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ABSTRACT
The cerebellum plays a major role in motor control. It is 
thought  to  mediate  the  acquisition  of  forward  and 
inverse  internal  models  of  the  body-environment 
interaction  [1].  In  this  study,  the  main  processing 
components  of  the  cerebellar  microcomplex  are 
modelled as  a  network of  spiking neural  populations. 
The model cerebellar circuit is shown to be suitable for 
learning  both  forward  and  inverse  models.  A  new 
coupling  scheme  is  put  forth  to  optimise  online 
adaptation and support  offline learning. The proposed 
model  is  validated  on  a  procedural  task  and  the 
simulation results are consistent with data from human 
experiments  on  adaptive  motor  control  and  sleep-
dependent consolidation [2,3].  This work corroborates 
the  hypothesis  that  both forward  and inverse  internal 
models can be learnt and stored by the same cerebellar 
circuit,  and  that  their  coupling  favours  online  and 
offline learning of procedural memories.
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1.  Introduction
It is largely admitted that the cerebellum plays a major 
role in motor control (e.g. coordinating movements and 
making them accurate) by acquiring internal models of 
the body and the world [1, 4]. In motor control theory, 
internal models are divided into two groups identified 
as forward and inverse. The forward model predicts the 
sensory outcome of  an action:  it  estimates  the causal 
relationship  between  inputs  to  the  system  and  its 
outputs.  The  inverse  model  works  in  the  opposite 
direction,  providing  a  motor  command  that  causes  a 
desired change in state [5].  Both forward and inverse 
models  depend on the dynamics of  the motor system 
and must adapt to new situations and modifications of 
the motor apparatus [6].
 Although  Darlot  et  al.  (1996)   [7]  suggested  that  a 
forward model could be first  formed in the cerebellar 
cortex and then converted to an inverse model, most of 
the existing studies on bioinspired control architectures 
have compared the advantages of one type of internal 
model against the other, debating on which of them is 
most likely to be implemented in the cerebellum [8, 9]. 
Very  few  works  have  investigated  the  benefits  of 
coupling  internal  models  [10,11],  and  none  has 
underlied the fact  that  internal  model coupling would 
endow  the  system  with  offline  learning  capabilities. 
This is  quite  surprising, given that  sleep is known to 
contribute to offline consolidation and enhancement of 

motor adaptation capabilities in humans [12], and that 
the  cerebellum  is  undoubtedly  implied  in  these 
adaptation processes [13]. 
This paper proposes a novel scheme to couple internal 
cerebellar models. The model is primarily validated on 
a closed-loop architecture to control the dynamics of a 
robotic arm. The overall coupling model is depicted in 
Fig. 1a, whereas the offline functioning of the learning 
scheme is presented in Fig. 1b, under the assumption 
that  the  sequence  of  actions  performed  during online 
training can be replayed offline. 

Fig. 1. Coupling scheme for online and offline motor  
learning. (a) Online adaptation. The arm controller 
receives the desired state and maps it onto a motor 
command (τ). The desired state is also sent to the 

inverse model that acts as a feed-forward corrector 
and calculates the motor correction (τc). The resulting 

command (τf) is then sent to the arm actuators. By 
comparing the desired state against the sensed real 
state, the inverse model learns to reduce the error 
between desired and real arm positions. While the 

motor command τf is being sent to the arm, an 
efference copy of the order is also conveyed to the 
forward model that learns to predict the consequent 

future position of the arm. The predicted state is then 
sent to the arm controller that can recalculate a new 
trajectory if the expected position in the trajectory 

differs from the predicted one. Finally, the real state 
is used to adapt the forward model to mimic the 

motor apparatus of the arm. (b) Offline adaptation. 
During offline processing, sensory feedbacks (i.e. the 
real state signals driving forward and inverse model 
learning) are not available. Yet, if the forward model 
is at least partially learnt, the predicted state signals 
can be used to continue to train the inverse model.



The  hypothesis  of  an  offline  replay  relies  on  earlier 
animal investigations that have explored the possibility 
that patterns of brain activity which are elicited during 
initial  task  training  are  replayed  during  subsequent 
sleep  [14].  The  model  is   assessed  on  the  rotation 
adaptation task used by Huber et al. (2004) [3] to study 
motor learning (both online and offline) in humans. Our 
numerical simulations investigate the benefits of using 
both  internal  models  to  improve   online  learning 
capabilities,  and  they  evaluate  to  what  extent  the 
proposed coupling scheme can explain the experimental 
findings on offline learning occurring during sleep  [3].

2. Methods

2.1 Cerebellar microcomplex model
The cerebellar  microcomplex circuit  is  modelled as a 
network of populations of spiking  neurons (Fig. 2) and 
simulated  using  an  event-driven  simulation  scheme 
[15]. Mossy fibres (MFs) are implemented as axons of a 
population  of  1600  leaky  integrate-and-fire  neurones 
separated in two regions: Forward and Inverse Model, 
FM  and  IM,  respectively.  Their  driving  currents  are 
determined by using radial basis functions spanning the 
input space uniformly. The MFs of the forward model 
carry sensory information and an efference copy of the 
motor command. The MFs of the inverse model convey 
desired joint position and velocity [16]. Each MF region 
activates a corresponding population of 200 neurones in 
the deep cerebellar nuclei (DCN). Also, each MF region 
projects onto a cluster  of 10.000 granule cells (GCs), 
producing  a  sparse  representation  of  the  input  space. 
Each GC subpopulation activates in turn a population of 
200  Purkinje  cells  (PCs),  which  send  inhibitory 
projections  onto  DCN  neurones.  The  firing  of  DCN 
provides  the  outputs  of  the  model,  i.e.  the  forward 
model estimate the future state of each joints and the 
inverse model correction to be sent to the system. The 
firing rate  of DCN units is mainly determined by the 
inhibitory action of PCs, which in turn are principally 
driven by the parallel fibre (PF) activity, axons of the 
GCs. Therefore, modifying the strength of the synapses 
between PFs and PCs results in changes of the input-
output  relation  characterising  the  cerebellar  system. 
Bidirectional  long-term  plasticity  (i.e.  potentiation, 
LTP, and depression, LTD) is modelled at the level of 
PF-PC synapses (see fig. 2, plastic synapses).

2.2 Procedural adaptation task
The  simulated  task  is  inspired  from  the  rotation 
adaptation task realized by Huber et al. (2004) [3]. In 

this  task  human  subjects  have  to  move  a  handheld 
cursor  on  a  two-dimensional  tablet  from  a  central 
starting  point  to  one  of  eight  targets  displayed  on  a 
computer screen together with the cursor position. An 
opaque shield prevent subjects from seeing their arm. 
Targets  are  randomly  highlighted  at  regular  1-s 
intervals.  Unbeknown  to  the  subjects,  the  cursor 
position  is  rotated  anticlockwise  relative  to  the  hand 
position by a fixed angle (from 15 to 60°, depending on 
the trial, see details below).  
We simulate the rotation adaptation experiment in order 
to study the possible role  of internal model coupling for 
online  learning  and  offline  consolidation.  The  global 
architecture of the simulated arm controller is detailed 
in Fig. 3. 

Fig. 2. The cerebellar microcomplex model.

Fig. 3. Functional diagram of the controller. A 
desired trajectory to the highlighted target is 

computed by the trajectory generator and 
transformed in the joint-related reference frame via 
the inverse kinematics model. These desired arm 

states are used at each time step to compute a crude 
torque command. The desired state is also sent to 

the inverse model of the cerebellum, whose output 
is a corrective command to control arm movements. 
The cerebellar forward model receives an efference 
copy of the motor command, and predicts the future 

state (position and speed) and sends it to the 
trajectory generator. In the coupling scheme, both 

internal models drive the system. Trajectory error is 
sensed at the level of the limb and sent back to the 

system, which is used to compute the training signal 
at the olivary system level and conveyed by the 

climbing fibres to both internal models.



The simulated experimental setup consists of a central 
position  S  and  eight  targets  evenly  distributed  on  a 
circle centred at position S (Fig. 5). A trial is defined as 
the succession of 90 movements. Each movement starts 
from S and consists in realising a  movement of the arm 
to one of the eight targets, which is randomly changed 
every  second  (1s  corresponds  to  the  duration  of  one 
target-directed movement in our simulation).

 Similar  to  Huber  et  al.  (2004) [3],  the experimental 
protocol  involves  four  incremental  steps,  for  each  of 
which the angular deviation (bias) is increased by 15°, 
within the range [15°, 60°] (see Fig. 4). Every step is 
composed of three trials. Three groups (FM, IM, CMoff) 
of  ten  individuals  each  are  trained  on  the  rotation 
adaptation task. 
The FM group uses a pure forward model to solve the 
task. The IM group employs a pure inverse model to 
adapt  the response  to the unknown angular  bias.  The 
CMoff  group uses the coupling scheme.
Following the four training steps, the extent of rotation 
adaptation of the CMoff group is tested using an imposed 
bias  of  60°  (Trial  13  in  Retest  1).  Then,  simulated 
agents are enabled to undergo an offline consolidation 
process consisting of a series of 48 trials. Subsequently, 
subjects are retested on a simple trial (Trial 14, retest 2). 
To assess the benefit of an offline consolidation process 
against  a  pure  online  learning,  performances  of  the 
CMoff group are compared to a group of control subjects 
(CMCTRL) which does not perform offline consolidation. 
Performances  are  measured  by  quantifying  the 
directional error (see Fig. 5), which corresponds to the 
angle between the line from the initial hand position (S) 

to the central  position of  the target  (T) (dotted green 
line) and the line to the position of the hand at the peak 
outward velocity (solid line).

3.  Results

3.1 Online adaptation
 Figs. 6a,b show the learning performances of the three 
groups FM, IM, and CMoff during the online training 
sessions  (i.e.  step  1-4,  trial  1-12)  of  the  rotation 
adaptation task. Fig. 6a displays three examples of arm 
trajectories towards three different targets. 
It  shows  qualitatively  that,  at  the  end  of  the  trial  6, 
subjects using the coupling scheme (CMoff , green solid 
line) tend to perform better than both subjects using the 
inverse model only (IM, red dashed line) and subjects 
using the forward model only (FM, blue dotted line). 
 Fig.  6b  quantifies  these  results  for  the  entire  set  of 
training trials by averaging over all subjects. The mean 
normalised directional error is plotted as a function of 
training  trials.  The  three  groups  of  subjects  learn  to 
solve  the  rotation  adaptation  task  and  cope  with  the 
increasing unknown angular bias (from 15° to 60°) over 
training steps. Forward model subjects (FM, blue dotted 
curves)  adapt  quite  rapidly  but  they  reach  a  plateau 
after the 2nd trial and do not further  reduce the error 
over training. The passage to a new step (i.e. trials 4,7 
and 10) does not have a significant impact on the FM 
performances  and  leads  to  a  small  increase  of  the 
directional  error  (+8%  between  trial  3  and  4;  +6% 
between trial 6 and 7; and +2% between trial 9 and 10), 
which  reflects  the  fast  learning  capabilities  of  FM 
subjects.  However,  subsequent  training  trials  do  not 
significantly decrease the error, which stabilises around 
0.45-0.5 until the end of the training process (trial 12).
On  the  other  hand,  inverse  model  subjects  (IM,  red 
dashed curves) are slightly slower to adapt than FMs, 
but  they  succeed  in  minimising  the  directional  error 
within  each  training  session,  going  beyond  the 
performances of purely FM subjects. Adaptation of IM 
subjects is rather characteristic and stereotyped during 
steps 2, 3, and 4 (i.e. for angular deviation ranging from 
30° to 60°).  Every time the angular  bias  is  increased 
(i.e. trials 4,7 and 10), the performances of the inverse 
model  are  impaired  and  directional  error  increases 
(between 0.43 and 0.47).  This result  reflects the slow 
adaptation capability of the inverse model when facing 
new contexts.  Then,  during the 2nd and  3rd trials  of 
each  step,  the inverse  model  adapts  properly and the 
directional error decreases significantly (converging to 

Fig. 5. Experimental task and calculation of error. 
S: Starting point; E: Ending; Green dashed line: 

Ideal movement towards the target; Red line: actual 
movement.

Fig. 4. The protocol of the rotation adaptation task and the offline learning task.



accuracy values ranging from 0.25 to 0.3). Finally, the 
subjects using the coupled internal models (CMoff, green 
solid  curves)  perform  better  than  both  IM  and  FM 
subjects along the entire training period, showing both 
fast  adaptability  and  error  reduction  over  time.  The 
mean error rises slightly when the angular bias changes 
(i.e. trials 4,7 and 10) but then it decreases significantly 
and converges to values ranging from 0.15 to 0.2. Fig. 
6b also displays the  learning  performances  of  human 
subjects (yellow data points) as reported by Huber et al. 
(2004) [3].

It  is  shown  that  the  simulated  CMoff subjects  (green 
data) have online learning performances comparable to 
those of real subjects over the entire training process. 
These  results  suggest  that  the  proposed  coupling 
scheme, which favours the cooperation between internal 
predictor  and  corrector  models,  offers  a  plausible 
solution to optimise procedural motor learning.

3.2 Offline learning and consolidation
As aforementioned, another potential advantage of the 
coupling  scheme  is  that  it  supports  offline  learning 
assuming that the sequence of actions executed during 
online training can be replayed offline [14]. In order to 
assess  whether  an  offline  consolidation  process  can 
further increase the system performances reached at the 
end of the online adaptation protocol, 2 groups of 10 
simulated subjects are considered. Both groups consist 
of  subjects  adopting  the  coupling  scheme  (CM). 

However,  one  group  (CMoff)  is  allowed  to  undergo 
offline learning, whereas the other (CMCTRL) is not.  The 
Fig.  4  shows  the  protocol.  Both  groups  (CMoff and 
CMCTRL) undertake the 12 training trials. A first probe 
test (trial 13) is executed to evaluate the extent of the 
online  rotation  adaptation  in  both  groups.  Then, 
subjects from group CMoff undergo a simulated offline 
learning process consisting of a set of 48 trials (4320 
trajectories  randomly  replayed)  during  which  no 
sensory feedback is provided to the system. Therefore, 
the learning signal can only be computed based on the 
prediction  provided  by  the  forward  model,  and  the 
inverse model  can adapt  its  dynamics only when this 
teaching information is available. Finally, both groups 
CMoff and CMCTRL undertake a second probe test (trial 
14) and their performances are compared.

Fig. 6c shows the results of this comparison both from 
our simulations and from experimental data obtained on 
human  subjects  [3].  A  repeated  measure  analysis  of 
variance  and post-hoc tests show that  the two groups 
have  similar  performances  during  the  first  probe  test 
(i.e. when tested immediately after online training, trial 
13). On the other hand, the second probe test (trial 14) 
shows that the mean directional error of CMoff  subjects 
is  significantly reduced  compared  to  control  subjects. 
Compared  to  the  first  probe  test  (trial  13),  a 
performance enhancement of 12.7 ± 2.1% is reached by 
CMoff  subjects. By contrast, control subjects exhibit a 
lower  performance  improvement  of  5.2  ±  1%.  The 

Fig. 6. Rotation adaptation task. Simulation results for both online and offline learning and comparison with  
experimental human data. (a) Example of three target-directed trajectories at the  end of trial 6. The system has to 
adapt its dynamics to compensate for an angular bias of 30°.  The blue dotted (resp. red dashed) lines indicate the 
sample solutions found by purely forward  (resp. inverse) model simulated subjects, respectively. The green solid 

lines denote the trajectories obtained with the coupling scheme model. (b) Results of online learning. The 
couplingmodel (green solid curves) provides both rapid adaptation and appropriate convergence levels. Also, it 
reproduces the experimental data obtained with human subjects undertaking the same rotation adaptation task 

(yellow data, taken from Huber et al. (2004) [3]. (c) Offline learning results. The mean error is significantly reduced 
in the group of simulated subjects that undergo offline consolidation. The experimental results obtained with real 

subjects (offline corresponds to sleep-dependent consolidation) are shown in yellow (taken from Huber et al. (2004) 
[3]). ***Significant values, p<0.001.



increase of performance of simulated CMoff subjects is 
consistent  to  that  observed  experimentally  on  human 
subjects after a night of sleep (yellow data, +11 ± 3 % 
[3]).  Since  all  parameters  were  controlled  in  our 
simulation, the improvement  we report  could only be 
explained by the offline consolidation process, and not 
by  other  factors  such  as  circadian  cycle.  However, 
simulated  control  subjects  appear  to  have  better 
performances during the probe test (trial 14) compared 
to  human  subjects  tested  again  after  8  hours  of 
wakefulness,  who  do  not  show  any  significant 
improvement.

4.  Conclusion
This  work  addresses  the  issue  of  coupling  internal 
models (i.e. forward and inverse) in the cerebellum in 
order  to  enhance  both  online  and  offline  learning 
capabilities.  The  proposed  connectionist  architecture 
takes  inspiration  from  the  cerebellar  microcomplex 
circuit  and  it  employs  spiking  neural  populations  to 
process  information.  Long-term  synaptic  plasticity 
(both  LTP  and  LTD)  is  implemented  to  achieve 
adaptive motor control. It is shown that the system can 
acquire  representations  of  closed-loop  sensorimotor 
interactions, suitable to adapt the behavioural response 
to  changing  sensory  contexts.  The  coupling  model 
reproduces  the  experimental  findings  on  human 
procedural learning during the rotation adaptation task 
proposed  by  Huber  et  al.  (2004)  [3].  The  sleep-
dependent  consolidation  observed  experimentally  is 
mimicked  here  by  an  offline  learning  phase  during 
which  a  replay  of  the  contextual  information  elicited 
during  online  training  occurs.  This  hypothesis  is 
corroborated  by  several  experimental  studies:  for 
example,  it  has  been  shown that  patterns  of  activity 
recorded  during  online  practice  of  a  motor  skill  task 
reappear  during  episodes  of  REM  sleep,  while  such 
activity is not seen in control subjects [14].

In  both  cases,  the  model  cerebellar  microcomplex  is 
used to adapt the dynamics of a fairly simple controller 
(e.g.  two degrees  of freedom arm). The model would 
probably  need  more  neuronal  resources  to  deal  with 
more  complex  motor  control  tasks.  One  possible 
solution  may  be  to  use  a  modular  approach  as 
previously  proposed  by  Wolpert  and  Kawato  (1998) 
[10].  The  coupling  model  would  then  be  taken  as  a 
functional  unit,  and  various  behaviours  could  be 
generated  by  combining  the  output  of  several  units. 
Because one unit could be used in different contexts, a 
large repertoire of behaviours could be generated, even 
with a limited number of modules.
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