
HAL Id: hal-00553435
https://hal.science/hal-00553435

Submitted on 16 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A three-layered cortical network encodes identity and
abstract categorical structure of behavioral sequences as

in the primate lateral prefrontal cortex
Xavier Hinaut, Peter Dominey

To cite this version:
Xavier Hinaut, Peter Dominey. A three-layered cortical network encodes identity and abstract cat-
egorical structure of behavioral sequences as in the primate lateral prefrontal cortex. Cinquième
conférence plénière française de Neurosciences Computationnelles, ”Neurocomp’10”, Aug 2010, Lyon,
France. �hal-00553435�

https://hal.science/hal-00553435
https://hal.archives-ouvertes.fr


 
 
 

A Three-Layered Cortical Network Encodes Identity and Abstract Categorical 
Structure of Behavioral Sequences as in the Primate Lateral Prefrontal Cortex 

 
 

Xavier Hinaut, Peter Ford Dominey 
Stem Cell and Brain Research Institute, INSERM U846 

18 ave Doyen Jean Lepine, 69675 Bron Cedex 
France 

{xavier.hinaut,peter.dominey}@inserm.fr 
 
 
 

ABSTRACT 
Categorical encoding is crucial for mastering large 
bodies of related sensory experiences.  Recent single-
unit recording studies in the macaque prefrontal cortex 
have demonstrated two characteristic forms of neural 
encoding of the sequential structure of the animal’s 
behaviour.  One population of neurons encodes the 
specific behavioural sequences.  A second population of 
neurons encodes the sequence category (e.g. ABAB, 
AABB or AAAA) and does not differentiate sequences 
within the category [1].  Interestingly these neurons are 
intermingled in the lateral prefrontal cortex, and not 
topographically segregated.  Here we report on a neural 
network simulation study that reproduces and explains 
these results.  We simulate a cortical circuit as three 5x5 
layers (infra-granular, granular, and supra-granular) of 
leaky integrator neurons with a sigmoidal output 
function, and we examine 103 such circuits running in 
parallel.  The model is presented with 11 4-element 
sequences following Shima et al.  We isolated one 
subpopulation of neurons each of whose activity 
predicts individual sequences, and a second population 
that predicts category independent of the specific 
sequence.  We argue that a richly interconnected 
cortical circuit is capable of internally generating a 
neural representation of category membership, thus 
significantly extending the scope of recurrent network 
computation. 
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1.  Introduction 
 

In 1989 the first report of prefrontal neuronal 
activity encoding the sequential properties of 
sensorimotor sequences was reported by Barone and 
Joseph [2].  They demonstrated that after the macaque 
had been shown a spatial sequence of three illuminated 
push-buttons, and was preparing to reproduce the 
sequence, neurons in the prefrontal cortex encoded both 
the spatial location of the targets, and most strikingly, 
their order or rank in the sequence.  Thus, the prefrontal 
neural population was considered to encode the entire 

action plan, necessary for the animal to reproduce the 
visualized sequence.  Since then a number of studies 
have been performed, looking more closely at the 
sequence specific encoding of visuo-spatial behavioral 
components of sensorimotor sequences in the prefrontal 
cortex [e.g.  3-4]. 

 
Figure 1.  Normalized LPFC neuron activity for three 
populations of neurons that are selectively active for the 
three categories of sequences - Paired [1-4], Alternate 
[5-8] and repeat [9-11] (from [1]). 

 
Recently, Shima and colleagues [1]  have 

considered that when the subject is required to encode a 
large number of sensorimotor sequences, the increasing 
memory load would  potentially require the animal to 
adopt a categorization strategy, so the similar sequences 
would be encoded as members of the same category.  
They employed a sequence reproduction task, where 
sequences were made up of the motor actions push, pull 
and turn, using a manipulable lever.  The animal was 
required to be able to observe and reproduce 11 
sequences from three categories:  AABB, ABAB and 
AAAA, where A and B were each systematically 
replaced by one of the three elements push, pull and 
turn.  4 sequences were of the category AABB (e.g. 
Turn, Turn, Push, Push), 4 of the category ABAB and 
three of the category AAAA.  In the experiment, the 
animal was presented one of these sequences under 
visual guidance 5 times, and then was required to 
reproduce the sequence from memory. This was 
repeated for each of the 11 sequences. Single unit 
recordings were performed in the lateral prefrontal 
cortex during the delay preceding the first reproduction 
of the sequence from memory. 



Shima et al [1] found a population of neurons that 
had the traditional coding of spatio-temporal 
characteristics of individual sequences.  Most 
interestingly, they found a second population of neurons 
that were active for one of the three categories, without 
distinguishing the individual sequences within that 
category (illustrated in Figure 1).  They observed that 
this categorical information was not directly present in 
the visual input to the animal.  Instead, the brain had 
somehow extracted the appropriate regularities in order 
to recognize the repetitive structure that defined the 
three categories of sequences. 

They then raised the crucial question: what are the 
underlying neuronal processes that would allow these 
PFC neurons to extract the required properties to form 
these categorical representations?  They propose that 
the answer to this question will likely be found through 
the development of neural network models of the PFC 
applied to this problem. 

We have previously developed a neural network 
model of prefrontal cortex [5,6] with the objective of 
explaining the electrophysiological findings of the 
identity and sequential order of sequence elements as 
initially observed by Barone and Joseph [2].  The 
principal characteristics of this model were (1) PFC was 
modeled as two 2-D layers of leaky integrator sigmoidal 
average firing rate neurons, that were connected by 
recurrent connections that were randomly selected over 
the interval [-0.45, 0.55].  This mixture of excitatory 
and inhibitory connections yielded a dynamical system 
that was sensitive both to the spatial location of targets 
on the input array, and the previous sequential context.  
(2) Importantly, the recurrent connections were not 
subject to modification by learning, instead, learning 
was used to link these dynamic patterns of activity with 
the required output states.  This was the first expression 
of the concept that came to be known as the liquid state 
machine [7], and the subsequent echo state machine [8] 
and the concept of reservoir computing [9]. 

Indeed, this dynamical system thus was able to 
reproduce the behaviour and neurophysiology [5] 
reported in Barone and Jospeph [2]. It also displayed a 
rich capability to encode and reproduce the serial order 
and temporal structure of behavioral sequences in a 
variety of conditions [10-12].  When exposed to 
sequences with abstract structure such as ABCBAC the 
model failed to characterize this repetitive structure, 
leading us to propose an additional working memory 
mechanism which allowed such sequences to be 
recoded as an abstract structure {x x x n-2 n-4 n-3} 
[13]. 

In the current research our goal is to re-examine the 
capabilities of a recurrent network to perform 
categorization as observed by Shima et al [1]. 
 
2.  Recurrent Network Model 
 

Primate cortex is characterized by its laminar 
structure, and the connectivity patterns within and 
between layers [14].  We thus model cortex as a three 
layered structure of leaky integrator, sigmoid output, 
average firing rate neurons, illustrated in Figure 2.  

Each layer (supra-granular, granular and infra-granular) 
is topographically organized as a 5x5 sheet.  

Based on the structure of divergence of receptive 
fields across layers, the connections between infra-
granular and granular layers are topographic (point to 
point), while connections between granular and supra-
granular (WGS), and between supra-granular and infra-
granular (WSI)  are divergent.  We studied two 
mechanisms for implementing this divergence.  The 
“matrix” method used a connection matrix that defined 
unique connections from each neuron in the source 
layer to all neurons in the target layer.  In this method, 
connections between granular and supra-granular, and 
between supra-granular and infra-granular are randomly 
selected from the interval [-0.5, +0.5] with a uniform 
distribution, and topographic connections set to zero.   

 

 
Figure 2.  Three-layered cortical model.  G, S and I are 
Granular, Supragranular and Infragranular respectively. 
Each layer corresponds to a 5x5 matrix of leaky 
integrator neurons, with the indicated connectivity.  The 
“:=” notation is a compact representation where the 
right hand side is a differential equation solved by the 
Euler method, with a 5 ms time step and 100 ms time 
constant.  “*” represents matrix multiplication or 
convolution.  The left hand side corresponds to the 
membrane potential.  The resulting value is passed 
through a sigmoid function to generate the output 
average firing rate.  
 

In the second “mask” connectivity scheme that we 
studied, the projection from each neuron in the source 
layer to the target layer was defined by a single 
recurring pattern that was convolved with the source 
neuron activity and projected to the target layer.  Again, 
values for the mask defining connections between 
granular and supra-granular, and between supra-
granular and infra-granular are randomly selected from 
the interval [-0.5, +0.5] with a uniform distribution, and 
topographic connections set to zero.  Connections 
between infra-granular and granular are topographic 
(point to point).  Results will be presented for both the 
matrix and the mask connectivity models. 

Input sequences are presented to the granular layer, 
in the form of activation of a neuron in the granular 
layer for 1 second (200 simulation time steps, i.e. STS), 
followed by a 1 second pause, for each of the four 
sequence elements.  One second (200 STS) after the 
final target presentation, we consider that the network is 
in the same state as the primates in Shima [1] prior to 
execution of the sequence.  That is, the sequence has 
been presented, and the primate is preparing to execute.  



We sample the neurons from the three cortical layers at 
this time, and analyse their ability to identify and 
categorize the sequences. 
 
3.  Model Performance & Results 
We now consider the performance of the model in 
recognizing individual sequences, and in categorizing 
the sequences.  Simulation results are presented for 
1000 instances of the matrix and mask models.  Each 
instance has a unique set of randomly assigned 
connections as described above. 
 
3.1 Sequence Recognition 
 

For each of the 11 sequences, after the sequence has 
been presented the activity of the 25 neurons in each of 
the three cortical layers is recorded.  We then calculate 
the sequence discrimination capability of each of the 
three layers. 

 
Figure 3.  Sequence recognition performance for 1000 
model simulations with Matrix and Mask connectivity.  
Log-linear plot. 
 

For a given layer, we collect the 11 activity vectors 
generated by each of the sequences.  We then calculate 
the vector cosine of the angle between each pair of 
vectors in this 11-D space.  A cosine of 0 indicates that 
the vectors are orthogonal, and this corresponds to a 
high discrimination between the vectors.  A cosine of 1 
indicates that the vectors are parallel, and corresponds 
to non-discrimination. 

 
Max(cos) < 0.999 Matrix Mask 

Granular 100 14 
Supragranular 106 15 

Infra 111 15 
Max(cos) < 0.99   

Granular 31 5 
Supragranular 29 5 

Infra 33 5 
Max(cos) < 0.95   

Granular 10 0 
Supragranular 4 1 

Infra 3 2 
Table 1:  Performance details for 1000 mask vs. matrix 
networks discriminating 11 sequences. Values indicate 

quantity of models per 1000 with corresponding 
discrimination. 

 
Figure 3 illustrates the performance for 1000 

simulations of the model, with performance decreasing 
along the X-axis from left to right.  We see that a small 
but significant number of models are capable of 
discriminating the 11 sequences with a maximum 
cosine of <0.99.  Indeed we can consider that these 
relatively small networks (3x25 = 75 neurons) can be 
thought of as running in parallel, thus their 
discrimination capabilities can be pooled into a larger 
set of 75K neurons with an additive discrimination 
capability. 

 
3.2 Sequence Categorization 
 

Shima et al. recorded individual LPFC neurons and 
characterized their responses to sequences within the 
three different categories.  In order to compare our 
simulated neurons with theirs, we sampled all of the 
neurons in the three layers of a run of the 1000 cortical 
circuits, for a total of 75,000 neurons.  We developed a 
heuristic to isolate neurons that had a strong response to 
sequences within a category, and weak response to 
sequences in the other two categories. 
 
       Paired                  Alternate                     Repeat 

 
Figure 4.  Neural responses to the 11 sequences for the matrix 
model.  Linear version of Fig 1.  Example simulated neurons 
that each respond preferentially to one of the three sequence 
categories. 
 

Matrix Paired Alternate Repeat Total 
Supra 17 34 60 111 
Gran 14 41 39 94 
Infra 22 42 64 128 

Total 53 117 163 333 
Mask     

Supra 12 9 26 47 
Gran 9 13 18 40 
Infra 17 14 20 51 

Total 38 36 64 138 
Table 2:  Performance details for the 1000 mask vs matrix 
models categorizing the 11 Sequences as Paired, Alternate 
and Repeat.  Number of neurons per model type and layer that 
discriminate the given category.  
 



Table 2 illustrates the number of neurons that 
displayed the desired sequence categorization 
characteristics.  These neurons were identified by their 
characteristic firing rate during the delay after the 
sequence presentation such that min(X) > max(Y) >= 
max(Z), where X, Y and Z are mapped onto the three 
categories paired, alternate and repeat.  Min(X) refers to 
the minimum firing rate in response for all of the 
sequences in that category.  Thus, we isolate neurons 
whose minimal response to the three or 4 sequences in 
one category are superior to that same neuron’s 
maximal response to any of the neurons in the 
remaining two categories.  It can be seen that according 
to this criteria, a total of 333 neurons in the Matrix 
model and 138 neurons in the mask model perform the 
sequence categorization. 

Figure 4 illustrates this neural activity for an 
illustrative set of neurons that are each selectively 
active for one of the three categories.  This is a “linear” 
version of Figure 1 above, from Shima et al. [1].  
Neural activity in green (left) illustrates selectivity for 
the paired (AABB) sequences, blue (middle) for the 
alternate (ABAB) and red (right) for the repeat (AAAA) 
sequences.  To further examine this category selective 
activity, we plotted the neural activity for three neurons 
that were identified to be selective to one of the three 
respective categories.  This neural activity is illustrated 
in Figure 5. 

The “paired” category neuron demonstrates a 
sustained activation at the end of all paired sequences 
(sequences on the line marked with “*”).  During the 
same time period, this neuron displays no activation for 
the “alternate” and “repeat” sequences.  The same form 
of category specific activity is seen for the “alternate” 
and “repeat” category neurons displayed in Fig 5. 
 

 
3.3 Effects of Noise 
 

Biological nervous systems are typically not quiescent 
in the absence of external stimuli, and we thus studied 
the effects of noise injected into the membrane potential 

of each neuron of the three layers of the network on 
discrimination and categorization in two cases.  We 
examined the effects of noise with a mean value of 0, 
uniformly distributed over the interval [-1, 1], with 
gains of 5% and 25%.   

For both discrimination and categorization, as the gain 
on the noise increases, the effect of noise begins to 
dominate the effects of the signal.  Indeed, in the limit 
case, this can give false positive performance both for 
discrimination and categorization.  That is, the system 
responds to distinct patterns of noise, rather than to the 
input sequences.   

To control for this, we generated 100 distinct 
networks (i.e. distinct random connectivity patterns), 
and presented the 11 sequences over 10 repetitions, and 
then analysed the neural responses over these 10 
repetitions.   

For the 25% neutral noise condition, 51 neurons were 
identified – using a similar heuristic as the one used for 
Figure 4 – that categorized the sequences across the 100 
simulations, each having 10 repetitions.  One of these 
neurons displayed the same category response over two 
repetitions of the 11 sequences.  Importantly, only one 
of these neurons mistakenly responded to two different 
categories for two repetitions of the 11 sequences.  For 
the 5% noise condition, 24 neurons had category-
specific responses, and none responded to more than 
one category.  Interestingly, we make the paradoxical 
observation that with increasing noise, more neurons 
display category-specific responses. 

Thus, the addition of noise increases the variability of 
the responses of these neurons.  However, in the vast 
majority of our observations (100% in the 5% noise 
condition), category-related neurons do not respond to 
multiple categories.  That is, if a given category-related 
neuron is active, it identifies the category of the input 
sequence, even in the presence of noise.  Thus, a 
population of such neurons, with responses distributed 
over the three categories, would allow a system to 
accurately categorize input sequences in the presence of 
noise. 
 
 

Figure  5.  Responses of three neurons with category specific activity.  Three sets of lines correspond to activity of three 
distinct neurons.  Each separate line corresponds to responses to sequences from one of the three categories  (P, A, R).  For 
each of the three displayed neurons, its preferred category responses are on the line with “*”.  Each separate profile on a line 
corresponds to the neural activity during the presentation of the sequence and the following delay.  Lowest right corner, 
timescale of sequence element presentation (high signal indicates sequence element being presented). 



4.  Discussion 
 

Neocortex provides an adaptive capability for 
controlling the “reptilian” basal ganglia and brainstem 
structures.  Cortex cannot anticipate all possible 
configurations of the perceptual world that can face the 
organism.  Instead, it must embody general coding 
strategies that can in principal become sensitive to any 
significant regularities that can arise in the perceptual 
surfaces.  In this context it has been demonstrated 
exhaustively that recurrent networks of dynamic 
neuron-like computing elements demonstrate sensitivity 
to arbitrary sequential structure in the input [5-9]. 

Interestingly these previous studies have not 
demonstrated the capability of such recurrent systems to 
perform the categorical representation of sequential 
structure as observed in the primate lateral PFC by 
Shima et al. and in our 3-layered cortical network 
simulation.  The exceptions, in which abstract 
categorical structure can be represented, have required 
additional representational structure such as working 
memory in order to detect the abstract structure [e.g. 13, 
16]. It is thus of particular interest to determine if in a 
more general layered architecture, the required 
properties are inherent without a requirement for 
specific task-related coding mechanisms for extracting 
categorical structure.  As noted by Shima [1], such 
categorical information is not directly present in the 
input, and cannot be directly anticipated, but rather 
must be generated as a form of meta-representation 
within the cortex.   

Such a representational schema would progress 
from action to action sequence to action sequence 
category.  In principal, the possible categories are 
arbitrary and uncountable – that is, in addition to the 
paired, alternate and repeat categories, one could 
consider the categories such paired triplets and 
alternating triplets (e.g. AAABBB, ABABAB).  Thus, 
the space of possible categories is unbounded, and the 
cortical network must be of such a nature as to 
encompass this unbounded possibility. 

In this context, recurrent connections provide this 
unbounded re-combinatorial capability, so that a 
potentially unbounded space of possible categorical 
structure is present within the system.  The current 
research demonstrates for the first time how such 
categorical information can be encoded in the activity 
of single neurons within a structured recurrent neural 
network. 

It is highly likely that the laminar organization of 
cortex is not arbitrary, but rather represents an evolution 
of encoding capacity.  Indeed, comparative 
neuroanatomy confirms the progressive laminar 
complexity of cortex in primate evolution [15].  We 
thus hypothesize that the current capability to 
demonstrate categorical encoding in single units within 
a three-layered cortical network is in part the result of 
the use of a multiple-layered recurrent system.  Future 
research should make direct comparisons between 
architectures with different laminar structure including 
simpler 2- and 1-layered systems, as well as more 
complex multiple layered systems.  Independent of 
these future results, the current research demonstrates 

that within an anatomically motivated three-layered 
recurrent network, distinct subsets of neurons encode 
the identity of distinct behavioral sequences, while a 
separate and distinct population of neurons within the 
same network encodes the categorical structure of these 
same sequences independent of their identity.  This dual 
encoding of sequential and abstract structure within the 
same network helps to provide insight on the underlying 
neurophysiological mechanisms as suggested by Tanji 
et al. [17]. 

In this context, a question concerns the ability of the 
primate and our model to generalize in this task.  
Further experiments with primates would permit one to 
demonstrate a possible generalization of sequence 
categorization to sequences that have not been 
presented, but nevertheless belong to one of the 
categories used by Shima et al.  For example, sequences 
“Push-Push-Pull-Pull” and “Pull-Pull-Push-Push” 
which are in the category “paired” have not been used 
by Shima et al.  It would be interesting to determine if 
the neurons which were active for the four sequences of 
category “paired” would also be firing actively for 
theses two sequences: it would show a generalization of 
categorization. Generalization with other “inputs” 
(other movements for instance) could also be tested, 
thus showing an even higher level of generalization. 
Further simulations would be then required to 
determine if our model could also be capable of this 
hypothetic generalization. 

Simulations with noise demonstrate that neurons 
within the model continue to retain category-specific 
responses, but with increased variability.  Interestingly, 
up to a limit, increasing noise yields an increase in the 
number of neurons with category-specific responses.  
This appears to correspond to situation of stochastic 
resonance, when increases in levels of random noise 
cause an increase, rather than a decrease, in a metric of 
the quality of signal transmission or detection 
performance [18].   It remains to explore whether our 
current model can serve as a demonstration that 
perceptual discrimination and categorization may rely 
on biological noise. 
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