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ABSTRACT
A hierarchical model of ten cortical areas is examined to
explain representation of stimulus contrast. In each area,
the activity is integrated and then non-linearly transmitted
to the next area. This arrangement of interactions creates
a gradient from simple to complex visual patterns as one
moves to higher cortical levels. In the model, the firing rate
of each unit describes its neural activity. The visual input
is modeled as a Gaussian random input, whose width codes
for the contrast. This input is applied to the first area. The
output activity ratio among different contrast values is an-
alyzed for the last level to observe sensitivity to a contrast
and contrast invariant tuning. For a purely cortical system,
the output in the last area is approximately contrast invari-
ance in a small gain range, but the sensitivity to contrast is
poor. To account for an alternative visual processing path-
way, non-reciprocal connections from and to a parallel pul-
vinar like-structure of nine areas are coupled to the system.
Compared to the pure feedforward model, cortico-pulvino-
cortical output presents much more sensitivity to contrast
and has a similar level of contrast invariance of the tuning.
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1 Introduction

The primate visual system is a highly complex structure
with a hierarchical organization of areas [1]. In this hierar-
chy, feedforward connections are almost exclusively from
areas in one layer to areas in the next layer of the hierar-
chy, while the feedback connections are predominantly to
areas in the preceding layer. If we investigate the response
properties for neurons in higher and higher layers of the hi-
erarchy, several features are striking. The receptive fields
of the neurons increase in size and become more complex
[2]. Nevertheless the tuning properties of the neurons are
more or less contrast invariance and the response increases
smoothly with contrast [3].

These properties are not easily accounted for. Simple

models show that, because to the non-linear input-output
relation of the neurons, chains of areas will develop the
tendency to move to a step response, or go to a constant
response as a function of contrast [4].

What seems to be needed to overcome this problem
is a “short-cut” between lower and higher layers in the hi-
erarchy. A candidate for such a short-cut is the pulvinar
nucleus of the thalamus [5]. The pulvinar is hierarchically
organized [6], but unlike the cortex pulvinar layers are con-
nected by long range interneurons [7]. Furthermore there
is a topological arrangement of connectivity between pul-
vinar and the cortex that conserves the topography of the
visual system [5, 6]. Thus, the pulvinar can transmit to-
pographical visual information from lower cortical areas to
higher levels by long range interneurons.

Here we investigate whether the pulvinar can play an
important role in regulating the response of higher cortical
areas to contrast changes. We investigate a toy model of the
visual cortex with and without interactions with the pulv-
inar and study in both cases to what extend it is possible
to have contrast independent tuning and a smooth contrast
response function in all layers of the hierarchy.

2 The Model

We consider a network model with a hierarchical cortical
architecture. It consists of L areas, with in each area
2L different units. The units are modeled as rate based
neurons [8]. Beside this cortical architecture there is also
a model pulvinar with L − 1 layers, whose units are also
modeled as rate based neurons.

The Transfer Function
Each unit is considered as being composed of “On” and
“Off” cells, where the rates r+ of the “On” and r− of the
“Off” cells satisfy, if the input into the unit is I ,

τr
d

dt
r± = −r± + f±(I) (1)

where τr is the time constant of the cortical units and
f± are sigmoidal functions, satisfying f+(I) = [1 +
exp(−β(±I − Ith))]−1. The “On” and “Off” units can



be combined in one effective unit with a rate r = r+ − r−,
which has a transfer function

f(I) =
1

1 + exp(−β(I − Ith)
− 1

1 + exp(β(I + Ith)
.

(2)
The rate of the units in the pulvinar obey the same dynam-
ics.

Cortical Architecture
The input onto a cortical unit in area l has three compo-
nents, cortical feedforward input from area l − 1, cortical
feedback from l + 1 and pulvinar input from pulvinar
area l − 1. The exception to this are the first area which
receives feedforward input from the LGN and feedback
from cortical area 2, but not from the pulvinar, and the
last area, area L, which does not receive cortical feedback
input.

We account for the increasing size and complexity of
the receptive field as one moves up the cortical hierarchy by
assuming that in each area the units receive input from two
neighboring units in area l − 1. For example, at position i
in area 2 there are two units, one which receives as input
the sum of the outputs of position 2i − 1 and 2i in area
1, while the other receives the difference of these outputs.
Thus we have half as may positions in area 2, but two types
of neurons in each position. This procedure is repeated in
higher areas. Thus for unit i of type k in cortical area l the
feedforward input, I l

k,i(FF ) satisfies

I l
2k−1,i(FF ) = rl−1

k,2i−1 + rl−1
k,2i

I l
2k,i(FF ) = rl−1

k,2i−1 − rl−1
k,2i,

(3)

for l = 2, . . . , L− 1, i = 1, . . . , 2L−l and k = 1, . . . , 2l−1.
For l = 1 we have only one type of receptive field, k = 1
and I1

1,l(FF ) is, for i = 1, . . . , 2L−1, given by I1
1,l(FF ) =

r0
i , where r0

i is the output of the ith LGN unit.
Units in area l receive feedback input from those units

in area l+1 in to which they project, this input has the same
sign as the feedforward input but is modulated by factor γ.
The feedback is given by

I l
k,2i−1(FB) = γ(rl+1

2k−1,i + rl+1
2k,i)

I l
k,2i(FB) = γ(rl+1

2k−1,i − rl+1
2k,i).

(4)

Units on the Lth area do not receive feedback
input. To account for the absence of this we
for this area that the feedforward input is given
by IL

2k−1,1(FF ) = (1 + γ)[rl−1
k,1 + rl−1

k,2 ] and
IL
2k,1(FF ) = (1 + γ)[rl−1

k,1 − rl−1
k,2 ].

The Pulvinar
The pulvinar is modeled similarly to the cortex except
that each area has at most 4 types of receptive fields, the
patterns corresponding to k = 1, 2, 2l − 1, 2l. Pulvinar
units in area l receive input from cortical units in area l
and from pulvinar units in areas 1 to L − 1. The input

J l
k,i(PC) from cortex to unit i of type k in pulvinar region

l is given by J l
k,i(PC) = WPCI for l = 1, ..., L − 1,

i = 1, ..., 2L−l−1 and k = 1, 2, 2l − 1, 2l. The input
J l

k,i(PP ) from the rest of the pulvinar satisfies:

J l
2k−1,i(PP ) =

1
1 + WLP

(
WFP [sl−1

k,2i−1 + sl−1
k,2i]

+
WLP

2
[J l−1

k,2i−1 + J l−1
k,2i]

)

J l
2k,i(PP ) =

1
1 + WLP

(
WFP [sl−1

k,2i−1 − sl−1
k,2i]

+
WLP

2
[J l−1

k,2i−1 + J l−1
k,2i]

)
,

(5)

for k = 1 and k = 2l−1. Here we have used sl
k,i for the rate

of the pulvinar units and assumed J1
k,i(PP ) = 0. Variables

WFP andWLP are respectively strengths that modulate the
feedforward and the long range forward input inside the
pulvinar, and they can be positives or negatives. The ex-
ception to this connectivity arrangement are pulvinar area
1 and 2. Pulvinar area 1 receives only input from cortical
area 1, whereas for pulvinar area 2WLP = 0.

Finally, the input from pulvinar to cortex, I(CP ), is
given by:

I l
2k−1,i(CP ) = WCP [sl+1

k,2i−1 + sl+1
k,2i]

I l
2k,i(CP ) = WCP [sl

k,2i−1 − sl+1
k,2i],

(6)

where sl
k,i is the output of pulvinar unit for k = 1, 2, 2l −

1, 2l and sl
k,i = 0 otherwise.

3 Response to Homogeneous Input

To get some insight into the model’s behavior we first con-
sider the network with a spatially constant input, r0

i = r0.
For such an input the equilibrium rates satisfy rl

k,i =
δk,1rl, sl

k,i = δk,1sl.
In the purely feedforward model, γ = 0 and WCP =

0 these rates are given by r1 = f(r0), rl+1 = f(2rl). If we
consider a long chain, L large, the rates will approach r∞,
given by r∞ = f(2r∞). Figure 1A shows the solutions
for r∞ as a function of β. For small β the only solution
is r∞ = 0. As β is increased there is a bifurcation and
two new solutions appear. The solution r∞ = 0 becomes
unstable at this point while the two new solutions are stable.

The meaning of these results is that for small β the
response, rl, approaches 0 with increasing l for any input
r0, while for large β it approaches upper stable solution for
r0 > 0 and the lower one for r0 < 0. Thus information
about r0 is lost in the higher areas for any value of β.

Adding feedback connections only, γ "= 0,WCP = 0
does not qualitatively improve the situation. The bifurca-
tion point moves from βcr = 1 to βcr = 2/(2 + γ), but
for a sufficiently large L we still have an almost constant
output for small β and a step response for larger β.



Figure 1. A) Fixed point solutions as a function of β. Solid: sta-
ble, dashed: unstable. B) Response of the 10th layer as a function
of input for the optimal feedforward (FF), feedforward-feedback
(FF-FD) and pulvinar-feedforward (PUL-FF) network.

The response of the network to spatially constant in-
put with the pulvinar included, WCP "= 0 and WPC "= 0,
can also be treated analytically. One solution shows a
smooth linear increment of firing rate when the contrast
input gradually increases. This relation in the feedforward-
pulvinar model is observed when WLP # 1 with the con-
straint WFP < WLP . At Icx

th = 0, this process is satisfied
as βcx = 1/(1+FpulWCP WPC), where βcx is the cortical
gain and Fpul the derivative of the effective transfer func-
tion for the pulvinar (Eq. (2)). This improvement in the
last area’s activity is because pulvinar area l receives in-
put from all lower areas and passes directly to higher areas.
Because of these long range interactions, responses in the
higher pulvinar regions may not tend to a bi-modal output
distribution. This is confirmed by numerical simulations.
These show that the output of the last layer increases much
more smoothly when the pulvinar is included.

A network that optimally encodes r0 in the final layer
should satisfy two requirements, It should be as linear as
possible and it should use the output range maximally. For
a cortical feedforward network these requirements are in
conflict. The dynamic range is used maximally for large β,
but for large β the response is very non-linear. On the other
hand small β give an almost linear response, but the out-
put does not use the dynamic range. Figure 1B shows the
output of the last area for a network that optimally encodes
inputs, r0 between -2 and 2. The optimality measure used
was the entropy of the output distribution and the value of
β was optimized (Ith was kept at 0). The input output func-
tion is far from linear and the range [−1, 1] is not fully
used. Also shown is the result for feedforward-feedback
and feedforward-pulvinar model. Here βcx,pul, γ, WCP ,
WPC , WFP and WLP were varied to obtain the optimal
value. For PUL-FF model, βcx was found to satisfy using
βcx = 1/(1 + FpulWCP WPC). The result for PUL-FF is
much better than that for cortico-cortical connections. The
curve is closer to linear and the dynamical range is almost
fully used. In this simple set-up the pulvinar can contribute
greatly to the transmission of information about the input
to the highest layer.

Figure 2. Scatter-plot of response at low contrast (White dots
σ2 = 0.1, gray dots σ2 = 0.5) vs. response at the highest contrast
(σ2 = 1) that minimize the error. A) Feedforward network, B)
Network with pulvinar.

4 Response to Visual Input

In modeling the response of the network to Natural Visual
stimuli we take into account that for such stimuli the retina
and LGN whitens the response and reduces the kurtosis of
the distribution [9]. Thus visual input with natural statistics
is, in our model, described by a random input with mean 0,
r0
i = σxi, where σ codes for the contrast and xi is indepen-
dently drawn from a Gaussian with mean 0 and variance 1.
We assume that the same visual input with higher contrast
is represented by an input with the same xi but larger σ.
Contrast invariance of the tuning means that the input elic-
its in the last layer an output vector rL

k,1 whose direction
is independent of contrast. Smooth increase of the con-
trast response means that the length of this vector increases
gradually with contrast.

If we consider a purely feedforward model in which
the transfer function f is linear, f(I) = αI , the output
of each layer is Gaussian an one easily shows 〈(rl

k,i)
2〉 =

(2α2)lσ2/2. The response decreases with l if α < αcr =
1/
√

2, otherwise it blows up.
Considering a feedforward network with a nonlinear

transfer function, f , we see that, for low contrast, the re-
sponse goes to zero if f ′(0) < αcr. For Ith = 0 this means
that β =

√
2. Applying a Gaussian random input r0 gener-

ates, for Ith = 0, in layer L, one or three fixed rate bumps,
as one moves from small to large values of β. Firing rates
pass from rl = 0 to rl = −1, 0, 1 as β is increased. These
solutions are produced for inputs with low and high con-
trast. Numerical simulation shows that the transition from
one bump to three bumps occurs at β ≈ 1.4, in agreement
with our analysis.

5 Output Response Tuning

To test whether the network is sensitive to changes in con-
trast, we measure the output activity of the last layer when



Figure 3. A) Length and B) Separation distance of last area out-
puts as a function of contrast.

the variance, σ2, is gradually increased. We estimate two
properties of the output firing rate: The output amplitude
is a function of the contrast and the mean angle between
different values of contrast. The output amplitude, F ,
is defined as average length of the output for LGN in-
puts with widths σ, F (σ) = 〈|'V|〉, where the average is
over input patterns with standard deviation σ. We aim for
an amplitude function F that is as linear as possible and
uses the dynamic range maximally. We use EL defined
as EL = −

∫ 1
0 dσ log(F ′(σ)) as the cost-function for this

property. EL → 0 the output scales linearly and exploits
the whole dynamic ranges. It increases if less of the dy-
namic range is used or the response is more non-linear.
To explore whether the network can maintain contrast in-
variant tuning, we calculate the mean of the separation dis-
tance S between normalizes output vectors 'e(σ) and 'e(σ′)
for LGN inputs r0

i = σxk and r0
i = σ′xk respectively,

S =
∫ 1
0 dσ

∫ 1
0 dσ′'e(σ) ·'e(σ′). Here'e = 'V/||'V||. If S = 1

then vectors are in the same direction for all contrasts. As
the direction changes more with contrast, S decreases. We
define an errorE = 5

2S+e−EL that takes both these factors
into account.

For networks with different architectures we deter-
mine the parameters which minimize the cost function E.
In Fig. 2 we show the response to different contrast for
a model with only intracortical feedforward connections
(Fig 2A) and with the complete Cortex + Pulvinar System
(Fig 2B). The response of a neuron at contrast σ is plot-
ted against the response of the same cell at contrast σ = 1
for different values of the contrast. For both architectures
the contrast invariance of the tuning reasonable good, as
reflected by the fact that the points fall nearly on a straight
line. However, for the feedforward model, the slope of this
line does not change much as σ is varied, reflecting the fact
that the response amplitude only changes weakly with the
contrast. Furthermore the dynamic range is not fully used
here.

In the cortico-pulvinar-cortical model the dynamical
range is almost fully exploited and the response amplitude
increases by almost a factor of 5 as the contrast is increased
from σ2 = 0.1 to σ2 = 1. This is further illustrated in Fig.
3. In Fig 3Awe plot the average response amplitude against
the contrast for both architectures and in Fig. 3B the sepa-

ration between the normalized response vector for contrast
σ and the normalized response vector averaged over con-
trasts, is plotted against σ. For both models S varies over
the range 0.99 to 0.94, but the response amplitude clearly
increases more linearly and uses more of the dynamic range
for the Cortico-pulvinar-cortex model.

This improvement is observed as WLP # 1 and
WFP < WLP . Moreover, this improvement is present
when connections from cortex to pulvinar are negative
(positive) while connections from pulvinar to cortex are
positive (negative). Surprisingly there are two almost
equally good solutions: in one WCP is large and WPC

small. In the other WPC is large and WCP small. Our
model does well when the cortex modulates the pulvinar
while the pulvinar drives the cortex, but it does equally well
when it is the other way around.

These results show that in a purely feedforward model
it is not possible to achieve contrast independent tuning and
a good sensitivity to contrast in higher layers of the visual
hierarchy and that the pathway through the pulvinar could
overcome this limitation.
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