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ABSTRACT
Eyes rarely land exactly on target. Here we investigated 
to which extent sensory (visual) or motor (execution) 
noise in neural signals determines the imprecision of 
saccades. We compared the variability of saccades 
recorded in human subjects to the predictions of a 
stochastic feedback optimal model of the oculomotor 
system. From the spatiotemporal development of the 
variability along the trajectories,  we derived plausible 
estimates of the noise in sensory and motor signals.
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1.  Introduction

Noise in motor signals has been proposed as the main 
determinant of movement kinematics [1].  Motor 
commands would minimize the impact of this motor 
noise on the terminal positional variability. Moreover, 
optimal estimation models have suggested that noise in 
neural signals explains how sensory feedback is taken 
into account to control and refine movement [2,3,4]. 
Thus, deriving accurate estimates of the noise in 
sensory and motor signals is fundamental in assessing 
the validity of these models.
Recently, estimates of the sensory or motor noise 
explaining terminal variability of the eye position have 
been proposed [5], on the basis of the Harris & Wolpert 
model [1]. Motor noise was estimated to contribute to 
about 40% of the terminal saccadic variability. 
However, these studies have hypothesized a simple 
'ballistic' feedforward control, whereas several lines of 
evidence show that saccades are generated in a closed 
loop. For instance, a pharmacologically slowed or 
wrongly initiated saccade eventually reaches its goal 
[6,7].  Furthermore, many anatomical pathways 
potentially subtending this feedback control have been 
discovered from the brain stem to the higher-order 
oculomotor control sites [8,9,10].
Since feedback is bound to reduce the impact of motor 
noise on endpoint variability, previous studies 
discarding it may have incorrectly estimated the impact 
of motor vs. sensory noise on saccadic precision.

Here we fitted a stochastic feedback optimal model to 
the saccades recorded in human subjects, in order to 
derive better estimates of neural noise in sensory and 
motor signals.   

2.  Body of Paper

MATERIAL AND METHODS

Subjects
Eight human subjects with normal or corrected-to-
normal vision and no history of neurological or 
ophthalmological disorder participated to the study. All 
participants except the two authors were naive to the 
purpose of the study.

Setup
Subjects were seated in a dark room in front of a back-
projection screen, the head immobilized by a bite bar 
with dental impression. Viewing distance was 50 cm. 
Stimuli were displayed with a 120 Hz video projector. 
Eye movements were recorded at 250 Hz using a head-
mounted infrared eye tracking system. The task was 
completed in monocular vision, the left eye covered 
with a black patch.

Task
We analyzed center-out saccades to visual targets. Each 
trial started with the presentation of a fixation point 
displayed in front of the subject's right eye.
When ready, the subjects pressed a key that triggered 
the eye tracker drift correction. The a target (a filled 
green square, 0.61°x0.61°) was presented, at 6, 12 18 or 
24° horizontally. The extinction of the fixation point 
served as the go signal to initiate a saccade. In one third 
of the trials, the target was extinguished during the 
saccade; as this manipulation did not significantly affect 
variability, these trials were pooled with the others.
Trials were aborted if an eye blink or an anticipation 
was detected. 
The experiment comprised 96 saccades of each 
amplitude, thus at least 384 trials. They were completed 
in two separate sessions; the longest recorded session 
(including aborted trials) lasted 215 trials.



Data analysis

The eye position trace was digitally differentiated, then 
the eye velocity trace was segmented using start and 
stop thresholds fixed at 10% of the peak velocity. 
Fatigue effects were compensated by fitting a quadratic 
equation to the peak velocity across each experimental 
session and rescaling the movement time accordingly.
Saccade endpoints were centered then nasal and 
temporal saccades of same amplitude were pooled. A 
Hotelling T2 test was used to exclude endpoints at a 
threshold of 10-4.  This procedure led to the rejection of 
2.8% of the data.
Then saccades trajectories were uniformly sampled at 
nine points either in space or time and the covariance of 
these sampled positions was computed. 

Model

We modeled the eye as third order linear system with 
time constants 224, 13 and 1 ms [11, 1, 2].  Pairs of 
extraocular muscles were modeled as torque generators; 
the action of oblique muscles was not taken into 
account. Multiplicative Gaussian noise of SD σM was 
hypothesized in the motor signals. Additive Gaussian 
noise of SD σΑ was added to the motor commands to 
take into account the effect of extraocular muscle co-
contraction. The muscle excitation signal was fed back 
to the controller with a delay of 20 ms, approximating 
the time delay of the loop linking the superior colliculus 
to the oculomotor nuclei [10]. Multiplicative noise (SD: 
σM) was also added to this efference copy.
An approximation of the optimal feedback controller 
for the eye was obtained using the procedure described 
in Todorov [12]. Basically this method starts by 
computing the optimal controller for a plant with only 
additive noise, then iterates to converge towards an 
approximation of the optimal controller in presence of 
both additive and signal-dependent noise. We refer the 
reader to ref. 12 for a detailed description.  For each 
amplitude we determined the optimal control and 
estimation laws. Saccade amplitudes and durations used 
in the optimization procedure were set to the 
corresponding average in our experimental data.  Then 
400 trials were simulated according to the following 
Monte-Carlo procedure. For an actual target at T°, the 
planned target was randomly chosen in a Gaussian 
distribution centered on the average experimental 
endpoint for this target with scale parameter σV. This 
variability was hypothesized to include both the 
localization and visuomotor transformation noise. The 
saccade was then simulated with a time step of 1 ms, 
adding noise to the sensory and motor signals. The 
positional data was undersampled at 250 Hz (with 
random offset to simulation start time) and then 
analyzed using the same methods as for our 
experimental data. The quality of the fit was then 
assessed by computing the overall quadratic error to the 
subject average at mid-point and the end of the 
trajectories in both space and time. As the off-diagonal 
component (covariance between horizontal and vertical) 
was negligible, we only analyzed the variance along the 
two cardinal axes. 
This procedure was repeated for various values of the 
free parameters, in order to compute the error landscape 

and appreciate the impact of all parameters. A precise 
value of the global minimum was found by the Nelder-
Mead simplex method as implemented in Matlab 
(fminsearch). This was first done for variance 
orthogonal to the trajectory, in order to derive the 
estimate of the additive noise component σΑ. Then this 
parameter was fixed and the procedure repeated for the 
horizontal variance.

RESULTS

Experimental positional variance in time and space

The endpoints of saccades of the four recorded 
amplitudes are displayed on Figure 1-A and B for two 
representative subjects. The anisotropy of the endpoint 
distribution is moderate, and variance is not 
systematically larger on the horizontal. Note that the 
effect of multiplicative motor noise should principally 
be visible along the axis of movement.

Figure 1. Endpoints of saccades for two representative 
subjects.

The development of the saccadic positional variability 
is shown on Figure 2 at nine points uniformly 
distributed along the trajectory in time and space. The 
results for the same two subjects are displayed Figure 2-
A and B. It is clear from these plots that variance does 
not increase linearly with time as in a feedforward 
control system: for saccades over 6°, detrimental effects 
of motor noise on the initial kinematics of the saccade 
are mitigated later on along the movement. The 
orthogonal variance tends to grow more linearly, but the 
population average also shows a saturation (see Figure 
4).



Figure 2. Variance along the 
trajectory for two 

representative subjects. A, C: 
longitudinal variance as a 

function of position along the 
trajectory in space (A) or time 
(C). B, D: Same for variance 
orthogonal to the movement. 

Solid: subject 1, dashed: 
subject 2

Model trajectories

The trajectories generated 
b y t h e m o d e l a r e 
represented on Figure 3-
AB for two of the four 
saccadic amplitudes we 
recorded. Noise parameters 
were set to the best fitting 
values (see below). The 
feedback cont ro l law 
produces saccades with 
correct kinematics; for a 
comparison the saccades of 
a human subject are shown 
on Figure 3-CD.
 

Figure 3. Displacement (A) and velocity (B) of the model 
trajectories. Saccades of subject 1 are shown in C, D for 

comparison.



Figure 4. Development of the positional variability in 
time and space: A-D: Average experimental values for 8 

subjects (measurement variability removed). E-H:  
Model results. Shading identifies the saccade amplitude.



Parameter estimation

Measurement noise was estimated with the covariance 
between saccade start and end points; this value 
(logically stable across saccadic amplitudes, average 
σ2Ex=0.038, σ2Ey=0.064) was first removed from the 
positional variance. Noise in visual and motor neural 
signals was then estimated by fitting the model to the 
average human data. Visual noise was modeled as 
multiplicative noise: Vnoisy(t) = V(t).(1+σVε(t)),  where ε 
is a white noise process of unit variance.  Since there is 
not a very good agreement in the literature as regards 
the value of σV,  we preferred to let this parameter free. 
Motor noise was assumed to be a combination of 
multiplicative and additive noises: Mnoisy(t) = M(t).
(1+σΜε'(t)) + σΑε''(t). The noise in the efference copy 
(internal feedback) was assumed multiplicative with 
σM.  To avoid local minima and get a feeling for the 
incidence of the three parameters σM , σΑ and σV, we 
performed an exhaustive search on a grid sampling the 
parameter space. Then we ran a simplex minimization 
that converged towards the following parameter values: 
σV=0.028 , σM=0.20 , and σA=5.10-3.

Model variance in time and space

The spatial and temporal development of the variance 
along the trajectory for the model simulations as well as 
for the average subject is shown on Figure 4.  The model 
is able to capture most of the time course and space 
distribution of the positional variance found in the 
experimental data. Here we used three free parameters 
for the optimal stochastic feedback controller to 
correctly reproduce both saccadic mean trajectories as 
well as their variance. 

3.  Conclusion

Our experimental results complement and extend those 
by van Beers [5] and West et al. [13].  This 
characterization of the development of positional 
variance across time and space allowed us to derive 
estimates of neural noise in sensory and motor signals 
in the oculomotor control system. We believe these  
estimates to be more accurate since they take into 
account both more data than endpoint scatter and the 
existence of a feedback loop.  A key point here is that 
contrary to feedforward models, here 'apparent 
noise' (from the global trajectory average) is correlated 
in time since part of this 'noise' is actually feedback 
corrections to previous noise in afferent or efferent 
signals. 
Trials with or without intrasaccadic display of the target 
did not exhibit any difference in the spatiotemporal 
development of variance; thus visual feedback during 
the saccade was not considered. It may be used to 
control longer saccades [14].
The model fit is globally adequate; the positional 
variability at mid-point of the movement duration is 
slightly overestimated though. We are currently 
investigating whether this can be due to trial-to-trial 
variability in command (or muscle) gain. It should also 
be acknowledged that these estimates were derived 

from average variability; still more precise values (and 
their distribution in the population) can be obtained by 
individually fitting the model to each subject. 
We observed that our estimation of the visual noise is 
quite robust to the details of the model (delays, 
feedback noise different from motor command 
noise…); our simulations indicate that visual noise 
markedly dominates motor noise for large saccade 
amplitudes (>16°) whereas the contrary is true for short 
amplitudes. This is at variance with van Beers [5] who 
concluded to a fairly constant variance ratio. 
Experimental verification of this prediction is under 
way.
These estimates of neural noise magnitude will allow us 
quantitative tests of whether visual feedback is 
optimally integrated with internal model prediction in 
saccadic eye movements.  A possible role of 
proprioception could emerge from these experimental 
results; further modeling studies will take this 
additional sensory input into consideration.
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