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ABSTRACT
Cortical  neurogenesis  is  a  complex  process  during 
which  dividing  cells  have  the  ability  to  acquire 
specific  fates  and  eventually  differentiate  toward  a 
terminal cell type. The adoption of a cell phenotype is 
the result  of  intrinsic  programs,  which regulate cell 
behaviour  and  cell-cell  interations.  Insight  into  the 
mechanisms underlying corticogenesis is provided by 
the  genealogical  history  of  every  precursor  (cell 
lineage).  We present a method to identify recurrent 
developmental  patterns  in  lineage  trees,  where  the 
leaves of the tree are labeled according to the terminal 
cell fates. We exploit the information contained in the 
underlying graph structure to classify the progenitors 
into  different  subpopulations  by  means  of  spectral 
clustering. We test the method on artifically generated 
lineage datasets and show that the result constitutes a 
compact probabilistic state machine description of the 
developmental process. This approach will enables us 
to estimate cell states sequences and a developmental 
distance  between  the  precursors  in  reconstructed 
cortical lineages.
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1.  Introduction

The  mammalian  neocortex  is  an  exquisitely  organized 
six-layered  structure  containing  different  neuronal  cell 
types  and  a  diverse  range  of  glia  cells  [1].  During 
corticogenesis  two  germinal  compartments  lining  the 
lateral  ventricle,  the  ventricular  zone  (VZ)  and  the 
subventricular zone (SVZ), generate pyramidal  neurons 
as well as a fraction of the inhibitory neurons. 
In the rodent a heterogenous population of precursor cells 
have  been  identified.  The  first  progenitor  type  are 
neuroepithelial  cells  (NECs),  which  produce  preplate 
neurons and after the onset of neurogenesis give raise to 
radial glial cells (RGPs) [2]. RGPs divide at the apical 
surface and can differentiate into neurons as well as into 
intermediate neuronal progenitors (INPs), also known as 
basal progenitors [3,4,5,6]. RGPs are mainly responsible 

for  the  amplification  of  the  pool  of  precursors  by 
symmetric  cell  division  as  well  as  generating  directly 
infragranular  layers  (VI,V)  by  asymmetric  neurogenic 
divisions.  INPs  are  classified  in  two  distinct  classes: 
INPs  in  the  VZ  have  short  radial  morphology  and 
contribute to all cortical layers, whereas IPNs in the SVZ 
are multipolar and are though to be largely responsible 
for  the generation of  granular  and supragranular layers 
(IV, III-II) [7].
During  cortical  development  dividing  cells  undergo 
sequential fate restriction, that is a restriction in the types 
of differrentiated cells  produced. The ordered sequence 
of cell divisions that leads to defined terminal cell fates is 
controlled  by  transcriptional  networks,  epigenetic 
regulation  and  cell-cell  interactions.  Although  we  may 
conceivably consider each cell and every cell division as 
unique,  it  is  reasonable  to  assume  that  transitions 
between  similar  cell  states  are  the  consequence  of  a 
common molecular  mechanism.  Under  this  assumption 
stable  profiles  of  gene  expression  represents  defined 
attractors  and  can  be  interpreted  as  distinct  cell  fates 
[8,9].
Despite  the  numerous  studies  on  cellular  processes 
regulating  corticogenesis,  there  is  still  poor  under-
standing of how molecular mechanisms that control cell 
fate  specification  are  linked  to  the  final  cortical 
cytoarchitecture. What is the logic behind the generation 
of different neuronal subtypes? And can we describe it in 
the  form  of  a  compact  set  of  rules,  a  list  of  state 
transitions  and  actions  that  each  cell  can  undertake 
locally?
In order to address these questions, we have chosen to 
investigate  the  detailed  sequence  of  cell  fate 
specifications,  which  is  provided  by  the  genealogical 
history  of  individual  precursors.  The  cell  lineage 
describes the developmental trajectory in the form of a 
binary  tree:  the  root  is  the  initial  precursor  cell;  the 
terminal  nodes  are  cells  that  have  reached  a  terminal 
phenotype;  and  the  tree  topology  represents  the 
relationship between all cells that existed at given time 
point during development. By analyzing the structure of 
lineage  trees,  and  especially  recurring  patterns  of  cell 
division and differentiation, we wish to identify the major 
differentiation  pathways  that  lead  to  different  types  of 
pyramidal neurons.

mailto:sabina@ini.phys.ethz.ch


Figure 1. Example of cell division pattern analysis on a small sublineage. We illustrate the cell division pattern analysis 
on a small sublineage by showing the state transition diagrams (top row), and the corresponding distance matrices (bottom 
row).  The state transition diagram shows how the cell states are connected to each other, whereas the distance matrix 
encodes the computed similarity between every cell state pair (black represents complete similarity and white complete 
dissimilarity). The dendrogram on the left of the matrix indicates the binary linkage between state pairs. (A) Example of an 
artificially created sublineage starting from a single progenitor  #1. Progenitors  (gray circles)  give rise  to 9  terminally 
differentiated cells (cell type I, light green circles; cell type II, orange circles, cell type III, red circles). Arrows indicate cell 
division. (B, E) 8-dimensional state transition diagram, which completely describes the sublineage. Arrows indicate the 
transition probability from one state to the other at cell division. (C, F) 7-dimensional state transition diagram: progenitors 
#4 and #5 give rise to similar daughter cells and represent a single division mechanism (rule). Redundant part of the lineage 
are removed from the diagram (light gray circles). (D, G) 5-dimensional state transition diagram: similar division patterns at 
#7 and #8 can be further reduced to a single rule.

An  algorithm  that  analyzes  patterns  has  been  already 
proposed  in  the  past  as  an  approach  to  quantify  the 
complexity of  metazoan  lineages  [10].  Inspired  by the 
simple idea that lineages can be expressed as a sequence 
of division rules, we define a distance measure between 
cell  states  in  the  Euclidean  space  such  that  cells  with 
similar  progeny  are  very  close  to  each  other.  Given 
experimentally reconstructed genealogical trees in which 
only  terminal  cells  are  labeled  according  to  their 
phenotype, we can classify the progenitors into different 
subpopulations.
In  the  present  work  we  (1)  describe  the  modeling 
formalism  that  we  use  to  describe  developmental 
sequences;  (2)  introduce  a  method  based  on  spectral 
clustering  theory  to  perform  classification  on  lineage 
trees,  and  (3)  validate  the  method  on  artificially 
generated  lineage  datasets,  for  which  the  underlying 
generative  model  is  known. We  propose  that 
developmental  programs  can  be  represented  with 
probabilistic finite state machines, a model that describes 
the rules regulating local cell behavior. We will use the 
proposed method to analyze reconstructed cell  lineages 
from different areas of the cerebral cortex in the mouse.

2.  Results

2.1 State machine description of cell lineages
The  generation  of  different  cell  subpopulations  during 
cortical development is the result of concurring complex 
processes,  wich involves a variaty of different possible 
cell states and transitions between those states. As long as 
we  don't  have  any information  about  the  relationships 
between  differen  cell  states,  any  prediction  about  the 
generative  process  would  not  be  better  than  random 
guessing.  As  soon  as  we  can  establish  relationships 
between states, we can use this information to estimate 
their degree of similarity.
This information is provided by the lineage trees arising 
from every precursor. The lineage contains a wealth of 
information about the correlation between different cells, 
their  function  and  anatomical  position.  The  lineage 
description  defines  the  reachable  states  (cell  types)  in 
which  a  cell  can  be  found  in,  and  the  possibility  of 
transition between states.  It  can be seen as  a  series of 
unique rules, each corresponding to a cell division:

X → (Y,Z)



which  means:  "cell  X divides  into cells  Y and Z with 
probability P". X is an undifferentiated cell, and Y and Z 
may  be  undifferentiated  and/or  terminal  cells  of  a 
particular  terminal  fate.  The  list  of  rules  provides  a 
complete description of the cell division patters and cell 
fate specification of the lineage.
We  describe  progenitor  cell  behaviour  in  a  compact 
fashion using probabilistic finite state machines, a model 
composed  of  a  finite  set  of  states  and  transition 
probabilities between those states.  Stable or metastable 
profiles of gene expression are defined as states, and state 
transitions occurs at the moment of cell division, when a 
cell  has  a  defined  probability  to  either  divide 
symmetrically or asymmetrically into two daugther cells. 
To  each  state  transition  we  associate  one  or  multiple 
actions. For instance the transition toward a differentiated 
cell type may induce the activation of the cell migration 
machinery.  The  list  of  state  transition  and  actions 
constitutes a set of local rules contained in each cell, like 
an abstract genetic code. For instance, the sublineage in 
Figure  1A can  be  completly  described  by  the  state 
diagram in  Figure 1B. Nodes of the graph represent all 
possible  cell  states  and  edges  represent  the  transition 
probabilities at cell division.

2.2 Dimensionalty reduction of state machine models
If we assume every cell and every cell division as unique, 
we  would  require  a  genetic  or  environmental 
specification  for  every  single  cells  produced.  This  is 
unlikely  given  the  cost  that  a  huge  genome  would 
impose. Indeed it is common to find division rules that 
are  repetitively  used  in  different  part  of  the  lineage. 
Given  a  graph  composed  of  a  set  of  labeled  (terminal 
differantiated cells) and unlabeled data (progenitor cells), 
we want to cluster the remaining unlabeled vertices by 
exploting the global structure of the graph.
In the absence of labeled instances, the problem reduces 
to spectral clustering on graphs. Spectral graph theory is 
used  to  characterize  the  structural  properties  of 
undirected  graphs  using  information  conveyed  by  the 
eigenvalues  and  eigenvectors  of  the  Laplacian 
pseudoinverse  [11,12].  The  model  exploits  the  graph 
connectivity  to  compute  a  euclidean  dissimilarity 
measure called average commute time  N. The average 
commute time is a measure of the connectivity strength 
between node pairs and has the interesting property of 
decreasing  when  the  number  of  paths  connecting  two 
nodes  increases  and  when  the  length  of  any  path 
decreases.
Conventional  spectral  clustering  does  not  take  into 
account the presence of  labeled nodes in the graph. In 
order  to  incorporate  information  from  the  labeled 
instances,  we  exclusively  consider  distances  from 
unlabeled nodes  r to labeled nodes  s and recompute the 
distance matrix on this values only. Every progenitor cell 
is thus defined by the distances to all the terminal cell 
fates  that  it  can  generate,  and  we  call  this  measure 
developmental distance:

VG is the volume of the graph and  xi is the coordinate 
vector  of  the  embedding  of  node  i into  the  Euclidean 
space.  xi are exactly separated by the average commute 
time distance to labeled nodes.
The developmental distance is a measure of the similarity 
between  cell  states  based  on  shared  progeny  and 
ancestors.  It captures both genetic and spatial closeness 
in  the  lineage.  Precursors  that  generate  similar 
distribution  of  cells  are  very  closed  from  each  other 
(genetic  closeness),  but  precursor  that  share  common 
ancestors  are  also  likely  to  be  closed  to  each  other 
(spatial  closeness).  These  nice  property  is  a  direct 
consequence of the fact that we use the average commute 
time rather than the hitting time to compute similarities.
Cell  states  are  clustered  based  on  the  developmental 
distance  by  means  of  hierarchical  clustering  with  the 
single  linkage  algorthim. An  example  of  spectral 
embedding of a small sublineage in different dimensions 
is  provided  in  Figure  1.  State  diagrams (top row)  and 
dissimilarity  matrix  (bottom  row)  for  the  8,  7  and  5 
dimensional  models  are  illustrated.  The  dissimilarity 
matrix  encodes  the  degree  of  similarity  between 
precursors  in  term  of  the  terminal  cell  fates  of  their 
progeny. When the distance between two states is close 
to zero or less than a certain treshold, they can be merged 
into a single state (or division rule).
The  model  dimension  can  be  choosen  by  setting  the 
number  of  different  clusters  or  directly  by selecting  a 
particular treshold. The correct parameter is obtained by 
maximising  the  dimensionality  reduction  while 
preserving the original distribution of terminal cells. This 
is due to the balance between information compression 
and information loss.  By successively combining nodes 
we  obtain  a  set  of  reduced  rules  encoding  a  unique 
description of a lineage set in the form of a probabilistic 
final  state  machine.  The  reduced  rules  represent  core 
sublineages  that  can  be  organized  into  developmental 
modules.

2.3  Model recovery in artificial lineage datasets
Can we use the spectral  clustering method to  discover 
hidden generative models in lineage datasets? To answer 
this  question  we  test  the  alghoritm  on  artificially 
generated lineage trees.  We select  random probabilistic 
finite  state  machines  models  and  generates  up  to  30 
lineages  for  model.  The task is  to recover the original 
model  from the information provided by the generated 
lineages. 
Despite the presence of noise in the cell division patterns, 
the  clustering  algorithm correctly  classifies  in  average 
between 80-90% of the precursor cells. Depending on the 
noise  levels  or  the  model  complexity,  the  spectral 
clustering performs slightly differently.
From the  classification  we  can  compute  the  transition 
probabilities  between  states  and  thus  generate  a  final 
state machine representation of developmental programs.



Figure 2. Recovering of hidden state machine model from an artificially generated lineage dataset. Recurring pattern 
of cell division and differentiation in artificial lineage datasets are identified by means of spectral clustering analysis. As an 
example we show a pool of 30 lineages generated with a probabilistic generative model selected at random. We illustrate the 
data by showing the state transition diagram with (A) 501, (B) 18 and (C) 3 dimensions, when most of the nodes have been 
merged and discarded from the state diagram (light gray circles). The state transition diagram shows how the cell states are 
connected to each other, as described in Figure 1 for a simpler example. The original generative model has been correcctly 
extrapolated and corresponds to case C. The color code of terminally differentiated cell types is: progenitor, dark gray; cell 
type I, blue circle; cell type II, green circle, cell type III, red circle. Black arrows indicates the position of all the 30 initial 
progenitors.

3.  Discussion

The key to understand the complexity of mature cerebral 
cortex  architecture,  both in  mouse  and  in  the  primate, 
resides  in  the  developmental  process.  The  patterns  of 
intra-  and  interareal  connectivity  are  a  direct 
consequence  of  the  number,  specificity,  timing  and 
position of  the neurons generated and the connectivity 
itself  is  used  to  shape  the  functional  structure  of  the 
cortex [13]. An interesting question is how the regulatory 
system, a network composed of more than thousand of 
genes, determins cell fate diversity and leads to a defined 
cytoarchitecture.
One way to adress this question would be a systematic 
analysis of  in vivo gene expression profiles of dividing 
cells during the whole corticogenesis,  which is  notably 
difficult  to  obtain  were  a  huge  number  of  cells  is 
involved,  such  as  in  the  mouse  and  monkey  cerebral 
cortex.  We  propose  a  strategy  to  infer  this  kind  of 
information  from  a  reduced  dataset,  which  would  be 
more  easy  retrieved  experimentally.  The  proposed 
method has the advantage that requires only semi-labeled 
data (cell lineage in which only the terminal cell fates are 
labeled) and could be applied to any recorded database of 
cell  division  patterns.  Obviously  the  quality  of  the 
classification  strongly  depends  on  the  labels  of  the 
differentiated cells. A more precise  distinction between 
terminal fates means a finer classification. The model can 
be refined as more different terminal fates are discovered.
We have analyzed artificially generated datasets of cell 
lineages (for which the generative model is known) and 

showed  that  the  underlying  model  can  be  sucessfully 
recovered using spectral clustering. The alghoritm selects 
a list of states and state transitions that can be recursively 
used to specify the sequences of developmental events.
A similiar approach used to quantify lineage complexity 
as  already been  proposed [10].  In  contrast  to  previous 
work, we don't restrict ourselfs to a deterministic model, 
but  rather  use  probabilistic  final  state  machines  to 
describe  developmentl  programs.  The  advantage  is  the 
ability to recover recurring motives even in the presence 
of  noise  or  stochastic  processes  since  we  cluster  cell 
states  based  on  a  similarity measure  and  not  on  exact 
matches  of  graph  connectivities.  Moreover  the 
developmental  distance  takes  into  account  spatial 
distance  (cells  that  are  born  in  spatial  proximity  are 
assumed  to  share  the  same  environment  and  thus  are 
more likely to have the same behaviour). Although not 
implemented yet into the model, finite state machines are 
also  able  to  read  input  from  the  environment  and  be 
influenced accordingly.
It should be noted that in our approach the model is not a 
set  of  differential  equations  that  can  be  numerically 
solved, but rather a computational model, a state machine 
relating  different  cellular  configurations  to  each  other. 
Computational  models  have  the  advantage  of  being 
qualitative and thus particularly useful to test hypothesis 
without the need of huge parametric searches, as is the 
case of conventional genetically inspired algorithms.
We will apply the described reconstruction of finite state 
machine  diagram  to  cortical  lineages  from  different 
cortical areas and from different experimental conditions.



4.  Methods

4.1 Spectral clustering
We use a spectral clustering method [11,12] to efficiently 
identify  recurring motives  in  the  lineage  tree.  Spectral 
graph  theory  is  used  to  characterize  the  structural 
properties  of  undirected  graphs  using  information 
conveyed  by  the  eigenvalues  and  eigenvectors  of  the 
Laplacian pseudoinverse. The method exploits the graph 
structure  to  compute  a  dissimilarity  measure  between 
nodes of the graph.
Briefly, we consider a weighted undirected graph G with 
symmetric weights  wij and  n nodes. The elements  aij of 
the adjacency matrix A are defined as aij = wij if node i is 
connected  to  node  j and  0  otherwise.  The  Laplacian 
matrix L of the graph is defined by L = D−A, where D is 
the degree matrix and VG is the volume of the graph.
The average commute time  N is defined as the average 
number of steps a random walker, starting from node  i 
will take before entering node j for the first time, and go 
back  to  i.  This  distance  measure  has  the  interesting 
property  of  decreasing  when  the  number  of  paths 
connecting the two nodes increases and when the length 
of any path decreases.
We compute the commute time from the Moore-Penrose 
pseudoinverse of the Laplacian matrix L+ as following: 

where each node i is represented by a unit vector ei in the 
Euclidean space Rn since L+ is positive semidefinite. 
The spectral decomposition of L+ is defined as L+=UΛUT, 
where  Λ is  the  diagonal  matrix  with  the  ordered 
eigenvalues  as  elements,  and  U is  the  ordered 
orthonormal matrix with eigenvectors of  L+ as columns. 
Based on the eigenvector decomposition of L+, the nodes 
vectors ei can be mapped into a new Euclidean space that 
preserves  the  commute  time distance.  Furthermore  the 
spectral decomposition projects the node vectors on the 
principal components so that L+ can be approximated by 
considering only the m < (n− 1) first eigenvectors.

with:

Since the projection in x preserves the commute time, the 
Euclidean distance between the nodes can be interpreted 
as a similarity measure.  In order to analyze information 
from  the  labeled  instances,  we  exclusively  consider 
distances from unlabeled nodes r to labeled nodes s and 
recompute the distance matrix on this values only.  The 
new distance measure is defined by:

Binary  clustering  on  the  new  distance  measure  is 
computed by the single linkage algorithm. 
Data  analysis  and  data  visualization  were  performed 
using Matlab and the statistical open source software R.
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