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ABSTRACT

A framework to discriminate tactile stimuli delivered

to an artificial touch sensor is presented.

Following a neuromimetic approach, we encode the

signals from a 24-capacitive sensor fingertip into spik-

ing activity through a network of leaky integrate-and-

fire neurons. The activity resulting from the stimulation

of the touch sensor through Braille-like dot patterns is

then analysed by means of a newly defined Information

measure which explicitly takes into consideration the

metrics of the spike train space.

Results show that an optimal discrimination of the

entire set of 26 stimuli (i.e. 100% correct classification)

is reached early after the stimulus onset. Interestingly,

the method proves to be effective with both statically

and dynamically delivered stimulation which are hard

to decode because of the similarity between encoded

firing activity given to the proximity of the patterns

presented.

The decoding analysis allowed us to corroborate the

working hypothesis that human tactile discrimination

relies on optimal encoding/decoding processes already

at the level of the primary stage neurons in the so-

matosensory pathway.
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1. Introduction

Fast and reliable tactile discrimination plays a

paramount role in human behaviour in order to guaran-

tee rapid response and adaptation to stimuli delivered

to the fingertips [5]. Even simple object manipulation

requires the ability to identify the object’s properties

and perform optimal action selection based on closed-

loop control policies. The same holds for humanoid

robotics applications in which human-like haptic tasks

must rely on high stability, precision and adaptability of

the system. More specifically, at the early stages of the

ascending pathway, there must be a faithful encoding of

the tactile stimulations into populations of spike trains,

so that the central nervous system can actually decode

the signals and discriminate the stimulations.

Here we study how to decode spiking activity ob-

tained by encoding analogue data from an artificial

touch sensor. We show that, after stimulating the sensor

with Braille-like dot patterns both statically and dy-

namically (i.e. by rubbing the pattern over the finger),

it is possible to quickly recover the stimulus on both

∗ Both authors contributed equally to this work.

modality. Drawing inspiration from a study of human

haptic microneurography spiking data, we use a new

metrical information coupled with the Victor-Purpura

distance [15] to estimate the amount of information that

can be transmitted without burst of uncertainty on the

response to a single stimulus.

2. Methods

2.1 The encoding/decoding scheme

In Fig. 1 we show the entire encoding/decoding

scheme. After stimulating the artificial fingertip with

scaled Braille-character probes the analogue data were

converted into spiking activity through a network of

modified leaky integrate-and-fire neurons (LIF). The

obtained activity was then analysed through an Infor-

mation Theory based approach (cf. section 2.4) in

order to classify the response of the fingertip to both

static and dynamical stimuli.

~
~
~
~
~
~

I
I

I
I

I
I

analogue

signals

spatiotemporal

spiking signals

Information theory

decoding analysis
Analogue-to-spike

encoder

Artificial

touch sensor

Fig. 1. The entire encoding/decoding process. After the conversion
of the finger output signals into spike trains, the information theo-
retical method is applied in order to discriminate between different
stimuli.

2.2 The artificial fingertip

The skin prototype was developed at the Italian

Institute of Technology (IIT, Genoa, Italy) as a small-

scale improvement of a previously presented artificial

skin [3]. The entire artificial finger has a sensitive

surface of approximately 18 mm x 23 mm. It consists

of 24 capacitive square sensors disposed according to a

rectangular grid layout. The dimension of each sensor

is approximately 3 mm and the inter-centre distance is

4 mm (Fig. 2).
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Fig. 2. Left: The artificial fingertip consisting of an array of 24
capacitive sensors. Right: Design of the fingertip.



The array is covered by a 2.5 mm thick neoprene

layer in order to modulate the pressure exerted over

the sensors. The higher the indentation of a conductive

material on the neoprene is, the stronger the response

of the sensors. The response strength of each sensor

ranges between 0 and 189 fF.

2.3 The analog-to-spike conversion method

A network of 24 modified leaky integrate-and-fire

neurons [6] was modeled to convert the analogue

signals provided by the artificial skin after stimulation

into spatiotemporal spike patterns (Fig. 3).
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Fig. 3. Spike trains obtained through the encoding process of
analogue signals. The response of 8 sensors to a single probe
stimulation repeated 13 times is reported.

2.3.1 The spiking neural network: Let Vleak, Vthr,

Vreset and I(t) denote the resting membrane potential,

the firing threshold, the reset potential, and the total

synaptic input of a neuron, respectively. The dynamics

of the membrane potential V (t) was defined according

to:

C ·
dV (t)

dt
= −g · (V (t)− Vleak)− I(t) (1)

with C and g being the membrane capacitance and

leak conductance, respectively. We took Vleak = −70
mV, Vthr = −50 mV, and Vreset = −100 mV for

all neurons of the model. The membrane capacitance

C was taken equal to 0.5 nF, and the conductance g
equal to 25 nS. Thus, the membrane time constant was

τ = C/g = 20 ms. Whenever the membrane potential

V (t) reached the threshold Vthr the neuron emitted

one spike. Then, its membrane potential was reset to

Vreset and the dynamics of V (t) was frozen during

a refractory period ∆tref = 2 ms. A basic “threshold

fatigue” [4] was also implemented in order to model the

phenomenon of “habituation”. It consisted in increasing

the threshold Vthr of a value Athr each time the neuron

spiked, making it harder for the neuron to spike again

(i.e. preventing the neuron from responding highly

tonically even in the presence of strong inputs). In the

absence of spikes, the threshold decreased exponen-

tially back to its resting value VrestThr:

dVthr(t)

dt
= −

Vthr(t)− VrestThr

τthr
(2)

The parameter values we used were τthr = 100 ms,

VrestThr = −50.0 mV and Athr = 50.0 mV. Eqs. 1

and 2 were integrated using Runge-Kutta 2 and a

timestep of 1 ms.
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Fig. 4. (a) The input of each LIF neuron was computed on the
basis of its receptive field. (b) Examples of Gaussian receptive fields.
Left: standard deviation = 0.6. Right: standard deviation = 1.2.
(c) Examples of Heaviside receptive fields. Left: radius < 1 (Dirac
equivalent). Right: radius = 1.

2.3.2 The receptive fields: Each neuron i received

a driving input based on its receptive field function,

which was used to sample the data space similar to a

kernel basis function (Fig. 4a). The input I(t) was then

simply taken as:

I(t) =
∑

j

wij · dj (3)

with wij representing the weight of the “connection”

from a capacitive sensor j to the neuron, and dj being

the analogue value of the fingertip sensor. Two types

of receptive fields were implemented and tested: the

Gaussian function and the Heaviside kernel (Fig. 4b and

4c). The weights wj were normalised to obtain a global

maximum weight defined by a constant W =
∑

j wj .

Given the properties of the artificial fingertip and the di-

mension and property of each sensors (cf. section 3.1)

the results we present were obtained using a Gaussian

kernel with radius ≪ 1 approximately equivalent to an

Heaviside kernel with radius < 1 (Fig. 4).

2.4 Information-theoretic measure

Mutual information (MI) [10], [13] measures the

interdependence of two random variables and it was

defined by Shannon as follows:

MI(s; r) =
∑

s

∑

r

p(r, s) log
p(r, s)

p(r)p(s)
(4)

where r denotes the response to a given stimulus s.

In the classical Shannon definition, the terms p(s) and

p(r) are the marginal probabilities of stimulus and



response, respectively, p(r, s) is their joint probability,

and p(r|s) indicates the conditional probability.

In order to decode the neural activity and discrim-

inate between different stimuli, we applied a novel

information theoretical measure MI(R;S)∗ following

two new definitions for the marginal and conditional

entropy defined as H(R)∗ and H∗(R|S) respectively.

Such an information measure, which has been proven to

be suitable to decode the responses of real mechanore-

ceptors obtained via microneurography recordings in

humans [2], was derived analytically. It takes into

account the metrical properties of the spike train space

[12], [14] in order to circumvent the problem related

to binning procedures encountered when applying in-

formation theoretic analysis [9], [7].

2.4.1 Victor-Purpura distance: The metrics we

chose is the Victor-Purpura spike train metrics [15]

which defines the distance between two spike trains as

the minimum cost of the operations needed to transform

one spike train into the other. Briefly, the three allowed

operations and their respective costs are:

the insertion of a single spike at a fixed cost of 1,

the deletion of a single spike at a fixed cost of 1,

the displacement in time of one spike for a cost

that grows linearly with the temporal shift. This

cost depends on the parameter CV P which has to

be appropriately chosen. According to the given

definition, moving a spike by an interval ∆t will

cost CV P ·∆t.

In order to extend this metrics to a neural population

we simply summed individual distances over each

neuron of the network to obtain the population distance

DV P (r, r
′). We then used such a distance to compute

the degree of similarity between responses elicited

by the same stimulus (i.e. intrastimulus distance) and

responses elicited by different stimuli (i.e. interstimulus

distance).

2.4.2 Metrical Information: The novel measure we

used for the marginal entropy, namely the uncertainty

on the response to the whole stimulus set, is formalised

as follows:

H∗(R) = −
∑

r∈R

1

|R|
log

∑

r′∈R

< r|r′ >

|R|
(5)

where < r|r′ > is a similarity measure between two

responses r and r′ (see below). Then, the metrical

conditional entropy, indicating the uncertainty on the

response to a single stimulus, is defined as:

H∗(R|S) =
∑

s∈S

p(s)H∗(R|s) = (6)

−
∑

s∈S

p(s)
∑

r∈Rs

1

|Rs|
log

∑

r′∈Rs

< r|r′ >

|Rs|
(7)

Finally, the metrical information is defined, following

the Shannon’s definition, as the difference between the

marginal and conditional entropies:

I∗(R;S) = H∗(R)−H∗(R|S) (8)

The similarity measure < r|r′ > is defined as a

function of the VP distance DV P (r, r
′) between two

population responses r and r′. More specifically, we

defined < r|r′ > as follows:

< r|r′ >= 1 ⇐⇒ DV P (r, r
′) < Dcritic (9)

where the critical distance Dcritic is a free parameter,

interdependent to CV P , that needs to be determined

properly. More specifially, in order to determine the

optimal values for Dcritic and CV P we computed the

minimum and maximum interstimuli and intrastimuli

distances. According to the novel information theoreti-

cal measures, a perfect discrimination between different

stimuli, which corresponds to maximal I∗(R;S) and

zero H∗(R|S) occurs when the maximum intrastimuli

distance becomes smaller than the minimal intrerstim-

ulus distance. This means that all the responses to a

given stimulus should lie in a region of space whose

size is smaller than the distance to the closest response

to another stimulus.

2.5 Experimental protocols

Four different experimental protocols were applied

to the sensor array in order to both characterise its

properties and collect a data benchmark to which

apply the discrimination method (cf. section 2.5). The

1st experimental session aimed at characterising the

response of the device with respect to the strength

and position of the stimulus so to precisely define the

receptive field of each sensor. A single 4 mm-diameter

cylindrical probe, mounted on a load cell, was used to

indent the neoprene. The touch sensor was stimulated

at 6161 different positions over the entire array surface

according to a regular grid layout (i.e. 0.2 mm step).

During the 2nd session, the same probe was rubbed

over the entire finger at constant force amplitude. The

protocol was repeated at two different sliding velocities

in order to test the response of the finger. The 3rd and

the 4th sessions aimed at emulating Braille-like reading

tasks. In the 3rd session a set of 26 probes reproducing

a scaled version (1:3) of the Braille alphabet was used

as stimulation probe. All the patterns where indented

three times at two different alignments with respect to

the sensor array (156 static presentations). During the

4th session, the set of 26 single characters were rubbed

over the fingertip three times at two different velocities

and two different alignments (444 dynamical pattern

presentations).

3. Results

3.1 Fingertip characterization

A characterization of the basic properties of the

fingertip responses is reported in Fig. 5. The results

refer to data collected when the probe was entirely in-

dented into the neoprene. Each of the 24 sensors shows

a high signal-to-noise ratio (50dB) and a Gaussian-

shaped receptive field with amplitude 200 fF ± 3.3

std and width 2.5 mm ± 0.044 std. We also report the

fitted responses of 4 adjacent sensors positioned at the

center of the finger. The fitting procedure clearly shows

the stability of the device whose sensors respond in a

similar way regardless of the position they have in the

finger layout. It is also possible to observe the degree



of overlapping between sensors’ receptive fields. As a

supplementary analysis, the fitting procedure was also

perfomed by reading out the analogue signals at differ-

ent indentation levels of the probe. The same gaussian

shape of the response with equal receptive field widths

and amplitude proportional to the indentation of the

probe was observed (data not shown).
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Fig. 5. Top: Normalised receptive field of a single sensor obtained
by sampling its response at 6161 different positions over the entire
array (axis dimensions were normalised). Bottom: Gaussian fitting
of the response of 4 sensors along a line.

3.2 Encoding of analogue data into spiking activity

We report in Fig. 6 two examples of spiking activity

obtained after encoding the analogue data obtained

upon stimulation of the fingertip with a scaled Braille

“F” character. One can clearly observe that firing rates

change according to the strength of the stimulation

delivered to the sensors. In fact, the closer is the probe

to a sensor the stronger is its analogue response driving

to a higher firing activity of the neurons encoding its

signal. Moreover, given the dynamics governing the

LIF neurons, a longer stimulation induces a constantly

substained firing activity as shown in the raster plot

obtained from the static stimulation. Here, the three

neurons encoding the activity of the channels which

were closer to the probe show a bursting activity

unobserved from the others. Furthermore, it can be

noticed how in the actvity encoded upon dynamical

stimulation the firing patterns of the most solicited

neurons change in time as the probe is rubbed. Such

a change reproduce a topological mapping which links

the activity of the neurons to the area of stimulation.

A similar behaviour has been observed for a particular

type of human fingertip mechanoreceptors (i.e. SAI)

measured in experiments involving Braille character

scanning [8]. In order to apply the information-theory

method, for both the static and dynamic protocols we

generated 100 activity patterns for each character by

taking the activity encoded from one of the performed

experiments and adding a 3 mm jitter to each spike

from a uniform distribution.
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Fig. 6. Spiking activity of the LIF neural network after enconding
the analogue data of the fingertip in response to stimulation through
the ”F“ Braille character. Top: raster obtained after static stimulation
encoding. One can observe that neurons 12, 22 and 24, encoding the
activiy of sensors named 12, 22, and 24 in the touch sensor layout
(Fig. 2) show high firing rates because of the proximity of such
sensors with the stimulation probe. Differently, the other neurons
show an extremely low firing rate (if any) because they take into
account capacitive signals mainly due to noisy effect given to the
indentation of the probe into the fingerip. Bottom: raster obtained
after dynamical stimulation encoding. As for static stimulation few
neurons are more solicited than the others but, in this case, the firing
patterns change in time clearly following the movement of the probe
while it is rubbed over the finger. Also in this case noisy effect are
observed, which are higher than in the static stimulaion because of the
strongest solicitation all the sensors undergo during the movement of
the probe. Nonetheless, one can clearly distinguish the high activity
of the neurons whose solicitation is given by a wider indentation of
the probe with respect to the ones undergoing only noisy effects.

3.3 Statically delivered stimuli data

In Fig. 7 we report the results of the discrimination

of all Braille alphabet letters statically delivered to

the fingertip. Only the first spike waves were taken

into consideration for the decoding analysis in order to

demonstrate the high information content in the timing

of the first spikes as reported in previous works [1],

[11]. Due to the use of the novel metrical information

measure (cf. section 2.4), a perfect discrimination is

possible very early with respect to the stimulus onset

(i.e. after 120 ms). This results extend to artificial

data previous observations in human microneurography
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Fig. 7. Top: Metrical Mutual Information (i.e. MI∗) and Con-
ditional Entropy (i.e. H∗(R|S)) are reported over time. The cho-
sen Victor-Purpura cost CV P 0.085. The optimal discrimination
criterion, namely maximum information and minimum conditional
entropy, occurs after 120 ms from the stimulus onset. Center: In-
trastimuli and interstimuli distances evolve in time as a higher number
of spikes are recruited for the analsys. A perfect discrimination
occurs at 120 ms when the minimum interstimuli distance has
becomes bigger than the maximum intrastimuli one. Bottom: The
distance matrix for all stimuli responses is reported. Low diagonal
values can be observed corresponding to small differences between
responses to the same stimulus. At the same time, the higher is the
difference between the delivered stimulation patterns, the bigger are
the distances between the responses.

data in which the stimulus source could be perfectly

discriminated in few tens of milliseconds [2], [1]. Fur-

thermore, we compared the results obtained with both

the metrical information we presented and the classical

Shannon information definition. We observed that our

method always outperformed the classical definition

with respect to the time the perfect discrimination was

reached. Such an outcome is particularly encouraging

for robotic application where a fast response to external

stimuli is required. Furthermore, a spike based discrim-

ination method allows to exploit the complexity of the

neural code by taking advantage of the variety of both

mutual information

conditional entropy
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Fig. 8. Top: Metrical Mutual Information (i.e. MI∗) and Condi-
tional Entropy (i.e. H∗(R|S)) are reported over time. The chosen
Victor-Purpura cost CV P was 0.085. As for the static stimulation,
the optimal discrimination criterion (i.e. maximum information and
minimum conditional entropy) is reached after 500 ms. Center: The
minimum interstimuli distance overcomes the maximum intrastimuli
one at 500 ms. Bottom: The distance matrix for all stimuli responses
is reported. As already observed for the static stimulation protocol,
small distances are typical of responses to the same stimulus (diag-
onal values) while different stimuli induce higher distances in the
spike train space.

the spatial and temporal dynamics of firing patterns in

populations of neurons.

3.4 Dynamically delivered stimuli data

In Fig. 8 the results concerning the discrimination

of all Braille alphabet letters dynamically delivered are

reported. Given the different nature of the experiments,

the need is to analyse the firing pattern over stimulation

time as it changes together with the position of the

probe. More specifically, each sensor affected by the

stimulus undergoes a response transient which depends

on the indentation level, velocity of the probe and

duration of the stimulation. Such transient is reflected

also by the spiking activity in terms of firing frequency

over time and individual spike jitter. Hence, differ-



ently from the static protocol, the entire spike train

of each neuron was taken into consideration for the

decoding analysis and not only the firts spike wave.

Also in this case, as shown for the static stimulus, a

perfect discrimination is possible once the minimum

interstimuli has overcome the maximum intrastimuli

distance (cf. section 2.4). Again, the latter condition is

verified very early after the stimulus onset at around

500 ms when maximum information and minimum

conditional entropy occur. It should be remarked that

the method we used proves to be particularly powerful

even in the presence of long spike trains. In fact, as

a higher number of spike is considered the computed

interstimuli and intrastimuli distances tends to create

wider clusters of responses whose overlapping tends

to be more probable. Nonetheless, the choice of an

appropriate cost CV P and the consequent derivation of

the Dcritic leads to a perfect discrimination of the entire

dynamical stimuli set.

4. Conclusions

A framework for the encoding/decoding process of

artificial tactile signals is presented. The main result of

the presented study is the fast and optimal discrimi-

nation of Braille-like stimulation patterns delivered to

an artificial touch sensor. With the aim of mimicking

the skin mechanoreceptor dynamics, the analogue data

from the fingertip were encoded through a biologically

inspired network of leaky integrate-and-fire neurons

able to collect the activity of the sensors according to

a specific receptive field. The encoded signals reflected

the property of the tactile stimulation and were decoded

on the basis of a newly defined information measure

based on the metrical property of the spike train space.

Such a measure allowed to perform a perfect discrim-

ination (i.e. 100% patterns correctly classified) early

after the stimulus onset (i.e. 120 ms for static stimuli

and 500 ms for dynamical stimuli). Given the prop-

erties of the framework we propose and the efficacy

of the encoding/decoding process, mostly interestingly

with respect to the early discrimination capability, we

envisage the study carried out as a possible starting

point for real time robotic applications in which a fast

and reliable discrmination of external sensory stimuli

is required.
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