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ABSTRACT

We explore the determination of the optimal stimuli ensem-

ble of a cortical network on the basis of numerical simu-

lations of a local recurrent network. The optimal stimulus

ensemble is determined with the Blahut-Arimoto algorithm

using indices of population activity (multiunit activity and

local field potentials). We show that the optimal stimu-

lus ensemble is characterized by a distribution where the

stimulus which induces a change in the dynamics of the

network is highly represented. These results suggests that

bifurcation points in the networks dynamic are highly in-

formative and we are in accordance with preliminary ob-

servation of electrophysiological recordings.
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1 Introduction

The nature of the neuronal population coding remains one

of the fundamental problems in the neurosciences. Sev-

eral alternatives have been proposed e.g. information could

be carried in spike rate, spike timing, local field potential

(LFP), spike correlations within single neurons, spike cor-

relations across neurons, or any combination of these. Nev-

ertheless, to decide between these alternatives, it is neces-

sary to know what specific stimulus features are encoded.

For example: do spike counts encode the amplitude or the

frequency of a sinusoidal stimulus. A widely used ap-

proach to neural coding is to treat the brain as a commu-

nication channel and compare the information about stim-

uli available in different candidate codes in an information

theory framework [5, 12]. Information theory introduces

mutual information which gives a comprehensive quantifi-

cation of the information contained in a neuronal popula-

tion, by evaluating the reduction of uncertainty about the

stimuli that can be obtained from the neuronal responses.

Accurate estimation the information that spike trains con-

vey about external stimuli is fraught with a major practi-

cal difficulty: information theoretic measures suffer from

a significant systematic error due to the limited amount of

stimulus-response data that can be realistically collected in

an experimental session [13]. However, the advantages of

a single-trial population analysis over traditional single-cell

studies of trial averaged responses, have been described in

[6], in particular, how information that is ambiguous at the

single-cell level can be clearly interpreted when consider-

ing the whole population.

Input-output systems are investigated by using either a pre-

defined set of inputs or inputs drawn at random from a pre-

defined probability distribution. However, both approaches

risk missing important regions in input space. If inter-

est concerns the system’s function in terms of information

transmission, then the data acquisition can be significantly

improved by using an iterative algorithm [4] which orients

the search in the input space. The optimal input ensem-

ble itself might be interpreted as representing the region in

input space that a particular system preferentially encodes.

In this paper, our system is an excitatory-inhibitory recur-

rent network model where the strength of the population

oscillation strongly depends on external inputs to network

and synaptic connections.

Our network is composed of simple of integrate-and-fire

neurons [10] with a determined synaptic kinetics. This

choice of model network permits us code the neural activ-

ity through the firing rate of a single cell and/or the whole

network and the local field potential (LFP).

The aim of the present study is to show how the interac-

tion between stimulus oscillations and neural oscillations

allow the population activity to transmit information about

the signals received by the network and to find the optimal

stimuli ensemble.

2 Model of cortical network

We used a model of cortical network composed of N =
5000 leaky integrate-and-fire neurons. This model network

represents a simplified local recurrent circuit in primary

sensory cortex and is composed of 20% of inhibitory in-

terneurons and 80% of excitatory pyramidal neurons [2].

The connections between any directed pair of cells are ran-

dom with a probability of connections equals to 0.2.

The description of each cell (pyramidal and interneuron) is

describe in [2] Eq. 1, with the values of parameters shown

in Table 1

We considered that excitatory post-synaptic currents

(EPSC) originating from a presynaptic pyramidal cell con-

sist of IAMPA and the inhibitory post-synaptic currents

(IPSC) originating from an interneuron is assumed to be

mediated by GABA-A receptors. Both AMPA and GABA-

A receptors mediated currents IAMPA = gAMPAs(Vm −



Pyramidal cell Interneuron

τm = Cm/gL 20 ms 10 ms

Cm 0.5 nF 0.2 nF

gL 0.025 µS 0.02 µS

Vth -52 mV -52 mV

Vreset -59 mV -60 mV

VL -70 mV -65 mV

Table 1: Parameters of excitatory and inhibitory neurons.

VE) with VE = 0mV and IGABA = gGABAs(Vm − VI)
with VI = −70mV , respectively. The gating variable s
(fraction of open channels) is described by two first-order

kinetics, [3]:

dx

dt
= φ(αx

∑

j

δ(t− tj)− x/τr) (1)

ds

dt
= φ(αsx(1− s)− s/τd)

where the sum is over presynaptic spike times. The scal-

ing factor φ controls the speed of synaptic kinetics without

affecting the steady state. The strength of GABAergic con-

nections was sufficient to ensure stable activity at low firing

rates in the network.

Pyramidal cell Interneuron

τAMPA
r 0.4 ms 0.2 ms

τAMPA
d 0.20 ms 1.0 ms

τGABA
r 0.25 ms 0.5 ms

τGABA
d 5.0 5.0 ms

gAMPA 0.19 nS 0.3 nS

gGABA 2.5 nS 2.25 nS

Table 2: Parameters of excitatory and inhibitory synapses.

Both populations received a noisy excitatory external input

taken to represent the activity from thalamocortical affer-

ents, with interneurons receiving stronger inputs than pyra-

midal neurons. These excitatory afferents are represented

by a Gaussian white noise with mean µ = 0.3 nA and vari-

ance σ2 = 0.018 nA. The external input were assumed to

arise from 800 external synapses of AMPA type, with con-

ductance 0.25 nS (on pyramids), 0.4 nS (on interneurons),

and the same kinetics as recurrent AMPA synapses. These

synapses are activated by random Poisson spike trains, with

a time-varying rate, given by

νsignal(t) = Asin(2πωt) (2)

The activity of the network is quantified by monitoring the

individual spike times of each neuron, the instantaneous

population firing rate (obtained counting the number of

spikes fired by neurons in a given population in a 1 ms

bin), the average membrane potential of each population,

and the average synaptic currents. In order to compare the

oscillations of the model to those recorded in cortex, the

LFP (local field potential) is computed from the network as

the sum of the absolute values of AMPA and GABA cur-

rents 〈|IA|+ |IG|〉 on pyramidal cells [2].

3 Information theory framework

Mutual information I quantifies how much information the

neural responses convey about a sensory stimuli set. Let’s

consider a time window T associated with a sensory stim-

ulus s chosen with a probability p(s) from a stimulus set

S = {s1, s2, ..., sm} during which the activity of N neu-

rons is recorded. The neuronal population response is de-

noted by the random variable R = {r1, r2, ..., rn}, where

ri is the response of neural population within the time win-

dow T . In a spike count code, the response is the number of

spikes within the time window T . In a spike timing code,

the response is a sequence of spike firing times.

The conditional probability distribution p(r|s) describes

how the system relates inputs to outputs. The amount of in-

formation I (difference between the Shannon entropy of re-

sponses H(R) and the noise entropy H(R|S)) that is con-

veyed by such a system depends on both p(r|s) and the

prior distribution of input p(s):

I(R;S) = H(R)−H(R|S) (3)

I(R;S) =
∑

s

p(s)
∑

r

p(r|s)log2
p(r|s)

q(r)
(4)

where q(r) =
∑

s p(r|s).p(s) is the marginal probability

associated to the neural response r.

Channel capacity C is a fundamental concept, introduced

by Shannon [18] in information theory, which specifies the

limit on the maximum rate at which information can be

conveyed reliably over a channel:

C = maxp(s)I(R;S). (5)

The mutual information is bounded by the channel capacity

of the system, where the maximum is determined with re-

spect to all possible input distributions p(s). In our context,

the specific stimuli distribution p∗(s) that reaches this in-

formation capacity corresponds to an optimal stimulus en-

semble and is denoted popt(s).

Evaluation of channel capacity C is a standard maximiza-

tion problem of a convex function which can be solved us-

ing the method of Lagrange multipliers and gives the opti-

mum input distribution in an iterative way, this algorithm

was established by Blahut and Arimoto [16, 17]. Given a

conditional response distribution p(r|s), the algorithm al-

lows to determine an optimal stimulus ensemble popt(s).
At first step n = 1, we construct an initial stimulus ensem-

ble pn(s) > 0, for example a uniform distribution. Then,

we iterate the equation:

pn+1(s) = ZPn(s)e
∑

r
pn(r|s)log2(

pn(r|s)
qn(r)

)

qn(r) =
∑

s

pn(r|s)pn(s) (6)
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Figure 1: Example of Blahut-Arimoto algorithm application: off-line evaluation on experimental data from somatosensorial

cortex of rat. Data corresponds to a single unit obtained from multi-unit activity with spike sorting. The set of initial stimuli are

s = {D2, P1, D3, P2, D4, P3, D5} with a homogeneous probability p(s) ≈ 0.15, that is represented by blue line in (a). The

stimuli are tactile and are applied in four of digits: D2, D3, D4, D5 and three localizations of paw: P1, P2, P3, [9]. The set of

response (spike count) r = {0, 1, 2, 3, 4, 5, 6} with a probability shown in (b). the conditional probability is plotted in (c). We

used the algorithm, Eq. 6, in order to find the optimal stimuli, red line in (a).

where Z is a normalization function determined at each it-

eration Z = 1∑
s
pn+1(s)

. The exponent term corresponds to

the Kullback-Leibler distance between pn(r|s) and qn(r)
and will diverge if the two distributions strongly differ. As

a result, the Blahut-Arimoto algorithm increases the prob-

ability p(s) of an informative stimulus s and decreases the

probability p(s) of an uninformative stimulus s whose con-

ditional response distribution p(r|s) is similar to qn(r). For

n → ∞, the algorithm converges to an optimal stimulus

ensemble, pn(s) → popt(s).

As example of application of Blahut-Arimoto algorithm on

physiological data from somatosensorial (S1) cortex, ob-

tained from [9], the Fig 1 shows the procedure of algorithm

on a single cell. This evaluation is off-line, that means, the

data is from [9], then a spike sorting is carried out in order

to look for single units and calculated their receptor fields.

We chose a single neuron, from nine obtained, with a re-

ceptor field in s = P1. In Fig 1 (a) the initial probability

of stimuli is plotted: blue line. In Fig. 1 (b-c) we plot the

necessary probabilities of Eq. 6, p(r) and p(r|s), in this ex-

ample for a our single unit, this values are replaced in the

iterative Eq. 6. In Fig 1 (a) , we found out the optimal stim-

uli for this neuron that is represented for red line in Fig. 1

(a), where we can see the stimuli are different from the re-

ceptor field. That is, the neuron conveys more information

quantity for stimuli s = D3, P2 than for its receptor field.

4 Simulations results

We used the BRIAN simulator [15] to simulate the cortical

network in order to apply the Blahut-Arimoto algorithm. In

this paper, we only present results of spike count and not of

measures of LFP.

The Fig.2 describes the dynamics of network for three dif-

ferent stimulus, where each stimulus is a poissonian spike

train whose rates are Fig.2(a) A = 2400, (b) A = 5000 Hz

and (c) A = 8000 Hz. The figure shows the raster plots for

each stimulus, where we can observe that the synchroniza-

tion occurs when there is a balance between excitation and

inhibition synapses and the external input (that is a repre-

sented by excitatory synapses coming from the thalamus),

that means when the parameter A > 3000 Hz, where clus-

ters of synchronization begins to appear. Every stimulus

has two control parameters: amplitude of signal A and the

modulated frequency ω, Eq.2. The Fig 3 shows the tunning

curve. In this figure we can observe that dynamic of the

network is controlled by the amplitude of signal A and not

by ω, figure not shown.

The optimization algorithm of Blahut-Arimoto [4, 7] is ap-

plied to network model of [2] Eq. 1, where the duration of

stimulus is 500 ms and it is applied after 500 ms of begin

of simulation. We did 1000 trials, each stimulus is repeated

100 times in random way. A list of spike count for ev-

ery stimulus is saved. With this list of response, we used

the optimization algorithm. During the iterative procedure

each step corresponds to the presentation of a specific stim-

uli distribution p and for this collection of stimuli the neural

network gives a set of neural responses with a probability

distribution q. We can obtain an optimal stimuli ensemble

Sopt, when the stimuli distribution popt generates neural

responses with a distribution q where the distance between

this two probability distributions D(P ||Q) is minimal, i.e.

when the mutual information between the stimuli random

variable Sopt and the neural responses R is maximal. Fig 4

shows the optimal distribution obtained by Blahut-Arimoto

algorithm, Eq. 6, the initial distribution is homogeneous

with si, i = 1, ..., 10, there are ten stimuli and every one is

repeated one hundred times. In Fig.4 initial (homogeneous)

and optimal distribution are plotted in black and red curves

respectively. In this plot the response analyzed is the spike

rate of network.
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(a) A = 2400 Hz
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(b) A = 5000 Hz.
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(c) A = 8000 Hz.

Figure 2: Dynamics of network receiving three different stimuli ω = 8 Hz. The parameter A is described in the Eq.2.
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Figure 3: Tunning curve of network for parameter A of

stimulus with ω = 8 Hz.

5 Conclusion

We can observe that the optimal stimulus corresponds to

the stimulus where the network dynamic changes slowly.

Considering the tunning curve, this optimal stimulus is in

the range of stimulus where the response begins to change

and where clusters ( synchronized neuron’s groups) begin

to appear.

The Blahut-Arimoto algorithm has been tested in a single

neuron model [4] and in vivo [7]. We applied this algorithm

in a neural network model, but the proposed method could

therefore serve to find the ensemble of stimuli that a given

neural system naturally expects.

In order to investigate if, and in which way, a given sen-

sory system is optimized with respect to its environment,

we propose to test this procedure like a systematic online

search for the ensemble of stimuli that are encoded best, us-

ing the live responses of receptor neurons as a guide. The

attributes of the determined optimal stimulus ensemble can

then be compared to the stimuli of the organism’s natural

environment [6].

0 50 100 150 200 250 300 350 400
r

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

P
(r
)

(a) Probability of response: P (r)

0 2000 4000 6000 8000 10000 12000 14000 16000
Frequency of Stimulus (Hz)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
ro

b
a
b
ili

ty
 D

is
tr

ib
u
ti

o
n

(b) Probability of stimuli: P (s)

Figure 4: Application of Blahut-Arimoto algorithm on a

neural network. (a) The different responses with their prob-

ability. (b) The initial (black curve) and optimal (red curve)

probability distribution of stimuli.
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