = u(1) = 0 and the supremum norm | • |∞. Since |u| |u|∞ ||u|| for u ∈ H we obtain the continuous injections L 2 (0, 1) ֒→ C0(0, 1) ֒→ H. Denote by M0(H) the class of all Radon measures

Proposition 2 . 5 .

 25 For any mean zero L 2 (È;H)-martingale ξ = (ξ(t)) t 0 , T > 0, and initial value x ∈ H equation (2.1) driven by εξ instead of εL has a unique càdlàg mild solution (Y ε (t; x)) t∈[0,T ] . The solution process Y ε induces a homogeneous Markov family satisfying the Feller property.

Proposition 4 . 4 (

 44 The upper estimate). Let (H.1) and (H.2) be satisfied.

(4. 12 )

 12 Lemma 4.2 xii) and Lemma 4.3 IV ) provide the existence of ε0 > 0 such that for 0 < ε ε0 K9 = È(εW1 ∈ D * 0 (ε γ )) C/20 λ(ε) βε .

  sup x∈ D(ε γ ) e -θλ(ε)τx(ε)

Proposition 4 . 5 ( 1 e

 451 The lower estimate). Assume that Hypotheses (H.1) and (H.2) are satisfied. Then for all θ > -1 and C ∈ (0, 1 + θ) there is ε0 = ε0(θ) > 0 such that for all 0 < ε ε0inf x∈ D± (ε γ ) exp -θλ ± (ε)τ ± x (ε) 1 + C 1 + θ -C .Proof. Again we omit the superscript ± and fix Γ > 0 large enough due to (H.2). Omitting the term I2 in equation (4.10), we obtain the estimateinf x∈ D(ε γ ) e -θλ(ε)τx(ε) ∞ k=1 e -θλ(ε)T 1 inf y∈ D(ε γ ) -θλ(ε)T 1 inf y∈ D(ε γ )1(By) .

=Claim 2 :

 2 K3 1 -È(W1 ∈ (1/ε)D c 0 (ε γ , ε 2γ , ε 2γ )) -K1 -2K5,where K1, K3, K5 have the same meaning as in the proof of Proposition 4.4 and are treated identically. By Lemma 4.3 V ) there exists ε0 > 0 such that for 0 < ε ε0È(εW1 ∈ D c 0 (ε γ , ε 2γ , ε 2γ )) (1 + C/5) λ(ε) βε. There is ε0 > 0 such that for 0 < ε ε0e -θλ(ε)T 1 inf y∈ D0 (ε γ ) 1(By) βε θλ(ε) + βε (1 -C) λ(ε) βε .Here we exploit Lemma 4.2 xiv). Finally combining Claim 1 and Claim 2 we obtain inf x∈ D(ε γ ) e -θλ(ε)τx(ε)