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ABSTRACT
While  many  electrophysiological  recordings  and 
computational modeling work have investigated the role 
of the frontal cortex in reinforcement learning (learning 
by trial-and-error to adapt action values),  it  is not yet 
clear  how  the  brain  flexibly  regulates  in  a  task-
appropriate way crucial parameters of learning such as 
the learning rate and the exploration rate. In a previous 
work, we proposed a computational model based on the 
meta-learning theoretical  framework where the frontal 
cortex  extracts  feedback  signals  1)  to  update  action 
values based on a reward prediction error; 2) to estimate 
the  level  of  exploration  based  on  the  current  reward 
average;  3)  to select  action based on this  exploration 
rate. This model helped us draw a set of experimental 
predictions.  Here  we show a model-based analysis of 
single-unit recordings in the monkey prefrontal  cortex 
so  as  to  test  these  predictions.  We  found  neural 
subpopulations  activities  consistent  with  these  three 
functions.  We  also  found  global  properties  of  the 
recorded neural ensemble – such as variations in spatial 
selectivity – which were predicted by our model.  Such 
an  approach,  gathering  computational  modeling  and 
neurophysiology,  can  help  understand  complex 
activities  of  neural  ensembles  related  to  decision 
making.
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1.  Introduction

Previous results on neural bases of decision making in 
the  frontal  cortex  showed  crucial  mechanisms  that 
could  participate  both  to  reinforcement  learning  pro-
cesses [1] and to the auto-regulation of exploration-ex-
ploitation behaviors [2]. Several computational and the-
oretical models have been proposed to describe the col-
laborative  functions  of  the  anterior  cingulate  cortex 
(ACC) and the dorsolateral prefrontal cortex (DLPFC) 
– both belonging to the prefrontal cortex – in adaptive 
cognition [3, 4, 5]. Most models are based on the hy-
pothesized  role  for  ACC  in  performance  monitoring 
based on feedbacks and of DLPFC in decision-making. 
In exploration, challenging, or conflicting situations the 
output from ACC would trigger increased control by the 
DLPFC.  Besides,  several  electrophysiological  data  in 

non  human  primates  suggest  that  modulation  of  this 
control within the ACC-DLPFC system are subserved 
by mechanisms that  could be  modeled  with the  rein-
forcement learning (RL) framework [1, 6, 7]. However, 
it  is not clear  how these mechanisms integrate within 
these neural structures, and interact to produce coherent 
decision-making under explore-exploit trade-off.
In a previous work [8],  we proposed a computational 
model where ACC filters dopaminergic input signals – 
assumed to convey a reward prediction error [9] – and 
uses this signal both to update action values and to reg-
ulate  the  level  of  exploration.  Inspired  by  the  meta-
learning theoretical framework [10], such a regulation 
consisted in estimating the current reward average and 
using this information to tune the β parameter called the 
exploration rate.  This model led to a series of experi-
mental  predictions  that  we  test  here  by  presenting  a 
model-based analysis of single-unit recordings in mon-
key prefrontal cortex. We find activities consistent with 
our predictions, revealing separate neural ensembles in 
ACC encoding action values and exploration rate, and 
integration of these information in DLPFC to enable ac-
tion  selection  under  varying  exploration-exploitation 
trade-off.  Global properties of the recorded neural en-
semble – such as variations in spatial selectivity – are 
also consistent with our model predictions.

2.  Previous model

Figure 1 summarizes the model previously developed in 
[8] to reproduce the task used in [7]. In the model, ACC 
and DLPFC contain a  3*3 grid representing different 
areas on a touch screen. At each trial, four targets are 
presented on the screen. Following the RL framework 
[11], the ACC learns the action value Q(a) associated to 
pressing each possible target  a. After pressing a target, 
the action value is compared with the presence/absence 
of reward so as to compute a Reward Prediction Error 
(RPE):

RPEQ a −r (1)
where r is the reward.
The value of the performed action is updated according 
to the following equation:

Q  a =Q a  α . RPE  (2)
where  is the learning rate (0 <  < 1 ).



Action  values  are  transmitted  to  the  DLPFC  which 
selects  the  next  action  to  perform  based  on  the 
Boltzman softmax rule:

P target i =
exp  β . Q  targeti 
∑

j

exp β .Q  target j 

(3)

where β regulates the exploration rate (0 < β). A small 
β leads to a very similar probability for each action and 
thus to an exploratory behavior. A high β increases the 
difference  between  the  highest  action  value  and  the 
others, and thus produces an exploitative behavior.

In parallel, a modulatory variable (MV) is computed so 
as  to  dynamically  regulate  the  exploration  rate  β. 
Inspired  by  the  meta-learning  theoretical  framework 
[9], the idea is to increase exploration when the average 
reward decreases, and to increase exploitation when it 
increases:

MV MV+{α .RPE  if RPE>0
α−. RPE  if RPE<0}

(4)

with  α+ = -2,5 and  α- = 0,25 to tackle sharp changes 
between  exploration  and  exploitation  phases  as 
observed in monkey behavior in the task used by [7].
MV is used to modulate the exploration rate β within the 
DLPFC:

β=
ω1

1exp ω2 . [1−MV ] +ω3 
(5)

with ѡ1 = 10, ѡ2 = -6 and ѡ3  = 1, which has a sigmoid 
function  that  produces  a  low  β when  MV is  high 
(exploration)  and  a  high  β when  MV is  low 
(exploitation).

Figure 1. A simplified representation of the computational model de-
veloped by [8]. Visual input (4 square targets presented on a touch 
screen; or a circle in a center indicating a problem-change; or a trian-
gle in the top center indicating a reward) is sent to the Anterior Cingu-
late Cortex (ACC) and the dopaminergic system (Ventral Tegmental 
Area;  VTA).  The  VTA sends a  Reward Prediction  Error  signal  to 
ACC which updates action values associated to pressing each possible 
target.  Action values are sent  to the Dorsolateral  Prefrontal Cortex 
(DLPFC) which selects  an action based on the current  exploratory 
rate β. In parallel, ACC computes a Modulatory Variable (MV) which 
represents the current reward average. MV is used to modulate the β 
value in DLPFC so that the latters explores more after errors, and ex-
ploits more after correct trials.

This model enabled to draw a set of experimental pre-
dictions [8]. Here we test two of these predictions by re-
cording ACC and DLPFC neuronal activities in the task 
employed by [7]:

1. There  should  exist  MV neurons  within  the 
ACC – with an increase of activity after each 
error trial and a decrease of activity after cor-
rect trials.

2. The effect of MV on the exploration rate β wi-
thin DLPFC should produce a higher contrast 
between neuronal activities representing action 
values during exploitation phases (as symboli-
zed by square surfaces in figure 1), and a lower 
contrast during exploration phases.

3.  Model-based analysis of brain data

We simulated this algorithmic model on the task used in 
[7]  so  as  to  test  for  correlations  between  model 
variables and neuronal activities recorded in ACC and 
DLPFC in this task.

3.1 Task

Figure 2. Problem Solving Task employed in [7] where monkey pre-
frontal  cortical  neurons  analyzed  here  were  recorded.  A  typical 
problem starts with a Search phase where the animal searches for the 
rewarding target among four presented on a touch screen. The mon-
key makes a series of error trials (ERR) until it finds the correct target 
(first correct trial,  COR1). Then a repetition phase is imposed where 
the animal needs to repeat the same choice for 3 to 11 trials. Finally, a 
Signal to Change (SC) indicating that new problem starts, meaning 
that the correct target location will be changed in 90% of the cases.

3.2 Fitting monkey behaviour

The  reinforcement  learning  model  is  simulated  on 
monkey data, that is, at each trial, the model chooses a 
target, we store this choice, then we look at the choice 
made by the animal, and the model learns as if it had 
made the same choice (so that the model learns based 
on the same experience  as  the  monkey). At  the  next  
trial, the model makes a new choice, and so on. At the 
end, we compare the sequence of choices made by the 
model  with  monkeys  choices.  For each  behavioral  
session, we optimize  the model  by finding the set  of 
parameters that provides the highest likelihood of fitting 
monkeys  choices.  We  take  into  account  individual 
spatial  biases  of  each  monkey  by  initializing  action 
values  associated  to  each  target  based  on  target 
preferences  measured  during  the  previous  session  for 
the same monkey.

This  optimization leads  to  an  average  likelihood  of  
0.6537 per session corresponding to 77% of the trials  
where  the  model  predicted  the  choice  the  monkeys 
actually  made.  Fig.3 shows  simulation  results  on  a  



sample of 100 trials for 1 monkey (Monkey M, session 
MB5_2782).

Figure  3. Simulation  of  the  reinforcement  learning  model  on  100 
trials. Each color is associated with a different target. The top line de-
notes the problem sequence experienced by both the monkey and the 
model. Black triangle indicate the presentation of a Signal to Change 
(SC). The second line shows the monkeys choice at each trial. Curves 
show the temporal evolution of action values in the model. Non selec-
ted target have their value decrease according to a forgetting process. 
These curves also show the action value reset at the beginning of each 
problem based on individual spatial preferences, the decrease of in-
correct selected targets value, and the increase of the correct targets 
value once selected by the animal. The bottom of the figure shows 
choices made by the model based on these values.

Figure 4. Proportions of ACC and DLPFC neurons with an activity 
correlated with one of the three model variables (Q, RPE, MV), either 
during the pre-feedback period (preFB) or during the post-feedback 
period (postFB).

3.3 Correlations between model variables and neural 
activities

Once the model is set to fit behavioral data, we can use 
variables in the model as regressors to test for correla-
tions with single-unit activity recorded in the monkey 
anterior  cingulate  cortex  (ACC) and dorsolateral  pre -
frontal cortex (DLPFC) in the same task. In this section, 
we present such model-based analysis. We used a mul-
tiple  regression  analysis  to  test  possible  correlations 
between each neuron's activity measured in its preferred 
500ms-period within the trial and the three model vari-
ables:  action  values  Q,  reward  prediction  error  RPE, 
modulatory variable  MV. As a control,  we combined 
this  method  with  a  bootstrap:  we  randomized  1000 
times  the  trials  order  for  the  model's  variables  and 
tested if the considered neuron's activity was still cor-
related. A neuron's activity was considered as signific-

antly correlated with one of the model's variables if the 
strength of correlation was higher than strengths of 950 
random samples.
Figure 4 summarizes  the proportions of cells in ACC 
and DLPFC that are correlated with a model variable. 
Consistently with previous reports on RPE encoding in 
the ACC, we found a high proportion of ACC neurons 
correlated with the Reward Prediction Error (RPE) in 
the  post-feedback  period.  In  addition,  we  also  found 
neurons correlated with one the four action values both 
in the ACC and DLPFC. The proportion of action value 
neurons  is  higher  in  the  DLPFC  than  in  the  ACC, 
consistently with the former's  supposed role in action 
selection  (77% for DLPFC versus 48% for ACC; chi-
square test, 1 df, T=27.7228088, p = 7.2370e-8).
In addition, and as  predicted by our model,  there are 
neurons  in  ACC  correlated  with  the  Modulatory 
Variable (MV), and their proportion is  higher than in 
DLPFC (52% in ACC versus 28% in DLPFC; chiquare, 
1 df, T = 19.6090119, p = 4.9732e-06).
Figure 5 shows examples of neural activities correlated 
with some model variables.

Figure 5. Examples of neurons with activity correlated either with the 
action  value  of  the  fourth  target  (Q4),  the  reward prediction  error 
(RPE), the modulatory variable (MV).

3.3 Global properties of recorded neural ensembles

In addition to individual neuron activities which could 
encode  information  similar  to  separate  computations 
carried by our model, we predicted that there should be 
properties  at  the  neural  ensemble  level  due  to  the 
variation in exploration rate. More precisely, the model 
predicted that  there should be an increase  in  contrast 
between  neural  activities  representing  different  target 
values during the repetition period of this task due to 
the exploitative mode triggered by the increase in the β 
value in equations 4-5 of the model.

We  observe  such  phenomenon  materialized  by  an 
increase  of  spatial  selectivity  in  DLPFC during  the 
repetition  period.  Such  increase  is  statistically 
significant, when looking at all DLPFC cells, but also 
when  considering  only  action  value  cells,  as  the 
model  predicted:  among  85  DLPFC  action  value 
neurons,  the average  spatial  selectivity of 62 (73%) 
cells  having  a  significant  spatial  selectivity  (either 
during  SEARCH  or  REPETITION)  significantly 
increases  during  REPETITION  (the  mean  index  of 
spatial  selectivity  variation  between  SEARCH  and 
REPETITION  equals  0,0993,  which  has  a  median 
different  from 0 [signrank p = 0.0016] and a mean 
different  from  zero  [t-test  p  9.4003e-04]).  Thus, 
DLPFC’s  increase  in  spatial  selectivity  during  the 
repetition period can be in part due to an increase in 
the  contrast  between  activities  of  action  value 
neurons, as postulated by the model.



4.  Conclusion

Acumulating  evidence  suggest  that  the  frontal  cortex 
could contribute to flexible behaviors and to learning 
based  on  feedback  obtained  from  the  environment 
[1,3,5]. Recent electrophysiological findings suggest a 
specialization of the frontal cortex where the Anterior 
Cingulate  Cortex  (ACC)  monitores  performance  to 
modulate  decision-making  in  the  Dorsolateral 
Prefrontal  Cortex  (DLPFC)  [2,6,12].  Several 
computational models have tackled this specialization, 
either  by  considering  that  ACC  monitores  conflict 
between competing actions to increase the gain in the 
DLPFC  [13],  or  proposing  that  ACC  computes  the 
current error-likelihood [4]. Our model proposes a more 
general principle to explain ACC function in terms of 
meta-learning  [10].  The  ACC  could  be  generally 
involved  in  monitoring  performance  relative  to  the 
current environment's properties to tune parameters of 
reinforcement  learning  and  action  selection. 
Consistently  with  this  proposition,  Rushworth  and 
colleagues  have  recently  shown  that  the  ACC  in 
humans  is  important  to  track  the  environment's 
volatility  (variations  in  the  reward  rate)  and  adapt 
subsequent behavior [14].

In  this  paper,  we  used  our  computational  model  to 
analyze single-unit recordings in the monkey ACC and 
DLPFC. We were able to formally relate activities of 
subpopulations of neurons to different model variables, 
thus confirming their possible implications in different 
computations  employed  in  the  model  (reinforcement 
learning based on action values and reward prediction 
errors; meta-regulation of exploration based on MV). In 
addition to information measured at the cellular level, 
we  found  global  properties  of  neural  ensembles  that 
were predicted by the model: the model predicted there 
should be an increase in spatial selectivity in DLPFC 
during exploitation phases, due to the increased contrast 
between action values induced by a high β in equation 
3. This validates a possible role for the ACC-DLPFC 
system in dynamic  regulation of  the  exploration rate. 
Further  investigations  will  be  required  to  test  other 
predictions formulated with our model in the same task, 
and  to  see  whether  our  model  makes  verified 
predictions in other protocols.

Such a pluridisciplinary  approach  provides  tools  both 
for  a  better  understanding  of  neural  mechanisms  of 
decision making and for the design of artificial systems 
that  can  autonomously extract  regularities  from  the  
environment  and  interpret  various  types  of  feedbacks 
(rewards, feedbacks from humans, etc...) based on these 
regularities to appropriately adapt their own behaviors.

Future  work  will  consist  in  modelling  how  RL 
parameters are progressively set during familiarization 
with the environment.  Such  goal  can  be  achieved  by 
using the  model  to  predict  day-by-day  behavior  
observed during monkey pretraining. This will help us 
understand the dynamics of meta-learning which enable 
animals in this task to autonomously learn that a high 
learning  rate  is  relevant  and  that clear  transition  

between  exploration  and  exploitation  are  required  - 
based on the extracted structure of task.
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