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ABSTRACT
Adapting  resource  seeking  behavior  is  of 

primary  importance  in  survival.  Then,  balancing 
exploration and exploitation of discovered resources is 
at  the  core  of  adaptation  to  the  environment. The 
reinforcement learning theoretical framework has been 
elaborated to formalize such reward seeking behavior. 
Biologically plausible models based on this algorithm 
have  flourished  recently.  Among  them,  a  neural 
network  model  was  developed  to  investigate  the 
functions of the anterior cingulate cortex (ACC) and the 
dorsolateral  prefrontal  cortex  (DLPFC)  involved  in 
action valuation and action selection, respectively [1]. 
This model proposes a method to regulate dynamically 
the exploration inspired by literature on meta-learning 
in  order  to  solve  dynamically  the  exploration/ 
exploitation trade-off [2]. This model performed well in 
a  deterministic  problem solving task (PST).  Our goal 
was to demonstrate that the model is generalizable to a 
more  ecological  PST with  probabilistically  dispensed 
rewards. The model was tested with its preset learning 
rate / exploration  rate / initial  action  values  and  then 
optimized  with  search  of  the  parameters  space.  The 
initial values of model's parameters proved to be good 
however not optimal for the new task. Interestingly, the 
model's  performance  is  very  dependent  on  the  initial 
action values.
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1.  Introduction

In the context of evolution, an organism needs 
to  explore  its  environment  to  find  new  resources  in 
order  to  survive.  However,  endless  exploration  may 
lead to fewer resources than  exploiting the knowledge 
of the environment acquired through exploration. Thus, 
exploitation and exploration constitute a trade-off that 
needs to be balanced so that the organism’s behavior is 
optimal.  The  now  well  known  framework  of 
reinforcement  learning  (RL)  has  been  developed  to 
formalize the decision making process taking place in 
this  context  [3].  Furthermore,  several  studies  have 
shown  evidence  for  the  neural  substrate  of  RL, 
supporting the plausibility that RL may take place in the 

brain [4,5]. Hypotheses on the role of the noradrenaline 
projections and  its contribution to RL processes  have 
emphasized  the  regulation  of  the  exploration-
exploitation  trade-off  [6].  In  addition,  research  on 
human and  non-human  primates  have  shown activity 
related to action values and reinforcement signals in the 
anterior  cingulate  cortex  (ACC)  and  dorsolateral 
prefrontal cortex (DLPFC) under varying conditions of 
the  exploration-exploitation  trade-off  [7-10].  These 
regions may thus play a key role in the regulation of 
explore-exploit  behavior  strategy.  ACC would encode 
the reward value associated to an action – referred to as 
action  values.  In  addition,  the  literature  on  ACC 
suggests that  this  area  may extract  regularities  of  the 
environment to adjust the speed of adaptation [11]. In 
contrast,  DLPFC  may  be  involved  in  the  action 
selection. Computational models have been developed 
to further investigate the implication of different brain 
areas known to play a role in the RL process [12-14] 
but  few  have  focused,  on  the  two  areas  mentioned 
above. 

We  focus  here  on  a  model  developed  to 
analyze  electrophysiological  data  of  the  ACC  and 
DLPFC  obtained  from  behaving  monkeys  [1,10] 
(figure 1). In addition to implement these two areas, the 
model  investigated  the  presumed role  of  the  ACC in 
regulating the exploration rate. Our investigations led to 
the  implementation  of  a  meta-parameter  MV  (for 
modulatory  variable)  that  solved  the  exploration/ 
exploitation trade-off  in accordance with literature on 
meta-learning  [2].  The  meta-parameter  dynamically 
solve  the  exploration/exploitation  trade-off  by 
modulating the exploration  rate  β of  the model..  The 
model  performed  well  on  a  PST  where  rewards  are 
distributed in a deterministic fashion [1].

Here  we  wanted  to  test  whether  the  model 
could be generalized to a more ecological task (used in 
previous  monkey  experiments)  where  rewards  are 
probabilistically distributed  [15]. In this task, monkeys 
had to choose among two targets, each rewarded with a 
different probability. In terms of machine learning, this 
task  is  referred  to  as  a  2-armed  bandit  problem. 
Monkeys  were  not  systematically  given  the  same 
reward for a given target, and hence had to make their 
choice based on several feedbacks rather than just one 
as in the deterministic PST task. We first optimized the 
model on its parameters except β that was regulated by 
the meta-parameter MV. We then optimized the model 



on the exploration rate β (without MV) in order to see if 
it  could  yield  an  optimal  solution  without  auto-
regulation.

Figure  1.  Khamassi  et  al.  neural  network  model. 
Anterior cingulate cortex (ACC) sends the action values 
to the prefrontal cortex (PFC), which in turn sends its 
output to the caudate nucleus.  The caudate module is 
the first module of the cortico-striatal loop. Output of 
the loop is the premotor cortex (PMC).  Computed in 
ACC,  MV  modulates  the  selection  of  action  taking 
place in PFC. The ventral tegmental area (VTA) sends 
the reward feedback to the ACC to update the action 
value linked to the last action performed. PPC: posterior 
parietal cortex; SNr: substantia nigra pars reticula; Thal: 
thalamus.

 

We hypothesized that the model would be able 
to generalize to this new task, and that the stochastic 
nature of the task would lead the optimized model to 
employ  different  parameter  values  than  for  the 
deterministic task (i.e. a lower learning rate, a smoother 
transition between exploration and exploitation).
 
2.  Materials and Methods

2.1 Deterministic PST

The  model  described  below  has  been 
implemented for a PST developed by Quilodran et al. 
[10]  to investigate neuronal activity changes elicited by 
a shift from exploration to exploitation phases. In this 
PST  a  monkey  explored  among  four  targets  to 
determine which one is rewarded. Rewards were given 
in  a  deterministic  way in the sense that  the monkeys 
either received a fixed amount of fruit juice or nothing. 
With this task, the exploration phase continues until the 
monkey finds the first reward. Then it could repeat the 
same  action:  touching  the  last  chosen  target  for  a 
variable number of rewarded trials (exploitation). At the 
end of exploitation a Signal to Change (SC) indicated 
the beginning of a new exploration.

2.2 Reinforcement learning algorithm

The Khamassi  et al. [1] model was based on 
the  RL  framework  and  was  used  to  formalize  the 
decision making process of behaving monkeys. In this 
framework  it  is  assumed  that  the  monkey  tries   to 
maximize  the  amount  of  reward  it  gets  while 
performing  the  problem  solving  task  (PST).  The 
specific RL algorithm that was used was the Q-learning 
algorithm  which  associates  reward  value  to  actions. 
These  associations  between  action  and  reward  were 
stored in Q-values (Q(ai), where 'ai' is the action i). As 
described below, the actions corresponded to responses 
to each of four targets on a touch-screen. These action-
values were references used by the algorithm to choose 
which  action  to  perform  and  were  updated  with  the 
feedback associated with each action. The discrepancy 
between the actual and the expected reward was defined 
as  the  reward  prediction  error  (RPE)  computed  as 
following:

  RPEQ ai −r (1)

where r is the reward. It was then applied in the action-
value update formula:

  Q ai  Q a i α . RPE  (2)

 is the learning rate, modulating the impact of the last  
RPE on the new computed Q-value (  was bounded to  
the interval [0 ; 1]). Then the action choice was selected 
with probabilities computed from the action-values with 
the Boltzman softmax rule:

  P ai =
exp  β .Q ai  
∑

j

exp  β .Q a j  
(3)

where beta regulates the exploration rate. A small beta 
(close to 0) leads to a very similar probability for each 
action,  while  a  high  beta  increases  the  difference 
between the highest action value and the others. In other 
words,  the  Q-value  of  the  last  selected  action  was 
updated with the difference between the actual reward 
and  this  Q-value  (eq.  1  &  2).  Out  of  the  Q-values, 
including the one that was just updated, the Boltzman 
softmax  rule  computed  a  probability  of  selection  for 
each action (eq. 3). These probabilities are then used to 
select a final action to perform.

The  modulatory  variable  (MV)  is  a  meta-
parameter  that  regulates  β.  It  was  implemented  after 
observing that ACC neurons' activity in Quilodran PST 
increased  during  the  exploration  phase  and  sharply 
decreased at the onset of exploitation phase.

  β=
ω1

1exp ω2 . 1−MV  +ω3 

with ѡ1 = 10, ѡ2 = -6 and ѡ3 = 1. Figure 2 shows the
relation between β and MV.



MV is updated with the RPE:

  MV MV{α+ .RPE if RPE0
α - .RPE if RPE0

 (4)

with  α+ = -2,5 and  α- = 0,25. MV was bounded to the 
interval  [0  ;  1].  This  last  equation  updated  the 
modulatory variable to slowly increase the exploration 
rate when low rewards were given but sharply decrease 
the exploration rate if a high reward is given, leading to 
an exploitative behavior. The parameters  α+ and α- have 
been  chosen  so  as  to  fit  the  behavior  of  monkeys 
performing  the  deterministic  task  and  to  have  a  MV 
variable  that  reproduce  some  properties  of  ACC 
neurons  that  may modulate the exploration.  They are 
similar  to  parameters  used  to  regulate  a  “vigilance” 
level in Dehaene et al. [16]. Their level increases after 
errors and decreases after correct responses. They used 
separate learning rate for errors and correct responses so 
as  to  allow  a  non-symetric  dynamics.  In  our  case, 
monkey behavior and neural activities observed in the  
PST task show a progressive integration of errors, and a 
sharp decrease after a correct response (marking a shift 
from exploration to exploitation). Hence, the choice of 
values we used for α+ and α-.

Since the beginning of  each  new problem is 
cued by a Signal to Change (SC) and since monkeys are 
pretrained, they show a flexible change in their selected 
target after an SC. Thus, when an SC is presented, we 
reset Q-values to a default value Qinit  which constitutes 
an additional  parameter  of the model.  This parameter 
has been shown as critical to predict monkeys' choices 
in the deterministic PST task [1].

As  a  consequence  of  the  task  structure,  the 
model optimized for the task ends up with a very high 
learning  rate  (average  0.9),  and  an  MV  mechanism 
which makes the exploration rate β fluctuating between 
5 and 10 (thus being more exploratory during the search 
period  than  during  the  repetition,  although  the  beta 
value  of  5  denotes  no  pure  randomness,  consistently 
with  the  apparent  controlled  exploration  that  was 
observed in monkeys) [1].

2.3 Neural network model

The  RL  algorithm  described  above  was 
implemented  in  a  neural  network  model  using  the 
Neural Simulation Language (NSL) software. With this 
software,  the  simulated  neurons’  activity  was 
represented  as  an  average  firing  rate.  Neurons 
integrated  inputs  over  time as  leaky integrators.  NSL 
was  used  primarily  to  modularize  the  model's 
computations  so  as  to  match  the  involved  brain
structures  in  the  monkey’s  task.  Our  model  extends
previous models involving the basal ganglia loop [17].
Although  we  do  not  pretend  to  precisely  model  the 
basal ganglia here, our model involves a cortico-basal
ganglia loop which serves to select only 1 action at a
given  time,  inspired  by  more  detailed  basal  ganglia
models  [18].  Hence,  as  shown in  figure  1,  the  basal
ganglia involves an input nucleus (the caudate) – whose 
activity  is  considered  in  the literature  as representing  
competing actions for action selection [19] – an output 
nucleus (the Substantia Nigra Pars Reticulata, Snr) with 
a tonic baseline of activity which exerts an inhibition on 
the  thalamus.  Thus,  this  system performs  an  action  
selection based on desinhibition of the chosen action in 
the  thalamus  so  as  to  allow execution  of  the  
corresponding behavior [20]. In this model,  a module  
representing  the  ACC  encodes  and  updates  action 
values which are sent to another  module representing 
DLPFC  which  selects  the  action  to  perform.  The 
selection  process  is  based  on the  Boltzmann softmax 
function (equation 3) that strengthened the differences 
between the Q-values. The DLPFC module was part of 
the  cortico-striatal  loop  involved  in  the  final  action 
selection.

ACC and DLPFC are assumed to be at the core 
of the RL and task monitoring processes needed for the 
PST  tasks  used  in  our  study.  One  key  point  of  this 
model is the implementation of MV in the ACC module 
consistently  with  this  region's  presumed  role  in 
modulating  parameters  of  RL.  In  accordance  with 
hypothesized role of mesencephalic dopamine neurons 
in reinforcement learning, the neural network modeled 
dopaminergic  inputs  from  the  ventral  tegmental  area 
(VTA)  to  the  ACC  as  a  reward  prediction  error 
according to equation 1. It was formalized in the model 
with a VTA module that projected to the ACC. Then, 
the neurons encoding MV and the Q-values in the ACC 
were updated with the RPE computed with VTA input 
(equation 2 and 4).

2.4 Stochastic PST
In the present study, we tried to generalize the 

above  mentioned  model  by  testing  it  on  a  more 
probabilistically rewarded PST developed by Amiez et 
al. [15]. In this task monkeys were facing a touch screen 
and had to find which one of two targets had the best 
rewarding rate. The reward probabilities were as follow: 
target 'A' was rewarded by 1.2 ml of juice 70% of the 
trials  and  by  0.4  ml  the  rest  of  the  time;  conversely 
target 'B' was rewarded 0.4 ml in 70% of the trials and 
1.2  ml  the  last  30%  trials  (see  table  1).  A  problem 
comprised  a  search  –  or  exploratory  –  period  and  a 

Figure  2.  Evolution  of  the  exploration  rate  β as  a 
function  of  the  modulatory  variable  MV.  The  higher 
MV the lower β.



repetition – or exploitation – period. There was no sharp 
change between exploration and exploitation phases but 
trials were categorized as repetition trials a posteriori: 
the  monkey  had  to  choose  the  same  target  for  five 
consecutive  trials  followed  by  selection  of  the  same 
target for the next five trials or five of the next six trials. 

Table  1. Reward  probabilities  for  target  A and B in 
stochastic  task [15].  Monkeys must  find which target 
was more rewarded. Here, target A is the optimal target.

At  the  end  of  the  repetition  period  a  new  problem 
started. However, if after 50 trials the monkey had not 
entered the repetition phase a new problem started. The 
exact  same  behavioral  protocol  and  behavioral 
measures  were  used  to  evaluate  the  model's 
performance in the task.

2.5 Methods
 
The rewards  were  implemented  as  numerical 

values (1.2 and 0.4) and distributed in accordance with 
the PST probabilities.  The reward probabilities of the 
two  targets  were  independent,  so  the  choice  of  one 
target did not influence the reward probabilities of the 
other  target  in  subsequent  trials.  We were  principally 
interested in the behavioral results of this model i.e. the 
responses chosen by the model. Then, the performance 
of the model was defined as the mean number of search 
trials, and the ratio of trials where optimal target 'A' is 
chosen  over  the  total  number  of  trials.  These  are 
referred  to  as  the  indicators  of  performance.  In  the 
original Amiez experiment, the two monkeys found the 
optimal target in 98% and 94.5% of the problems. The 
search phase lasted in average 6.4 ± 5.6 and 5.6 ± 6.9 
trials respectively.

We first tested the model with the parameter 
set  used for the deterministic task:  = 0.9,   = 5 and 
Qinit = 0.4. In order to adapt the model to the stochastic 

task three parameters were adjusted. The learning rate 
α, the exploration rate  β and the initial Q-value Qinit. We 
explored α (from 0.1 to 1 with rate 0.1) and Qinit (from 0 
to 1.2 with rate 0.1) with a   regulated by MV. In theβ  
same way the  Q-values  are  reset  at  the  start  of  each 
problem,  MV  was  reset  to  0.5  at  the  start  of  each 
problem as defined by default in the Quilodran PST. To 
further  investigate  the  influence  of  these  three 
parameters on model's performances, we optimized the 
parameter β as well (from 0 to 100 with rate 0.5).

3. Results

A naive  test  on  the  stochastic  task  with  the 
optimal  parameters  used  with  the  deterministic  PST 
(α = 0.9,  β = 5.2, Qinit = 0.4) elicited a mean number of 
search  trials  of  13.3 ± 12.3  with  optimal-target  ratio 
87% which represents poor performances compared to 
monkeys' performances (see methods).

The  adaptation  of  the  parameters  with  an 
exploration rate β regulated by the modulatory variable 
MV was a success. Roughly, the optimal α is between 
0.4 and 0.6, and the optimal Qinit between 0.6 and 0.8 
(figure  3.).  With  α = 0.5  and  Qinit = 0.6  the  mean 
number  of  search  trial  is  5.5 ± 6.2  and  the  optimal-
target  ratio  is  99% which  is  similar  to  the  monkeys' 
performances.

The optimization including the exploration rate 
showed  that  parameters  α and  β both  had  relatively 
comparable effects across performance indicators. α and 
β described a rather stable performance space as long as 
β was not too low (β > 5) and  α was between 0.2 and 
0.9  (see  fig.  3  A  and  B).  In  the  stochastic  task,  the 
regulation of  β by MV elicits  values close to 10, the 
highest  values  possible for  β,  hence  corresponding to 
the values where β is optimal for this PST.

Further analysis showed that the two indicators 
of performance had opposite tendencies with respect to 
the initial Q-values. As shown in figure 3 C, low initial 
action  values  elicited  few  optimal-target  choices  but 
short  search  phases.  Conversely,  high  initial  action 
values induced a high percentage of optimal response 
choices but a too lengthy search period. However,  an 
average initial Q-value can balance these two effects so 
to  have  a  relatively  good  performance  with  the  two 

Figure 2. Relation between the initial Q-value Qinit and the learning rate α with exploration rate modulated by MV and 
the two indicators of performance. Lighter gray represent high performances.



indicators.  Further  analyzes  revealed  that  the  initial 
Q-value is highly correlated to the search period length 
(correlation coefficient is 0.99 with p-value < 10-14 ; 
fig. 3 C).

4. Discussion

The main findings of this study were that (1) 
the modulatory variable (MV) successfully adjusted the 
exploration rate to adapt it to the stochastic PST and (2) 
the value assigned to the Q-values at each problem start 
had a strong influence on the model performance.

Interestingly, and as predicted with the model, 
the optimal learning rate α for this task was lower than 
the  optimal  α  for  the  deterministic  PST.  In  the 
deterministic task, α was rather high (0.9 on average) 
reflecting  the  deterministic  reward  distribution. 
Whereas, in accordance with our hypothesis, optimal α 
was  lower  (between  0.4  and  0.6)  with  Amiez  PST 
because of the stochasticity of the task.

As for the optimization of β, it is remarkable 
that the more exploitative the better the performances 
(low β induced a too lengthy search period because the 
model  was  too  exploratory).  Unlike  our  initial 
hypothesis, this is in part due to the nature of the PST in 
which only 2 targets are available, decreasing the search 
space, so the optimal strategy is clearly exploitative. In 
accordance with this finding, β was adjusted with MV 
to its highest possible value (around 10). The optimized 
model  with  a  fixed  exploration  rate  beta  reached  a 
nearly optimal behavior. In contrast, the model with a 
dynamic  exploration  rate  revealed  good performance, 

although  not  optimal,  but  nevertheless  closer  to 
monkeys' performance in this task. This suggests that 
such  brain  inspired  adaptive  mechanisms  are  not 
optimal but might have been selected through evolution 
because  they  can  produce  a  good  performance  in 
different conditions.

Optimization  showed  the  importance  of  the 
reset  of  Q-values  when  a  new  problem  started.  The 
initial Q-value should be no smaller than the smallest 
possible reward (0.4),  otherwise the model persists in 
selecting  the  target  it  chose  at  the  first  trial  of  a 
problem. Hence, with low initial Q-values the strategy 
was clearly not exploratory and the optimal target was 
chosen  only  half  of  the  time.  However  we  observed 
high search phase lengths when the Q-values were reset 
to high values, especially when higher than the highest 
possible reward (1.2). Because the action values were 
high, they required more trials to converge especially 
when the learning rate was low. We can consider that 
initial Q-values between the lowest and highest reward 
possible have more chance to elicit good performance 
than  the  rest  of  the  parameter  space.  Interestingly, 
electrophysiological  data  from  the  ACC  recorded 
during the stochastic PST showed that neurons in this 
region encode the 'task value', i.e. the expected value of 
the most rewarded option (0.96 = 0.7*1.2 + 0.3 *0.4) 
[15]. The expected value indeed falls between the range 
of values to which the model should be reset for optimal 
performance.  These  data  reinforce  the  idea that  ACC 
extracts information from the environment to regulate 
the RL parameters,  but also that ACC sets the action 
values  used  as  reference  to  initiate  exploratory 

Figure 3. Averaged mean number of search trials and optimal-target ratio as function of the three parameters alpha, beta  
and  initial  Q-value.  (A) Averaged  indicators  of  performance  as  function of  alpha.  The model's  performances  were 
particularly  low for  alpha  =  1.  The  model  did  not  learn  for  the  feedback  it  received.  (B) Averaged  indicators  of 
performance as function of beta. Apart from the smallest value of beta (beta < 15), the performances were very stable and 
satisfactory.  (C) Averaged indicators of performance as function of the initial Q-value. Initial Q-values had opposite 
effects on the indicators of performance. The optimal-target ratio reaches satisfactory values for an initial Q-value of 0.6. 
The  averaged  mean  search  period  is  correlated  with  the  initial  Q-values  with  correlation  coefficient  0.99  and 
p-value < 10-14.



behavior.

5.  Conclusion

The present work focused on the adaptation of 
a  reinforcement  learning  model  to  a  probabilistically 
rewarded  task.  The  exploration  of  three  parameters 
unveiled the key role of the initial action values on the 
performance  of  the  model,  but  also  the  possible 
mechanisms  by  which  the  meta-parameters  of 
reinforcement learning could be regulated. Further work 
could investigate the task value as  a possible cue for 
action  value  resetting.  Other  perspectives  include  the 
implementation  of  this  RL  framework  in  a  more 
realistic neuronal model. Indeed, modeling connectivity 
and interaction between ACC and DLPFC could yield 
interesting  insight  on  the  mechanisms  of  RL  in  the 
prefrontal cortex.
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