
HAL Id: hal-00553429
https://hal.science/hal-00553429v1

Submitted on 16 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On asynchronous dynamic neural field computation
Wahiba Taouali, Thierry Viéville, Nicolas P. Rougier, Frédéric Alexandre

To cite this version:
Wahiba Taouali, Thierry Viéville, Nicolas P. Rougier, Frédéric Alexandre. On asynchronous dynamic
neural field computation. Cinquième conférence plénière française de Neurosciences Computation-
nelles, ”Neurocomp’10”, Aug 2010, Lyon, France. �hal-00553429�

https://hal.science/hal-00553429v1
https://hal.archives-ouvertes.fr

ON ASYNCHRONOUS DYNAMIC NEURAL FIELD COMPUTATION

Wahiba Taouali, Thierry Viéville, Nicolas Rougier, Frédéric Alexandre

INRIA Cortex http://cortex.loria.fr

ABSTRACT

The hallmark of most artificial neural networks is

their supposed intrinsic parallelism where each unit is eval-

uated concurrently to other units in a distributed way. How-

ever, if one gives a closer look under the hood, one can

soon realize that such a parallelism is an illusion since most

implementations use what is referred to as synchronous

evaluation. The present article propose to consider differ-

ent evaluation methods (namely asynchronous evaluation

methods) and to study their properties in some restricted

but illustrative cases.

KEY WORDS

CNFT, Dynamic Neural Field, Asynchronous Com-

putation.

1 Introduction

Artificial neural networks rely on distributed computation,

but most numerical methods used to resolve the differen-

tial equations defining the system evolution require the im-

plicit presence of a central clock. This is indeed true for

synchronous computations, in which a central mechanism

updates each unit (e.g. neuron model) at the same clock-

time. Less obvious is the fact that this is also true for some

asynchronous paradigms, in which, for instance, a central

mechanism randomly draws without replacement the units

to sample at a given regular clock time, in order to simu-

late asynchronous computation. It means that in computer

simulations of physical processes, using explicit numerical

methods that calculate the state of a system at a later time

from the state of the system at the current time requires

complete information about the current state of each of its

parts, to deliver from a centralized locus the signal of the

next step. For instance, in a clock-based drawing mech-

anism without replacement, the knowledge of which unit

has been sampled or not must be centralized. Worse than

that, the paradigm implies that though random sampling

events occur at very regular times, it is implicitly assumed

that the time is global to the whole system. Computation

is distributed, but the computation time and clock remain

centralized. At the computational level, this means that if

we are using a multi-processor architecture, processors that

finish their task early have to wait doing nothing until oth-

ers finish. The more there are synchronization points, the

more performance degrades. At the system dynamics level,

the fact that we impose regular updates, even if on a given

unit subset, may induce spurious synchronization mecha-

nisms. At the biological modeling level, this means that we

assume the existence of a global “universal” clock which is

a reasonable approximation for small dynamical systems,

but less obvious when considering several cortical maps in

interactions with complex connection delays.

In this context, asynchronous mechanism at the meso-

scopic level may represent:

- biological delays related to the cortical map topography,

with three facets: fixed delay related to known connection

length, dynamic delays related to on-going processing or

transmission, random delays related to uncertainty or lack

of knowledge about the two previous mechanisms;

- local computation effects such as adaptive asynchrony,

i.e. the fact that a unit adapts its state with parsimony: the

more its value is stable, the less its change has to be output

rapidly;

- mesoscopic events such as activity synchronization,

rhythms, or sudden activity change.

As soon as such semantics is targeted, there is no

place for a central mechanism to decide “a-priori” which

unit is going to update its state, whereas each unit has to

calculate on its own, both what is its next value and when

its next value is going to be updated.

Since it is rather counter-intuitive to rely implicitly

on such a centralized scheme, we would like to study to

which extent we can remove this central clock assumption

and implement a really decentralized (asynchronous) com-

putation. This has been already studied in the case of cel-

lular automaton [14, 13, 15, 4] and parallel computations

[5, 6] using particularly Discrete Event Systems Specifi-

cation (DEVS) to simulate discrete time systems and ap-

proximate, as closely as desired, differential equation sys-

tems. The DEVS (Discrete Event Systems Specification)

formalism [28] provides a way of expressing discrete event

models and a basis for an open distributed simulation of

dynamic environments in which “events“ occur. It also

supports hierarchical modular construction, such as micro-

scopic neurons, mescoscopic columns, etc...Using DEVS

abstractions to capture the spiking nature features of bio-

logical neurons that were not represented in conventional

artificial neural networks, started with Pioneer works of

[26, 24], exploiting these capabilities to perform intelligent

control tasks.

We review in this paper some mathematical mod-

els of asynchronous computation, showing some conver-

gence results and illustrating the use of these models in dy-

namic neural fields computation, including time discretiza-

tion problems. The purpose is not to give a complete state-

of-the-art on asynchronous models, but to show how a gen-

eral construct, called here ”fully asynchronous paradigm”,

provides a constructive answer to asynchronous computa-

tion, especially in the particular case of artificial neural net-

works. Thus, we briefly present in section 2 some compu-

tational models dealing with asynchrony aspects in discrete

and continuous dynamic systems. Then, we focus in sec-

tion 3.2 on the bias induced by the discretization of contin-

uous dynamic systems, allowing us to explain the founda-

tion of well-defined asynchronous computation regarding

dynamic neural fields, in section 3.3. Finally, we propose,

in section 4, to use an event-driven paradigm, as an ade-

quate framework to simulate an intrinsically asynchronous

system, before concluding this work.

2 Computational asynchronous models

2.1 Discrete dynamic systems

A discrete dynamic system is a finite set of elements, each

taking a finite number of states evolving in a discrete time,

by mutual interactions. In [19], which is a book dedicated

to the analysis of the temporal dynamics of such systems,

Robert introduces what he called ”a chaotic discrete iter-

ation mode”. The studied system is a cellular automaton

with N Boolean cells (a finite number of states), which

may correspond, in a neural network, to an active neuron

state (spiking) or a silent state. Each unit is influenced by a

subset of units that are involved in its update. Starting from

an initial state at t = 0, at each time step each unit updates

its state function involving the states of the corresponding

subset of elements, using a specific iteration mode (parallel,

serial or chaotic). In a parallel mode, at every time step all

the units are updated simultaneously. In a serial mode, at

each time step units are evaluated one by one respecting at

every iteration the result of the previous one (Gauss-Seidel

method). This introduces a kind of partial asynchrony in

the system but the central clock is still needed, so it is still

macroscopically synchronous. Thus, we are interested in

the chaotic mode. It is assumed that there is still a dis-

crete clock but that only serves to number the events. So

we move from a time-driven paradigm to an event-driven

paradigm. At each event occurrence, only a subset of ar-

bitrarily chosen units is evaluated and it is supposed that

there is no transmission delays. The main problem, even if

the system is finite and time is discrete, is to ensure the

convergence to a stable state. In the numerical analysis

community, the reference book in both continuous and dis-

crete context is Bertsekas and Tsitsiklis book, chapters 6

and 7 [6], released in 1989. It presents some algorithms and

gives sufficient conditions for convergence for general non-

linear problems and necessary conditions for linear prob-

lems. Here, Robert introduces the notion of pseudo-period.

A pseudo-period corresponds to a sequence of events in

which each unit is updated at least once. The main result

presented in [19, 3], is that if a system is pseudo-periodic,

it converges at most after N pseudo-periods. So with only

N synchronization points the system convergence is guar-

anteed. But when we introduce transmission delays, such

an assumption is no more valid, thus does not ensure the

convergence.

2.2 Continuous dynamic systems

Although discrete dynamical systems are a powerful mod-

eling formalism, it is insufficient for modeling systems that

have physical components. Physical systems are usually

modeled by differential equations in continuous dynami-

cal systems. We are going to focus on Mitra works [17]

dealing with asynchronous relaxations for numerical solu-

tion of differential equations. In parallel processing like in

neural computation, we may have different run times and

units are not supposed to wait for each other. Addition-

ally, transmission delays contribute to desynchronize the

exchanged information. As described in [17], both phe-

nomena are obvious to take into account in a ”fully asyn-

chronous” paradigm. An important discussed point is that

to prove the convergence of asynchronous algorithms, two

main assumptions are required. First, the delays should be

bounded by a finite constant d. Then, a non starvation con-

dition is required. Each unit should be updated at least

once in all the sequences of completion that would be of

arbitrary but fixed length, with length < s. This joins the

previous model results. Different versions of these assump-

tions have been assumed in asynchronous computational

algorithms like in [11]. Therefore, with some additional

conditions on the differential equations system (specially

the leak function), uniform convergence at a geometric rate

is proved. The main idea, as shown in section 3.2, is that

an unbiased discretized implementation of a continuous dy-

namical system must take into account for each simulation

time, a sampling relaxation scheme (i.e., generating several

samplings for a given simulation time) in order to bound the

error along the system trajectory.

3 Neural network asynchronous computa-

tion

3.1 Dynamic neural field (DNF)

The system is a network of units with connections between

units. Each unit, at the mesoscopic biological level, corre-

sponds to a cortical column (see, e.g., [12] for a discussion

on the concept), the network is a cortical map (see e.g. [25]

for a discussion on the concept), and may be modeled by

a dynamical neural field [27, 2, 23], generating temporal

events (e.g, synchronization, rhythms, or sudden activity

change). Therefore, the evolution of a neural population

activity is described by the following differential equation

(see [21] for details):

τ ∂V (x,t)
∂t

= −V (x, t)+
∫

M
w(x−y)f(V (y))dy+h+s(x, t)

(1)

where x denotes a location onto the manifold M; t is

time; V (x, t) denotes the membrane potential of a neural

population at point x and time t; τ is the temporal decay

of synapses, f is a sigmoid function computing the mean

firing rate, w is a neighborhood function, s(x) is the input

received at position x and h is the mean neuron threshold.

3.2 Continuous versus discrete modeling

When symbolic resolution is not possible, the evolution of

such a system can be approximated using numerical in-

tegration, e.g. low order methods such as Euler-forward

method or higher order methods such as Runge-Kutta

method [18].

Let us consider the very simple case of a linear con-

stant approximation of the system, written:

d/dtVj(t) + Lj(t)Vj(t) =
∑

k 6=j

Wjk(t)σ (Vjk(t)) + Ij(t),

(2)

with initial condition Vj(0), in the particular case where

leak Lj , connection strength Wjk and current input Ij are

constant, while σ (u) = u (see [1] for a discussion of the

kind of “sigmoid” profiles usually used) . This writes in

vectorial form:

d/dtV(t) = −AV(t) + I,

with

A =

L1 −W12 · · ·
−W21 L2 · · ·
· · · · · · · · ·

 , I =

I1
I2
· · ·

 ,

and its regular sampling forward Euler discretization

writes :

V[i+ 1] = V[i]−∆T AV[i] + I,

at t = i∆T .

Here, we have to assume that the system is con-

tracting, i.e., that real part of the eigen-values of A are

strictly positive, otherwise the system does not converge

towards a stable solution, and the Euler-forward approxi-

mation method is not expected to converge towards a con-

tinuous solution (see e.g. [18] for these elementary no-

tions). In words this means that leak is strong enough with

respect to the weights in order to induce the system con-

vergence, see [1] for a detailed study in the case of discrete

neural fields. More precisely, on an eigen-direction (i.e. in

the direction of an eigen-vector of the matrix), the linear

equation is decoupled from the others and the leak (either

a real or a complex value) corresponds to the opposite of

the eigen value, with solution either damped oscillations

or an exponential vanishing profile. We do not have to as-

sume that weights are symmetric, but that the matrix A is

diagonalizable, which is always the case up to a negligible

singular set, not taken into account here. In the non-linear

non-constant case, if the system is hyperbolic, the same

condition applies on the Jacobian of the system at any time

and state value.

In such a simple case it is obvious to study1 both the

continuous scheme and its discrete approximation starting

from the same initial value converge towards the same fixed

point (which can be found in all text books), but not though

the same trajectory (which is surprisingly not studied in

text books up to our best knowledge). More precisely the

bias in an eigen-direction of the A matrix is proportional

to Vj(0) − Ij/λ, where λ is the eigen-value (i.e., the leak)

in this direction, and follows a double exponential profile,

only function of ∆T λ, as illustrated in Fig. 1. In words, the

highest ∆T λ ∈ [0, 1[(this boundaries corresponding to the

convergence interval), the highest the bias magnitude, but

the quickest the bias between both methods vanishes. The

highest leak thus determines the maximal bias, the smallest

leak the maximal duration of bias.

Figure 1. Left view: The normalized bias temporal profile

between the continuous scheme and its discrete approxi-

mation, drawn here for ∆T λ = [0.05, 0.1, 0.2, 0.5] from

the flattest to the sharpest curve respectively. Right view:

The integral of the bias along the trajectory as a function

of ∆T λ, making explicit that the cumulative bias is never

negligible even for very small leak, while it diverges for

large leak. See text for details.

In the non-constant case (i.e., leak, weights or cur-

rents vary with time), the previous results generalize con-

sidering bounds of the, now variable, leaks. In the non-

linear case, the previous results generalize bounding the

non-linear function σ() by the corresponding maximal

slope linear function. See, e.g. [9] for a review of such

tools.

1In the scalar case, an explicit closed-form is automatically derived

from a few lines of, e.g., maple symbolic code:
eq := D(V)(t) = -A * V(t) + b: assume(0 < A, A < 1):

Continuous solution, assuming t0 = 0

s c := dsolve(eq, V(0) = V0, V(t));

Euler approximate integration, assuming delta t = 1

s e := rsolve(subs(eq, t = k, V(k + 1) = V(k) + Dt * D(V)(t)), V(0) = V0, V);

Bias analysis

err k := simplify(factor((subs(s c, t = Dt * k, V(t))

- subs(s e, V(k))) / (V0 - i / A)), Dt * A = c);

while the result is straightforward to apply to the eigen-value decom-

position of the A matrix. Furthermore, in the scalar case, if the

Euler approximation is used with Dt = (1 − exp(−A∆T))/A =
∆T − A/2∆T 2 + O(∆T 2) in numerical scheme, the bias is canceled,

which is not generalizable in the vectorial case since it depends on the

leak value.

It is a counter-intuitive and very important result to

notice that large leaks (i.e. small time-constants) indeed

accelerate convergence, but with the drawback to generate

large errors during the first iterations. This means that the

system dynamics may very easily switch from one attractor

to another, at the beginning of the trajectory, even in such a

very simple case.

Furthermore, the cumulative bias is never negligible,

with a lower bound for small leak, while diverging for large

leaks. This shows the very important difference between

the fact that the discretization methods converge at least

toward the expected fixed point and the fact that the sim-

ulation trajectory is unbiased. In this simple example, un-

biasedness never occurs, except in the singular case where

Vj(0) = Ij/λ.

Where stands the “mistake” ? At the implementation

level, it stands on the simple fact that there is a confusion

between the sampling time (i.e., the time at which the con-

tinuous system is discretized) and the simulation time (i.e.,

the simulated dynamical system time). We obviously need

several sampling times for a given simulation time in or-

der to make the discrete approximation converge towards

the continuous one, which is often not taken into consider-

ation. This is going to be developed in section 3.3

At the modeling level, it stands on the belief that a

pertinent model of the reality has to be a “continuous”

model, its discretization being a kind of second-class im-

plementation detail. This is definitely wrong when mod-

eling digital computational systems, but this is also ques-

tionable for microscopic neural models (see, e.g., [10] for

a discussion on biologically plausible generalized integrate

and fire neuron models) and mesoscopic neural map mod-

els (see, e.g. [21] for a discussion at this modeling scale),

the key question being “what do we want to learn” from

the model or its simulation. This is going to be discussed

in section 4.

3.3 Asynchronous computation

Following [17] and instantiating its paradigm in the case of

a dynamic neural field, let us propose the following asyn-

chronous computation model. Each unit of index j is im-

plemented by a task Tj , which calculates the unique solu-

tion of the initial value problem of equation (2) at a given

simulation time t. At a given sampling time of index i,
a subset of tasks U(i) = {· · ·Tjk · · · } whose completion

is comprised in the i-th update is defined. This very sim-

ple scheme includes synchronous relaxation (i.e., U(i) con-

tains all tasks at each update), deterministic Gauss-Seidel

relaxation (i.e., U(i) contains only one task at each update,

one after another), other asynchronous schemes (e.g., U(i)
contains one or more tasks, randomly drawn with or with-

out replacement), etc.. The original framework is a bit more

general, while we decline it in our context only.

Each connection between units of index j and k is

supposed to have a sampling delay dijk, constant or vari-

able, meaning that the information Vk(t) is available to the

task j after a delay dijk. This is different from a simulation

delay, meaning that the information Vj(t) is a function of

Vk(t−δjk(t)) though the latter can obviously be simulated

in this framework.

As mentioned in the first section, the Mitra compu-

tation model is based on two key assumptions: On one

hand, all sampling delays dijk ≤ d < +∞ are finite, thus

bounded. This first is violated if the link between two tasks

is broken. On the other hand, there is a maximal length

l between two updates for a given task, i.e. there is no

starvation. This second condition is violated with a non-

negligible probability in the case of random drawn with re-

placement, but verified in the other quoted cases.

Based on these reasonable and somehow minimal as-

sumptions, in the linear-case Mitra considers a contract-

ing system, in the sense made explicit in section 3.2, and

demonstrates, the uniform convergence at a geometric rate

of this completely asynchronous numerical scheme. In the

non-linear case, Mitra has to assume that the non-linear

functions are continuous (but not necessarily smooth) and

bounded by a linear contracting function, to obtain the

same result. In our case, this means that the non-linear, so-

called “sigmoid” function σ() can not be a step function,

but any other usual continuous profile is convenient.

In other words, as soon as the sampling and simula-

tion times are not mixed, and the dynamic neural field dy-

namics attractor is a fixed point, attained with or without

damped oscillations, any general asynchronous relaxations

schemes with neither unbounded transmission delays, nor

starvation, uniformly converge at a geometric rate.

This result has obviously no reason to hold for more

complex dynamics, especially in chaotic cases, since even

a “negligible” error is going to make the discrete approx-

imation diverge exponentially fast, without any chance to

redress the error by a bounded number of asynchronous

relaxations. In the case of a periodic stable attractor,

though the previous formalism can not be applied as it is,

it seems reasonable to assume that the asynchronous relax-

ations would be able to maintain the discrete approximation

scheme at a bounded error of the continuous exact solution.

Thanks to this fundamental result, we can consider the

synchronous/asynchronous dynamical neural fields simu-

lation dilemma, (i.e., the fact that authors often wonder

whether they efficiently can simulate such a dynamical sys-

tem using an asynchronous scheme) as solved in such a

context.

3.4 An application network example

A unit is defined as before, its state changes only when an

event occurs (an update that includes the unit). Let us con-

sider a two-layer network (input and output), each of them

being of size N ×N units. The input layer corresponds to

the constant current entry that is feeding the output layer.

So each unit of index u, v of the output layer receives its in-

put Iu,v from the input layer with respect to a receptive field

(a Gaussian connection). We suppose that there is neither

lateral connection nor feedback in the input map. Lateral

connections in the output map are excitatory, decreasing

with distance and the input is inhibitory (the reverse con-

nectivity scheme is also suitable).

It means that each neuron in the input layer is excited

by its neighbors and inhibited by the neurons in its recep-

tive field. The resultant activity in the output map is a dif-

ference of Gaussian which is a computation scheme very

used in dynamic neural networks.

So, in this case, for each unit of the M = N × N
units, equation (2) writes:

d/dtVu,v(t) = −Vu,v(t) +
∑

p,q

Wu,v;p,qVpq(t) + Iuv,

where Vu,v stands for the membrane potential, Wu,v;p,q for

the weight of the connection from unit (p, q) to unit (u, v)
(a positive symmetric tensor in this case), and Iuv is the

constant current input, projection from the input layer.

If we refer to Mitra’s work, this differential equation

is a particular case of the proposed framework2. Uniform

convergence at a geometric rate in the asynchronous mode

occurs when, in our case, I − |W| is an M-matrix (i.e. a

matrix whose off-diagonal entries are less than or equal

to zero, with eigenvalues whose real parts are positive).

Since W is a symmetric positive matrix, thus diagonaliz-

able, with positive eigen-values, I − |W| is a M-matrix

a soon as these eigen-values are smaller than one. As a

consequence, we can conclude that, asynchronous compu-

tation convergence in such a neural network is guaranteed

and that the long-term average rate geometric convergence

(per update) is not less than r = 1/(d + l) with r is the

spectral radius of W, d is the maximal delay and l is the

maximal pseudo-period length.

4 Using discrete event dynamic system

Let us finally consider the other aspect of asynchronous

computation, i.e. not the fact that we want to simulate a

continuous system in an asynchronous way, but the fact that

we want to simulate a system intrinsically asynchronous.

This covers two fundamental aspects. On one hand, each

unit has a local clock, i.e., a local time in some sense, so the

state evolution depends entirely on the occurrence of asyn-

chronous mechanisms over time. This means there are de-

lays between units, with unpredictable exact values. On the

other hand, there is another semantics related to anachro-

nism, i.e. the fact the information associated to input and

output is defined by both some value and the time at which

such value is issued. In other words, the information is de-

fined through temporal events.

As an illustrative case where asynchronous evaluation

is not only a matter of simulation but also of modeling, [22]

have disclosed pertinent solutions for a discrete beta func-

tion (DBF) that correspond to expected biologically plausi-

ble responses, though they are not present in the continuous

2It corresponds to equation (6.7i) [17], with D = I the (identity ma-

trix) and B = W.

case. This raises the importance of considering asynchro-

nism not only at the implementation level.

Concerning biologically plausible models, the event-

driven computation scheme has been mainly developed for

spiking neuron models. Such models are not addressed

here (see, e.g., [16] for an introduction and [10, 8] for a

recent theoretical analysis and general discussion in link

with these aspects). Nevertheless, this scheme could be

certainly extended at a more mesoscopic level, as that of

cortical columns, modeled by dynamical neural fields, as

developed here.

The dedicated simulation tool is an event-based neu-

ron simulation kernel as proposed by, e.g., [20] (see [7] for

a comparative review) based on the well-known Discrete

Event System Specification (DEVS) framework, very easy

to simulate on a single processor.

Let us instantiate this general discussion, through an

illustrative example. In a recent work [21] a model has been

designed that performs global competition, only using lo-

cal connections, with diffusion of the inhibition throughout

the network. This is far quicker to have a few local in-

teractions when computing activity within the network and

this makes the model a real candidate for distributed com-

putations. We have re-implemented this mechanism con-

sidering asynchronous sampling via a minimal event-based

simulation kernel3, which obviously works since the sys-

tem is still contracting when using asynchronous sampling,

as discussed previously. This has been numerically exper-

imented, as shown in Fig. 2, with the obvious heuristic to

have the local sampling period roughly proportional to the

state value variation (parsimonious principle), with a string

robustness with respect to the related parameters (modify-

ing the asynchronous paradigms changes the transitional

values, slightly influences the convergence speed, but does

not modify the final result).

Figure 2. An example of asynchronous sampling of such maps

(event-based implementation), applying convergence criteria de-

rived here. We have numerically verified the conjecture that the

present results apply when using asynchronous sampling. Left

view: intermediate result, the fact asynchronous sampling yields

randomization is visible. Right view: final result, after conver-

gence.

3Code available at http://enas.gforge.inria.fr/

classNetwork.html, while http://mvaspike.gforge.

inria.fr is the general purpose large-scale event-based multi-scale

simulator at the edge of the state of the art.

Though this is only a preliminary result it opens large

perspectives on new asynchronous paradigms for discrete

neural field implementations.

5 Conclusion

By making the distinction between sampling times and

simulation times, we have been able to review how well-

established asynchronous evaluation methods can be effi-

ciently used for dynamic neural fields simulation; as soon

as reasonable assumptions are verified, fast convergence

and unbiasedness are guaranteed. In return, as we ex-

plained in the previous section, dynamic neural field the-

ory provides a fruitful playground for the study of asyn-

chronous evaluation schemes. For example, in [22], it has

been shown (numerically) that such an asynchronous eval-

uation method leads to novel stable solutions that are func-

tionally very different from the continuous case. When pre-

sented with two identical stimuli at different locations, the

field is able to stabilize itself on either one of the two stim-

uli, hence breaking the symmetry of the system. However,

this new state, that has been shown to be very stable, can

be also easily proved not to be a solution of the continu-

ous equation of the field. What is thus the relevancy of

such a continuous description if we are to evaluate it us-

ing numerical asynchronous equations ? Ideally, we wish

we could have an equivalent continuous asynchronous de-

scription but unfortunately, this is not yet the case in the

field of mathematics. We should then take extra precau-

tion when describing a system using continuous equations

and wonder if we are really simulating what we adver-

tised in the definition of the system. Particularly, at the

mesoscopic modeling level, it may be worthwhile to use an

event-based paradigm instead of a clock-based one, as it

is a well-defined paradigm which takes into consideration

that not only the processing but also the timing are fully

distributed.

From a more cognitive point of view, this study re-

veals the implicit presence of a central clock in a number

of models and thus the implicit presence of a grand super-

visor (a.k.a. central executive, homunculus, etc.) orches-

trating the overall activity of the model. While this may be

acceptable in most models that do not care about this para-

sitic presence, it is hardly acceptable if a model pretends to

vanquish the curse of the homunculus.

Acknowledgment: This work was partially supported by the ANR Project

MAPS and benefited from helpful discussions with Axel Hutt and Hervé Frezza-

Buet.

References

[1] F. Alexandre, J. Fix, N. Rougier, and T. Viéville. Algorithmic adjustment of

neural field parameters. Research Report RR-6923, INRIA, 2009.

[2] S. Amari. Dynamic of pattern formation in lateral-inhibition type neural fields.

Biological Cybernetics, 27:77–88, 1977.

[3] J. Bahi and S. Contassot-Vivier. A convergence result on fully-asynchronous

discrete-time discrete-state dynamic networks. Research report, AND Team,

LIFC, IUT de Belfort-Montbliard, Belfort, France, 2002.

[4] C.L. Barret and C.M. Reidys. Elements of a theory of computer simulation

i: Sequential ca over random graphs. Applied Mathematics and Computation,

98:241, 1999.

[5] D.P. Bertsekas and J.N. Tsitsiklis. Some aspects of parallel and distributed

iterative algorithms - a survey. Automatica, 27:3–21, 1991.

[6] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Nu-

merical Methods. Athena Scientific, 1997.

[7] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower,

M. Diesmann, A. Morrison, P. H. Goodman, F. C. Harris Jr., M. Zirpe,

T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner,

O. Rochel, T. Vieville, E. Muller, A.P. Davison, S. El Boustani, and A. Des-

texhe. Simulation of networks of spiking neurons: a review of tools and strate-

gies. Journal of Computational Neuroscience, 23(3):349–398, 2007.

[8] B. Cessac, H. Paugam-Moisy, and T. Viéville. Overview of facts and issues

about neural coding by spikes. J. Physiol. Paris, 104(1-2):5–18, 2010.

[9] B. Cessac and M. Samuelides. From neuron to neural networks dynamics. EPJ

Special topics: Topics in Dynamical Neural Networks, 142(1):7–88, 2007.

[10] B. Cessac and T. Viéville. On dynamics of integrate-and-fire neural networks

with adaptive conductances. Frontiers in neuroscience, 2(2), jul 2008.

[11] D. Chazan, W. Miranker, and T. Viéville. Chaotic relaxation. Linear Algebra

and its Applications, 2:199–222, 1969.

[12] S. Chemla, F. Chavane, T. Vieville, and P. Kornprobst. Biophysical cortical

column model for optical signal analysis. In Sixteenth Annual Computational

Neuroscience Meeting (CNS), jul 2007.

[13] N.A. Fates. Asynchronism induces second order phase transitions in elemen-

tary cellular automata. Journal of Cellular Automata, 4:21–28, 2009.

[14] N.A. Fates and M. Morvan. An experimental study of robustness to asynchro-

nism for elementary cellular automata. Complex Syst., 16:1–27, 2005.

[15] L.D. Garcia, A.S. Jarrah, and R. Laubenbacher. Sequential dynamical systems

over words. Applied Mathematics and Computation, 174:500–510, 2006.

[16] W. Gerstner and W.M. Kistler. Spiking Neuron Models. Cambridge University

Press, 2002.

[17] D. Mitra. Asynchronous relaxations for the numerical solution of differential

equations by parallel processors. SIAM J. Sci. Stat. Comput., 8(1):43–58, 1987.

[18] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical

Recipes in C. Cambridge University Press, 1988.

[19] F. Robert. Les systèmes dynamiques discrets, volume 19. Springer, 1994.

[20] O. Rochel and D. Martinez. An event-driven framework for the simulation of

networks of spiking neurons. In Proc. 11th European Symposium on Artificial

Neural Networks, pages 295–300, 2003.

[21] N. Rougier. Dynamic neural field with local inhibition. Biological Cybernetics,

94(3):169–179, 2006.

[22] N. Rougier and J. Vitay. Emergence of attention within a neural population.

Neural Networks, 19(5):573–581, 2006.

[23] J.G. Taylor. Neural bubble dynamics in two dimensions: foundations. Biolog-

ical Cybernetics, 80:5167–5174, 1999.

[24] S. Vahie and N. Jouppi. Dynamic neuronal ensembles: A new paradigm for

learning and control. AI, Simulation and Planning in High Autonomy Systems,

1996.

[25] T. Viéville, S. Chemla, and P. Kornprobst. How do high-level specifications of

the brain relate to variational approaches? J. Physiol. Paris, 101, 2007.

[26] L. Watts. Event-driven simulation of networks of spiking neurons. Advances

in neural information processing systems, 6:927–934, 1994.

[27] H.R. Wilson and J.D. Cowan. A mathematical theory of the functional dynam-

ics of cortical and thalamic nervous tissue. Kybernetic, 13:55–80, 1973.

[28] B. Zeigler, T. Kim, and H. Praehofer. Theory of modeling and simulation.

Academic Press, 2 edition, 2000.

