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ABSTRACT 

Auditory neurons exhibit complex nonlinear and 

context-dependent responses that are difficult to capture 

by standard modeling techniques. Rather than using a 

bottom up approach and characterizing the responses of 

individual cells as a function of their input, we propose 

to use a top-down, normative approach to analyzing 

auditory processing.  We develop a model of spiking 

neurons that perform probabilistic inference to estimate 

the state of auditory environment from sensory signals.  

The model predicts a form for the nonlinear, context-

dependent modulation of inputs to central auditory 

neurons.  We show that a simple model based on 

auditory inference can explain the presence of multiple 

aspects of contextual modulation in both frequency and 

time that are observed in the auditory system. 
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1.  Introduction 
 

Our understanding of sensory representations in the 

brain has been dominated by the idea of the neural 

receptive field.  This concept is best characterized by 

Hubel and Wiesel’s [1] classic description of the 

responses of visual cortical neurons.  Here, a neuron 

responds to a visual stimulus by applying a weight to 

each region of the visual field and summing the 

responses.  In the extension of this approach, neurons 

are characterized by a fixed selectivity for stimulus 

features such as the orientation of a bar of light or the 

frequency of a tone, and sensory representations are 

characterized by manner in which preferred selectivity 

for stimulus features varies over the population.  Either 

explicitly, or implicitly, sensory systems are often 

thought of as applying a fixed set of filters to the 

sensory input. 

 

In the auditory system, the stimulus selectivity of a 

neuron is usually defined by a spectrotemporal 

receptive field (STRF).  The STRF is the time-

frequency filter that, when applied to a time-frequency 

representation of the stimulus, produces the best fit to 

the neural response [2].  The accuracy of the STRF 

model is limited, however, because of the presence of 

nonlinearities in many neural responses [3].  The 

consequence of such nonlinearities is that models fit to 

responses obtained using one type of stimulus often do 

not generalize to other sets of stimuli [4].  Second, 

receptive field properties of cortical neurons are subject 

to significant variability with context ([5], [6]).  Again, 

this aspect of cortical responses causes models fit from 

one data set to fail to generalize to other contexts. An 

alternative approach to characterizing sensory 

representations is to derive the optimal neural 

representation given a theoretical goal of sensory 

processing.  

 

In light of the growing evidence that many aspects of 

perception are consistent with optimal sensory 

processing [7], a promising functional approach is to 

construct models of neural circuits that perform optimal 

inference.  In particular, the tasks humans face in 

natural situations require the combination of multiple 

noisy and ambiguous sensory cues, as well as the use of 

prior knowledge, either innate or acquired from 

previous experiences. Such incomplete and imperfect 

sensory cues and prior knowledge can only provide 

probabilistic information.  With this view, the goal of 

sensory processing is to perform optimal statistical 

inference.  Several models have been proposed to 

explain the neural basis of optimal sensory perception 

([8],[9],[10],[11],[12],[13]).  However, such models 

have not addressed the nonlinear processing that occurs 

in auditory inference. Here we show that a simple 

model based on auditory inference exhibits multiple 

aspects of nonlinear, contextual modulation that are 

seen in the auditory system. 

 

 

2.  Auditory environment 

 
The task of the auditory system is to infer the structure 

of the auditory environment from the sensory signals 

that are received at the ears.  From a functional point of 

view, we describe the auditory system as doing 

probabilistic inference using a model of the world.  The 

structure of this model is given by a factorial hidden 

Markov model (FHMM, [10],[14]; Figure 1). The 

FHMM consists of a set of independent sources, each 

evolving according to its own dynamics, that combine 

to produce the responses of auditory neurons. The 

essence of this model is the supposition that the 

auditory system is attempting to explain the sensory 



data as the result of a set of independent causes.  This 

model therefore shares the basic features of independent 

component analysis-based models that have been 

proposed to explain properties of the auditory [15] and 

visual [16] systems. 

 

 
Figure 1: The causal model that describes the auditory 

environment is given by a factorial hidden Markov 

model.  The environment consists of a number of 

independent sources that combine to produce spiking 

responses in sensory neurons. 

 

 

The FHMM is characterized by the dynamics of the 

underlying sources and how the sources influence the 

sensory neurons.  We assume that each source is a 

binary variable that evolves with first-order Markov 

dynamics.  The dynamics of the i
th

 source 
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The sensory neurons are spiking neurons that encode 

the state of the auditory environment.  The probability 

of spiking for each sensory neuron is modeled by a 

noisy-or function 
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# , where N is 

the number of sources in the environment. The 

influence of the i
th

 source on the spiking probability of 

the j
th

 sensory neuron is described by the parameter qij.  

The set of these parameters over all sensory neurons for 

a given source is termed the causal field of the source.  

Given that the independent components of natural 

sounds correspond to bandpass filters [15], we will 

assume that the causal fields correspond to bands of 

frequency.  

 

 

3.  Auditory inference by spiking neurons 

 
3.1 Inference equation 

 

The inference problem is to determine the state of the 

environment from the spike trains produced by the 

sensory neurons.  Ideally, one would compute the 

posterior distribution over the state of the environment 

given the history of spike trains, 

! 

P(X
t
| S0:t ) .  

However, exact inference of this form for a large 

number of sources and sensory neurons is 

computationally intractable [14].  Therefore, we make 

an approximation that allows for nearly exact inference 

without the need to represent the joint probability 

distribution over a high dimensional space of sources. 

 

Following [10], we propose that inference in the 

FHMM is done using the probabilities of each source 

given the history of sensory spike trains and the 

approximate state of the other sources in the 

environment.  That is, inference is based on the 

probabilities 
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In the limit of small time steps, we find that the log-

odds evolves according to the differential equation 
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where the weights depend on the context.  Specifically, 

the weights are given by  
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so that the weights are suppressed when other causes 

explain the activity of the sensory neuron.  This is a 

particular form of divisive inhibition that arises from 

the inference algorithm.  

 

3.2 Inference with spiking neurons 

 

The dynamics of inference can be mapped onto the 

dynamics of a population of spiking neurons ([8],[10]).  

Briefly, the membrane potential of the neuron that 

encodes the log-odds of the i
th

 source is given by 
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and 
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O
t
 is equal to one if the neuron fires at time t and is 

zero otherwise.  The membrane potential of the neuron, 

therefore, is a function of the spikes from the sensory 

neurons and its own spike history.  The neuron fires a 

spike when the membrane potential reaches a threshold. 

 

The term G provides an estimate of the log-odds of the 

underlying source given the output spikes of the neuron. 

The stimulus is estimated from the output spike trains 

as  
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4.  Simulation results 
 

4.1 Contextual modulation of weights 

 

We first illustrate that the neurons performing inference 

in the model will integrate spikes from the sensory 

neurons using context-dependent weights.  For this 

example, we use a simple model environment with two 

sources and three sensory neurons.  The two sources 

have overlapping causal fields that correspond to the 

overlap in frequency of two bandpass sources.   

 

The system is able to accurately infer the states of the 

two sources from the spike trains produced by the 

sensory neurons (Figure 2).  The inference is accurate 

even when both sources are on simultaneously.  As seen 

in Figure 2, the weights applied to the sensory spikes 

are modified by the context.  When the probability of 

source 1 being active is high, sensory information is 

weighted less heavily by the neuron representing the 

probability of source 2.  In this system, neurons 

performing inference do not integrate their inputs with 

fixed weights, but rather modify their integrative 

properties by contextual information.  

 

 

 
 

Figure 2: Modulation of weights by context.  Top: The 

state of the environment (solid) and the estimate from 

the spiking neurons (dashed).  Bottom: The weights 

applied to the sensory spikes to infer the state of source 

1 (left) and source 2 (right).  Note the decrease in 

weight due to the presence of the other source.  

 

 

4.2 Two-tone rate suppression 

 

A well known nonlinear property of many auditory 

neurons is the suppression of responses to preferred 

tonal stimuli by the presence of additional tones around 

the preferred frequency [17].  To examine two-tone rate 

suppression in the model, we considered a model 

environment consisting of 12 sources and 15 sensory 

receptors. The sources have overlapping causal fields, 

as in the previous example, corresponding to 

overlapping bandpass sources. 

 

We found that neurons performing inference in the 

system showed nonlinear responses consistent with 

two-tone rate suppression (Figure 3).  Given the form of 

the weights in the model, each neuron will have an 

excitatory or zero response to the presence of a single 

source in the environment.  However, when the 

preferred stimulus was paired with stimuli that have 

overlapping causal fields, the response of the neuron 

was reduced relative to the response to the preferred 

stimulus alone (Figure 3).    

 

 
 

Figure 3: Two-tone rate suppression in a model neuron.  

The response at channel six is the response to source six 

alone.  The other points are the responses to the 

simultaneous presence of source six and the given 

source.  Error bars represent the standard deviation. 

 

4.3 Forward suppression 

 

Auditory neurons show modification of responses to 

temporal context.   An example of temporal context 

dependence is forward suppression, which is seen in 

many auditory neurons [18].  Here, the occurrence of an 

input stimulus will cause a decrease in the response to 

subsequent inputs.  This physiological response is 

thought to be related to the psychophysical 

phenomenon of forward masking [18].  To examine 

forward suppression in the model, we simulate a paired 

pulse paradigm [18].   

 

We found that neurons performing inference in the 

model showed forward suppression (Figure 4).  The 

response to a second pulse in a paired pulse stimulus 

was decreased relative to the response to the first pulse.  

The amount of suppression was greatest for the shortest 

interpulse intervals, as seen experimentally [18]. 



 
Figure 4: Response of a model neuron to pairs of 

pulses.    

 

 

3.  Conclusion 
 

We propose that the nonlinear, context-dependent 

responses seen in the auditory system may be signatures 

of optimal inference.  Rather than using a bottom up 

approach and characterizing the responses of individual 

cells as a function of their input, we used a top-down, 

normative approach to analyzing auditory processing. 

In this approach, neural responses provide a subjective, 

probabilistic interpretation of the auditory scene as the 

events that best predict the auditory input, rather than a 

deterministic function of this input.  Using simple 

examples of this model structure, we are able to see 

several of the basic context dependent properties of 

auditory neurons. 

 

What distinguishes this approach from approaches 

based on receptive fields is the fact that interpreting the 

sensory scene and consequent neural responses is a 

collective, cooperative process rather than a set of cells 

applying each a different fixed filter (i.e. 

spectrotemporal receptive field) to the input.  

Interpretation of the auditory input channels depend on 

the context, e.g. which features are currently and were 

previously present in the scene. Indeed, the auditory 

input is highly ambiguous, since different sounds will 

affect highly overlapping responses in the auditory 

nerve. The problem of source separation is to recover 

the independent sources from this highly redundant and 

clustered input.   This model illustrates how a system 

designed to perform this type of inference can exhibit 

many of the properties seen in the auditory system. 

 

The current form of the model has not addressed the 

problem of learning the statistics of the environment in 

an online manner.  Such an approach is necessary to 

predict how sensory representations will adapt to 

changes in the statistics of the input.  It may be possible 

to apply an algorithm based on online expectation 

maximization [19] to incorporate learning into the 

system.  The incorporation of a learning rule into the 

system will add another mechanism for modifying 

responses by context.  We suggest that a model of 

auditory processing based on online inference and 

learning will provide a framework for understanding the 

complex representation of the auditory environment by 

central circuits. 
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