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ABSTRACT 

 

Various recent brain-machine interface (BMI) 

applications have emphasized the potential of using 

cortical signals for the kinematic control of artificial 

devices such as robotic arms or legs [1], [2]. However, 

it is less clear whether hand and digit movements can be 

controlled in the same way in order to potentially 

restore manual dexterity. Recently, we have provided a 

proof-of-concept that an anthropomorphic robot finger 

with 4 degrees of freedom (DoF) can be controlled off-

line by intracortical signals recorded in the behaving 

monkey [3]. Here we report the performance analysis 

based on the same data and robot, the statistical results 

including aspects of learning/training, prediction, as 

well as control.  
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1. Introduction 

 
Recent developments in BMI technologies have shown 

how cortical activities can be used to control the 

position and/or the state of different types of external 

devices in real time. These efforts have focused mainly 

on controlling a computer cursor [1], [2], the state of 

on/off switches or the decoding and control of reach 

trajectories of a robotic arm, sometimes equipped with a 

simple 1 DoF gripper [3-6].  

However, studies dedicated to the decoding of cortical 

signals for the eventual control of a dexterous hand with 

multiple degrees of freedom are rare. The goal would be 

to control individuated and/or combined finger 

movements. First attempts of decoding finger 

movements have only been undertaken very recently [7-

11]. None of these previous results have so far been 

applied to robot artifacts.  

Many studies on the cortical activity of the motor cortex 

in behaving non-human primates (e.g. [12]) have shown 

that neurons in the primary motor cortex (M1) code for 

some aspects of finger movements, such as force. In the 

aim of providing a proof-of-concept that a robot finger 

of multiple DoF can be controlled by intra-cortical 

signals, we first set up an experimental site (robotic 

digit) and implemented a kinematic control of its 

movement (i.e. positional control). To mimic the 

monkey finger, we opted for an anthropomorphic robot 

finger of 4 DoF (designed and manufactured by Shadow 

Robot Company, UK) actuated by McKibben-like 

pneumatic artificial muscles in an antagonist actuation 

scheme. This robot digit is equipped with hall effect 

position sensors and with fingertip quantum tunnel 

tactile sensors. The robot digit was then mounted on an 

experimental set-up, which contained additional 

mechanical parts and sensors to imitate the monkey task 

(precision grip). Finally, a hybrid motor control scheme 

composed of an artificial neural network and PID 

modules has been implemented [3]. We then performed 

a statistical analysis on the decoding of previously 

recorded cortical data for controlling finger position. 

This is reported in the following.  

 

2. Method 

 
The sensory-motor control of an anthropomorphic robot 

finger using intra-cortical signals is composed of three 

main steps: 

• Recording the data. 

• Decoding the neural data to predict grip 

motion (BMI part). 

• Controlling the robot. 

 

2.1 Data recording  

 

The biological signal consists of the activity of 33 

corticomotoneuronal (CM) cells recorded in M1 of a 

macaque monkey performing a precision grip task. 

Recordings were obtained in 7 separate behavioral 

sessions. In addition, EMG signals were recorded from 

up to eight intrinsic hand and forearm muscles. These 

recordings were obtained from the Institute of 

Neurology (UCL, London, UK, courtesy of RN 

Lemon). 

 

 
 

Fig. 1. Left: Schematic diagram of the manipulandum used for the 

precision grip task. Right: example of the recorded signal during the 

precision grip task. From top to bottom: force of the index finger and 



 

of the thumb, CM cell activity, EMG of two muscles (AbPB and IDI). 

Figure taken from [12]. 

 

2.2 Decoding spiking data  

 

We attempted to decode two different signals from the 

CM cell spike trains: (i) the time-varying endpoint 

position of the index finger during precision grip. The 

position was recorded via a spring-loaded lever in the 

experimental setup. (ii) the EMG of extrinsic or 

intrinsic hand muscles recorded during this same task. 

 

We used a neural network approach, a Time Delayed 

Multi-Layer Perceptron (TDMLP) to decode and thus to 

predict either the finger position or the EMG from the 

CM cell spike trains. The input vector consisted of a 

binary sequence corresponding to the presence/absence 

of spikes of the CM cell (down-sampled to 250 Hz) 

over a given period, i.e. the duration of the sliding input 

window, which varied between 25 ms and 400 ms. 

 

The TDMLP, a three-layer feed-forward neural network 

was implemented with the Matlab neural network tool 

box. 

 

 

Fig. 2. The control of a robotic digit of 4 DoF using activity of 

multiple CM cells. 

 

The input layer consists of D × NC units (D is the 

number of bins in the sliding window, and NC the 

number of CM cells used) which represent the spiking 

response recorded between time t-D and t. Sigmoid 

activation functions (range 0-1) were used in the hidden 

layer, which consisted of 10 units. The one output unit, 

also using a sigmoid activation function, provides a 

positive scalar that corresponds to the predicted position 

(or EMG) at time t. This is illustrated in Fig. 3. 

 

Hidden layer units and the output unit also received bias 

inputs. Bias and connection weights are adjusted during 

the learning process, based on the gradient descent error 

to minimize the sum of the squared errors between the 

desired output and the network output. The number of 

units in the hidden layer and the particular learning 

algorithm have been chosen by the technique of cross-

validation. 

 

Learning of the input-output transformation occurred 

through the use of multiple trials (min: 15, max: 92 

trials) depending on the recording session. The number 

of learning epochs was fixed to 1000, each epoch 

containing all trials. The Nguyen-Widrow algorithm  

was used for weight initialization.  

 

 
 

 
Fig. 3. Schematic of the TDMLP and its input-output transformation. 

 

 

2.3 Controlling the robot digit 

 

The third and final part of the BMI based motor control 

chain consists in the reproduction of estimated index 

finger movement pushing on one of the 

manipulandum's lever, shown in Fig. 2, using the 4 DoF 

robot finger. On the finger there are four joints and 

three human-sized phalanges. Both middle and 

proximal (MCP) joints are actuated in the 

flexion/extension plane by a pair of antagonist artificial 

muscles. The MCP joint, also responsible for the 

abduction/adduction motion of the proximal phalange, 

is in addition driven by one muscle with an opposing 

return spring. Similar to the human finger the distal 

joint is coupled to the middle joint such that the angle 

of the middle joint is always greater than or equal to the 

angle of the distal joint. The joint angles relative to the 

estimated fingertip trajectory were calculated by an 

inverse kinematics model of the robot finger taking into 

account the coupled motion of the distal phalange. 

Finally, we used a classical PID controller, the last link 

of the control chain, to ensure the tracking of the 

desired trajectory as shown in Figure 4. 

 

3. Results 

 

The performance of the TDMLP-based prediction was  

systematically analysed by varying the size D of the 

sliding window and the number of cortical cells NC 

used as inputs. This was done with a TDMLP with 10 

units in the hidden layer, a number of hidden units 

found to be optimal across different sizes of input 

windows, irrespective of the type of the output signal, 

i.e. position or EMG. Performance (Per) was calculated 

as follows: 
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Fig. 4 shows the performance of the TDMLP in 

estimating the recorded position for different sizes of 

sliding input windows, as well as for two modes of 

training: (i) a prediction based on the spike train of a 

single CM cell, and then averaged across cells in a 

given recording session. This was called "cell-by-cell" 

prediction. (ii) a prediction based on spike trains of 

multiple, simultaneously recorded CM cells. This was 

called prediction of "combined cells". The number of 

combined cells varied between 2 and 6 depending on 

the session. Fig. 4 shows the grand average across three 

recording sessions.  

 

 
Fig. 4. Performance of prediction for fingertip position as a function 

of window size and number of cortical cells. Open triangles: “cell-by-

cell” estimation. Filled triangles: “combined cell” estimation. Grand 

average across 3 sessions. Similar results were found for the 

remaining 4 sessions. 

 

Fig. 5 shows the performance of a similar network for 

predicting the EMG signal of Abductor Pollicis Longus 

(AbPL) muscle.  

 
Fig. 5. Performance of prediction for EMG activity of AbPL muscle 

as function of window size and number of cortical cells. Same 

conventions as in Fig. 4. 

 

The network behaved similarly for predicting position 

or EMG. Three results were found: (i) In both cases the 

performance increased continuously as a function of 

increasing input window size (from 25 to 400 ms). 

Saturation was observed at a window size of about 400 

ms. (ii) Performance was significantly better when 

using multiple simultaneously recorded spike trains 

compared to prediction based on single cells. (iii) 

Independent of input size and number of cells, the 

prediction of position was better than that of EMG.      

 

How the observed performance translates to trial-by-

trial prediction is shown in Fig. 6. Recorded (blue) and 

estimated (red) position signals for three representative 

trials, based on a TDMLP with a 400 ms input window 

of 4 concurrent CM cells. Also shown is the prediction 

of two corresponding EMG signals for Flexor 

Digitorum Superficialis (FDS) and Extensor Digitorum 

Communis (EDC).  
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Fig. 6. The recorded (blue) and estimated (red) finger trajectories 

(top) and EMG activity of FDS and EDC for three successive trials. 

 

Since each CM cells facilitates a given set of target 

muscles, it was of interest to investigate whether 

prediction of EMG varied as a function of the muscle 

field of the input cells. We hypothesised that the 

prediction of a target EMG would be better when based 

on CM cells that facilitated that particular muscle. 

Presence of facilitation was estimated by post-spike-

facilitation (PSF) of spike-triggered averaging of the 

EMG [12].  

 

 
Fig. 7. Prediction of FDS EMG with CM cells having FDS as target 

muscle compared to a prediction based on CM cells without 

facilitation of FDS (same 3 sessions as in Fig. 5). 

 



 

Fig. 7 shows the performance of predicting (over 3 

sessions) the FDS EMG as a function of the window 

size. Prediction based on CM cells that facilitated the 

FDS EMG (green triangles) tends to be better than 

those based on CM cells that facilitated other muscles 

than the FDS (yellow triangles).  

 

Finally, we used the predicted position in order to 

control the robot digit. A comparison between the 

performance achieved by the TDMLP and that realized 

by the robot digit shows a systematic lower 

performance for the robot. The decrease in 

performance, measured over 25 trails, is in the order of 

10% to 20% (Fig. 8). However, this still allows for a 

functional reproduction of the monkey’s digit 

movement.  

 

 
Fig. 8. The performance comparison between the TDMLP-estimated 

and reproduced fingertip endpoint positions over 25 trials recorded 

during one session.  

 

4. Discussion  

With few exceptions [7-11], most studies on the control 

of the upper limb through data from a cortical invasive 

BMI have focused on reaching [e.g. 1,2,5,6], not on 

hand or finger movements. Our results on the control of 

a single finger demonstrate that neural activity from 

cells recorded in the M1 hand area contain sufficient 

information to enable decoding of an asynchronous 

finger movement.  

Several differences distinguish our approach from that 

of Georgopoulos et al. [7] or from those of Schieber and 

Thakor [8-11]. Both of these groups also worked on 

decoding of digit movements. 

First, we used a neural network approach to obtain a 

transfer function between spike trains and finger 

trajectory, whereas they used a coding based on the 

population vector [7], on non-linear filters [8], or on a 

maximum-likelihood scheme [11].  

Second, they decoded a binary movement direction 

(flexion or extension) together with a decoding of one 

of the five digits to be moved [7]. Essentially, their 

decoder worked as a movement classifier [9,11]. In our 

case, decoding concerned a single finger whose 

endpoint trajectory was a time-varying scalar. We 

showed that the accuracy of the prediction increased as 

a function of the size (duration) of the input window. 

This was shown previously for hand trajectories [13]. 

Third, they used the activity of up to 50 simultaneously 

recorded but unidentified neurons in the M1 hand area 

as inputs, whereas we used few (up to 5) but identified 

CM cells. We showed that the accuracy of the 

prediction increased as a function of the number of 

simultaneously recorded CM cells acting as inputs. 

Such an increase in performance has been shown 

previously for unidentified cells in the case of 

classifying digit movements [8,11], as well as in 

decoding of the arm trajectory [5, 14]. 

We also predicted EMG activity. Although EMG is an 

inherently more noisy signal than position, prediction 

accuracy reached up to 60%, for windows of ≥ 200 ms 

and multiple CM cells. Slightly higher levels of 

accuracy (70-75%), but based on many more and 

unidentified cells, have been obtained previously for 

EMGs during arm movements [7]. Furthermore, we 

show a trend for improved accuracy if the prediction is 

based on CM cells that facilitate the target muscle 

EMG. 

Finally, the TDMLP-based prediction of finger position 

was used to replicate the recorded movement with a 

robotic digit. Our robot differs from those of other BMI 

applications. We used a robot finger actuated by 

artificial muscles in an antagonist actuation scheme. 

Three properties make this robot biologically more 

plausible than conventional robots: i) one can establish 

a correspondence between a particular anatomical 

muscle and its artificial counterpart in the robot. ii) The 

dynamic control -future work in this project - needs a 

model of the actuators. It has been demonstrated that 

actuators of this type are biologically highly plausible 

[15]. iii) Finally, an analogy between the EMG signal 

and the pressurized air used to contract the artificial 

muscle looks promising. The observed performance 

difference between estimated and realized robot 

movement are most likely due to non-resolved 

compatibility issues in the inverse kinematics model as 

well as in the PID controller. 

In conclusion, decoding of spike trains from 

simultaneously recorded CM cells in M1 allows for an 

off-line reproduction of a digit movement during 

precision grip. 
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