
HAL Id: hal-00553414
https://hal.science/hal-00553414

Submitted on 10 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OpenElectrophy: an electrophysiological data- and
analysis-sharing framework

Samuel Garcia, Nicolas Fourcaud-Trocmé

To cite this version:
Samuel Garcia, Nicolas Fourcaud-Trocmé. OpenElectrophy: an electrophysiological data- and
analysis-sharing framework. Cinquième conférence plénière française de Neurosciences Computation-
nelles, ”Neurocomp’10”, Aug 2010, Lyon, France. �hal-00553414�

https://hal.science/hal-00553414
https://hal.archives-ouvertes.fr

OPENELECTROPHY: AN ELECTROPHYSIOLOGICAL DATA- AND
ANALYSIS-SHARING FRAMEWORK

Samuel Garcia and Nicolas Fourcaud-Trocmé
Neurosciences Sensorielles Comportement Cognition, CNRS UMR5020, Université Lyon 1

sgarcia@olfac.univ-lyon1.fr

ABSTRACT
Progress in experimental tools and design is allowing
the acquisition of increasingly large datasets. Storage,
manipulation and efficient analyses of such large
amounts of data is now a primary issue. We present
OpenElectrophy, an electrophysiological data and
analysis sharing framework developed to fill this niche.
Based on the object-oriented language Python, it stores
all experiment data and meta-data in a single central
SQL-type database. It also provides a graphic user
interface to visualize and explore the data, and a library
of functions for user analysis scripting in Python. It
implements multiple spike sorting methods, and
oscillation detection based on the ridge extraction
method due to Roux et. al. [1]. OpenElectrophy is open-
source and is freely available for download at
http://neuralensemble.org/trac/OpenElectrophy.

KEY WORDS
Software, database, spike sorting, oscillation

1. Introduction

Recent developments in electrophysiology experimental
techniques have lead to increases in the amount of data
produced. It is now common to record continuous
signals simultaneously from many electrodes with a
sampling rate of 10 kHz or more. This increase in raw
data flow has been accompanied by an increase in the
complexity of the experimental protocol, meta-data
management, and the subsequent analyses. Several
commercial software products have been developed to
tackle the increasing data management demands of
state-of-the-art electrophysiology. However, as such
commercial software products have not always evolved
as rapidly as the needs of the field, several open source
projects have appeared which are developed by the
researcher community. Some aimed at performing very
specific and well-known analysis based on a highly
developed graphical user interface (GUI, mainly for
time-frequency analyses), while other are simply
function libraries which provides powerful and more
flexible tools but not user friendly for
electrophysiologists more concerned by the
experimental part of their work (mainly in the spike
detection domain). Moreover, none of the available
software or toolboxes addresses the problem of how to
simply and conjointly manipulate experimental data and
meta-data.

OpenElectrophy [2] was designed more as a framework
for data analysis than a piece of completely frozen
analysis software. For example, it is not specific to a
given type of electrophysiological signal, and does not
directly perform a specific type of analysis at the
request of a researcher with a “point-and-click” scheme.
Rather, it provides tools to facilitate data storage,
exploration and analysis script writing. It gathers the
best of the two open source approaches described
previously, both in terms of purpose (time-frequency
analysis and spike sorting) and in terms of user
interface (GUI and toolboxes). In addition, it includes
generic tools for conjointly manipulating both
experimental data and meta-data.
The project’s main philosophy has three parts: first, for
each experiment, the data and meta-data are all stored in
a single central SQL-type database. This strategy allows
for flexibility in mixing both types of data in the
subsequent analyses. Second, it provides a GUI that is
useful for exploring the data and detecting events of
interest (oscillations or spikes). Third, it contains a
library of “methods” (high-level functions) to aid in the
writing of analysis scripts, both in the interfacing of
these scripts with the database and in the manipulation
of the data. This library is written with the open source
object-oriented language Python which can be
interfaced with many other languages (R, C, MATLAB,
FORTRAN) and thus allows the reuse of previously
written code.
This article presents the design and use of
OpenElectrophy. It is organized into two sections. We
first compare OpenElectrophy to similar projects and
detail the advantages, drawbacks and differences of
purpose for each project. Second, we present the
OpenElectrophy technical choices, work flow and the
general way in which it is used.

2. Comparisons with other projects and the
main goals of OpenElectrophy

A detailed comparison of OpenElectrophy with similar
projects has already been done [2]. We will give here
only the main points and conclusion of this comparison.
First many commercial products exist for the analysis of
electrophysiological signals and are in wide-spread use.
Despite their high quality GUI and continuous
development, these project use proprietary languages
which prevent code-sharing and reuse; and have limited
uptake of tools being developed by the scientific
community. Besides, they store data with proprietary
file formats whose specifications are generally not

available making long-term storage or sharing of data
problematic since anyone who wants to access the data
needs the right software. An attempt has been made to
deal with this issue by the neuroshare initiative [3] but it
provides only reading capabilities on windows
platform.
On the open source side, we find two main project
families: magneto- or electro-encephalography
(MEG/EEG) signal oriented and spike analysis
oriented.
In the MEG/EEG software family, we find MATLAB
based projects with comprehensive GUI for non-
progammer users and whose main capabilities include
time-frequency analysis, analyses of event-related
potentials, 3D plotting methods and source
localization.
In the spike sorting software family, we have on one
side numerous function libraries in various languages
(R, C++, MATLAB) generally written to introduce a
new spike sorting method and provide only limited
GUIs. On the other side, some projects are a collection
of scripts dedicated to the analysis of spike trains after
spike sorting has already been completed.
Finally, there is only a few number of projects mixing
both spike sorting and time-frequency analysis and
none of them include any database framework or meta-
data management.
One of the recent and closest project to OpenElectrophy
is CARMEN [4], a consortium which aims to create and
maintain a web portal to a virtual laboratory dedicated
to the sharing of electrophysiological data and analysis
scripts.
OpenElectrophy was written for several reasons:

• to have a project useful for all types of
experiments, mixing time-frequency and spike
analyses, compatible with large datasets
produced in neuroscience labs and capable to
reuse existing tools when available

• to have a project which includes different
spike sorting methods and provide a simple
way to compare them and add new ones

• to have a project that directly manage data and
meta-data through a SQL-type database that
allows sustainable storage and provide tools to
exchange data written in other file formats

• to have a free project based solely on other
free projects

• to have a project wich provides both a high
quality GUI to explore the data and to make
initial analysis steps like oscillation and spike
detections, and also a library of Python classes
and methods useful to write further analysis
scripts

Finally, we must point out that at its current
development stage, OpenElectrophy is primarily
designed for the LFP and spike community rather than
the multi-channel EEG community. For example, it
does not currently include any advanced visualization
tools, such as 3D scalp plot or source localization
techniques.

3. Technical choices and workflow

3.1 Data integration

To work with OpenElectrophy, the first step consists in
integrating data into the central database.
OpenElectrophy includes a input-ouput (IO) module
which can read most of the common file formats used to
store electrophysiological data: Axon, EEGLab, ELAN,
Elphy, micromed, NeuroExplorer, Plexon, PYNN,
Spike2, WinWCP [5]. On Windows platform,
OpenElectrophy can also use libraries available in
Neuroshare and thus read from AlphaOmega and TDT
file types [6]. Finally, OpenElectrophy can read
standard ASCII files and includes an example module
which generates complete sets of arbitrary signals
useful to test the software or related analysis script.
While reading a set of files, OpenElectrophy stores all
the available information in the central database. This
database is an SQL-type database, either a MySQL
server or a SQLite local file [7]. In both cases the
interface with OpenElectrophy is done via the object-
relational mapper SQLAlchemy (Python module) [8].
As brief reminder, a database system is a collection of
tables which are collection of fields. Tables are linked
to one another by indexes or keys. Putting data into a
database is equivalent to splitting it up in an atomic way
and organizing it into different tables. The logical or
hierarchical organization between tables is not known a
priori, but is formed while exploring the data, as
opposed to file systems, which are organized into
directories and sub-directories with a fixed
organization. Thus, it is possible to have multiple views
of the same database. This mechanism, while
apparently basic, proves to be flexible and efficient. To
work with this system, the user must learn structured
query language (SQL). This language permits the user
to reconstruct, filter and sort the data. The user can also
add fields or tables at a later point without affecting
previous work.
A crucial point is the design of the table’s schema: the
list of tables, and their contents and links. The database
scheme used by OpenElectrophy is presented in figure
1. It has been designed in cooperation with developers
of the Neurotools [9] project in order to facilitate the
interaction between both projects. It has been designed
to introduce generic notions of any
electrophysiological experiments. In particular a central
component of the scheme is the segment table which
contains a coherent set of analog signals (typically
electrode recordings) and discrete signals (like triggers
or spikes). The recordingpoint table links signals
recorded from the same electrode accross segments
while the block table group a set of segments and their
associated recording points. Finally spike, spiketrain,
neuron and oscillation tables store events of interest
after their detection.
Interestingly, the database scheme is not fixed and can
be adapted to the need of the user by adding other tables
or fields. Thanks to the ORM, these new fields are
visible from OpenElectrophy and can be edited or used
to select data appropriately. However, while importing

new data files as explained above, the OpenElectrophy
IO fills only the basic database scheme, but IO classes
can be derived with Python scripting to fill the new
fields directly at the time of data importation, from the
filename or auxiliary files for example.

3.2 Data exploration and visualization

The main window of OpenElectrophy is shown in
figure 2A. It integrates one or many tree views with
which the user can explore the database. The first tree
view node is one of the database table and its
descendants are automatically found according to the
index references found in each table. Each tree view is
fully customizable by the user who can thus sort its data
according to its need. In a second step, most of the
OpenElectrophy object can be visualized with various
plotting method. For example, analog signals can be
plotted raw, filtered, or as time-frequency map.

3.3 Spike extraction

The next major step is the extraction of the phenomena
of interest: spikes and transient oscillatory events (see
next section). In these two cases, a graphical interface
helps in searching for parameters that allow for good
detection. This step is crucial for subsequent stages of
the analysis. There are two possible methods for
detection: individual detection, which is done signal-by-
signal, or bulk detection, which is done by applying the

same parameters to an ensemble of signals targeted by
an SQL query that is directly written in the
OpenElectrophy GUI.
With regard to spike detection, the GUI is shown in
figure 2C. The detection has been thought as a set of
independent operations for which different methods are
available. The list of operations is: time filtering, event
detection, feature extraction and clustering. This
modular implementation allows the user to test different
spike sorting methods and to adapt each step of the
detection to its own data. Moreover, implementing new
methods requires to script only a minimal part of the
code to make it usable by OpenElectrophy. Importantly,
the spike extraction GUI has been thought to work with
single or multi-electrode detection and includes many
graphic tools to check and finely tune the detection (N-
dimensional viewer, manual spike selection, clustering
on subsets of events, etc). Thus any new method
implemented in OpenElectrophy need only to include
the computational part of the method, everything else
being already present.
After the detection, the central idea of the framework is
to store individual spike events in the SQL spike table
and group them using the spiketrain, neuron and
recordingpoint tables. All studies on spike discharge
will deal directly with these three tables using SQL
queries, but will benefit from all of the tables when
working with protocol information and context meta-
data.

Figure 1: Database scheme. It presents the different tables and fields present in the database. The lines represent the
relationship between tables by linking the related indices. For example, each member of the table recordingpoint is part
of a block, and contains analogsignals and spiketrains.

OpenElectrophy GUI. A: main
OpenELectrophy window with from
left to right: plot option toolbar,
database tree view, data plots. B:
oscillation detection window. On the
left, the user can choose the
parameters defining: the wavelet
time-frequency scalogram, the
oscillation detection area, the
oscillation detection threshold, some
optional “clean” methods used to
merge recovering oscillations or
eliminate simultaneous oscillations.
On the right is shown the list of
currently detected oscillations and
their plots on the scalogram and on
the raw signal. C: Spike extraction
window. Each tab on the left is
dedicated to a specific step of the
spike sorting (see text). The filtering
tab includes fast-fourier transform,
median, Butterworth and Bessel
filters, the detection tab threshold is
based either on an absolute value or
the standard deviation or the median
deviation of the raw signal, the
projection tab includes principal or
independent component analysis and
“only max” or no projection, and
finally the clustering tab includes K-
means or paramagnetic clusterings.
By choosing the method at each step,
the user can thus find the spike
sorting method the best adapted to its
data. Additionaly, many tools are
available to check extracted
spiketrains (autocorrelogram, ISI
histograms, waveforms...) and to
manually adjust or finely tune the
clustering (manual spike selection, N-
dimensional viewer...)

B

C

A

3.4 Oscillation detection

The oscillation detection method is based on a recent
approach described by Roux et al. [1]. Briefly, the idea
is to compute the time-frequency map of the signal
using the Morlet wavelet transform and then detect
oscillations as ridges on the power map. The result is a
list of oscillations for each signal with for each
oscillation instantaneous phase and frequency lines. The
GUI devoted to oscillation detection is shown in figure
2B. After the detection, each oscillation is stored in the
oscillation table. Thus, for studies on multi-frequency
oscillatory regimes (e.g., theta, gamma, and beta bands
), the analysis is computed directly in this table,
although it again also benefits from the data stored in all
other tables.

3.5 Analysis

Analysis is the final stage of the OpenElectrophy
workflow, which transforms the now pre-processed data
into meaningful results. The OpenElectrophy
framework does not provide ready-made “point-and-
click” analyses for obtaining a given result. Rather, it is
necessary to write scripts in Python to perform
statistical tests or other specific analyses. Here, the
management of the data in a central database simplifies
the selection of the data to analyze, and the Python
classes provided by OpenElectrophy ease the
manipulation of the data to match a given analysis.
Additionally, the Python SciPy module [10] provides
many standard and high-level analysis tools, and the
Matplotlib module [11] offers extensive 2D and basic
3D plotting methods.
Writing analysis scripts can seem difficult for
researchers not familiar with programming, but the
power and flexibility of this approach is quickly
preferred over the restrictive convenience of a GUI. For
example, to our knowledge none of the available
software for doing spike analysis provides a GUI as an
alternative to analysis scripting. Starting with simple
script examples is usually sufficient to allow beginners
to compose very sophisticated analyses. Thus,
OpenElectrophy does not constrain data analysis with a
fixed GUI, but allows for the use of user programmable
scripts.
As already mentioned, a major advantage of using the
Python scripting language is its ability to interface with
other languages. Packages like Mlabwrap, rpy, cython
or SciPy.weave [12] enable to use pre-existent code
from MATLAB, R, or C/C++. In this sense, Python can
be seen as a high-level glue language which can, with
only a few lines, execute code written with other
languages, less flexible and more time consuming
while developing but also often more efficient for
intensive computations. Employing these tools, the list
of external modules that can be linked to
OpenElectrophy to help write analysis scripts is long:
the International Neuroinformatics Coordinating
Facility [13] provides a list of tools available for
studying neural data. In particular, OpenElectrophy, as
a framework for managing data, would likely
complement recent Python-based approaches to neural

data studies, such as PyEntropy [14] for information
theory and PyMVPA [15] for machine learning.
Details on how to use OpenElectrophy classes for
scripting are available on the OpenElectrophy
documentation page.

4. Conclusion

In summary, we have presented OpenElectrophy, an
open source project aimed at facilitating the
management and manipulation of electrophysiological
data along with experiment meta-data. The key
contribution of OpenElectrophy is the framework
architecture: SQL-type database married to Python +
SciPy, all of which are reliable, widely used and free
tools. We have shown that in OpenElectrophy
framework, all of the data and meta-data are recorded in
a central database via its extensive IO module which
can read data from most of commonly used
electrophysiological recording setups. Data and meta-
data can then be combined for further analyses,
allowing the user, for example, to fuse
electrophysiological and behavioral data. We have also
shown how OpenElectrophy uses the Python language
to simplify interaction with the database and
manipulation of data during the writing of analysis
scripts. Another primary feature of OpenElectrophy is
the integration of the detection and storage of spikes
and transient oscillatory events found in
electrophysiological recordings.
The OpenElectrophy project is free and open source,
which means that anyone can download, use, modify or
extend it and then share his work with the whole user
community. It is hosted in a forge with a Trac system
[16], which offers SVN as a version control system and
a wiki for live documentation. A mailing listing for
discussion between users and developers is available
[17].
At the moment, the OpenElectrophy GUI adequately
covers the exploration of data, spike sorting and
detection of transient oscillations. The analyses must be
computed with Python scripts, which need to be
provided by the user. Obviously, these scripts can be
written from scratch, but as we already have mentioned,
one of the advantages of Python is that it can be
interfaced with previously developed analysis
toolboxes. Thus, it will be useful in the future to
provide, either directly in OpenElectrophy or as script
examples (which could be available on the
documentation pages for OpenElectrophy), simple ways
to interface the data managed by OpenElectrophy with
other open source toolboxes, such as, e.g., PyMVPA,
PyEntropy or NeuroTools. Interestingly, some of these
projects are hosted by the neuralensemble community
[16]. It is a developer community which aims at
creating interoperable and complementary Python-
based tools. In this direction, the recent neo [18] project
proposes generic classes to manipulate
“electrophysiological” signals and an import/export
module as exhaustive as possible. These modules and
classes, extensively used by OpenElectrophy, should be
used by other projects like Neurotools and thus further
facilitate interaction between projects.

Among the future developments, we aim at integrating
into OpenElectrophy most of the spike sorting methods
currently in use. These methods are written with
different languages and interfaces which prevent to
simply compare them (see [19] for examples). The
ability of Python to call functions written with other
languages and our modular construction of spike sorting
in OpenElectrophy should allow us to achieve this task.
In particular, for each step of the spike extraction it will
be necessary to identify in other projects which
functions are performing the equivalent step (clustering
for example) and then write an interface class able to
call the external functions with the correct data
arrangement. OpenElectrophy includes for now only
few spike extraction methods but after the completion
of this work, we hope it can serve as a benchmarking
tool for spike sorting methods.
Finally, from a technical point of view, OpenElectrophy
is currently limited by the computer memory size to
manipulate very long signals at high sampling rates.
The use of the concept of BLOB streaming [20], which
consists in loading BLOB (binary) fields into a stream
chunk by chunk, while using MySQL to read
continuous electrode data should be a great
improvement.

References

[1] S. G. Roux, T. Cenier, S. Garcia, P. Litaudon & N.
Buonviso, A wavelet-based method for local phase
extraction from a multi-frequency oscillatory signal., J
Neurosci Methods, 160, 2007, 135-143.Roux et al.

[2] S. Garcia and N. Fourcaud-Trocmé,
OpenElectrophy: an electrophysiological data- and
analysis-sharing framework. Front. Neuroinform. 3(14),
2009, doi:10.3389/neuro.11.014.2009

[3] http://neuroshare.org/

[4] http://www.carmen.org.uk/

[5]Axon:http://www.moleculardevices.com/home.html,
http://sccn.ucsd.edu/eeglab,
ELAN software package (INSERM U821, Lyon),
Elphy: http://www.unic.cnrs-gif.fr/software.html,
http://www.micromed.eu/,
NeuroExplorer, http://www.plexoninc.com/,
http://neuralensemble.org/trac/PyNN,
Spike2: http://www.ced.co.uk/,
WinWCP:
http://spider.science.strath.ac.uk/sipbs/software.htm

[6] http://www.alphaomega-eng.com/,
http://www.tdt.com/

[7] http://www.sqlite.org/, http://www.mysql.com/

[8] http://www.sqlalchemy.org/

[9] http://neuralensemble.org/trac/NeuroTools

[10] http://www.scipy.org/

[11] http://matplotlib.sourceforge.net/

[12] http://mlabwrap.sourceforge.net/,
http://rpy.sourceforge.net/,
http://www.cython.org/,
http://www.scipy.org/Weave

[13] http://software.incf.org/

[14] R.A.. Ince, R.S. Petersen, D.C. Swa ,and S.
Panzeri, Python for information theoretic analysis of
neural data. Front. Neuroinform. 3(4), 2009, doi:
10.3389/neuro.11.004.2009.

[15] M. Hanke, Y.O. Halchenko, P.B. Sederberg, E.
Olivetti, I. Fründ, J.W. Rieger, C.S. Herrmann, J.V.
Haxby, S. Hanson and S. Pollmann. PyMVPA: a
unifying approach to the analysis of neuroscientific
data. Front. Neuroinform. 3(3), 2009, doi:
10.3389/neuro.11.003.2009.

[16] http://neuralensemble.org/trac/OpenElectrophy

[17] http://groups.google.fr/group/openelectrophy

[18] http://neuralensemble.org/trac/ neo

[19] STAR:
http://sites.google.com/site/spiketrainanalysiswithr/
Chronux: http://chronux.org/
Klutakwik: http://klustakwik.sourceforge.net/
Wave_clus:
http://www.vis.caltech.edu/~rodri/Wave_clus/Wave_clu
s_home.htm
Mclust: http://www.neuroinf.org/lists/comp-
neuro/Archive/2000/0065.html

[20] http://blobstreaming.org/

http://neuroshare.org/
http://blobstreaming.org/
http://www.neuroinf.org/lists/comp-neuro/Archive/2000/0065.html
http://www.neuroinf.org/lists/comp-neuro/Archive/2000/0065.html
http://sites.google.com/site/spiketrainanalysiswithr/
http://klustakwik.sourceforge.net/
http://www.vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.htm
http://www.vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.htm
http://chronux.org/
http://neuralensemble.org/trac/OpenElectrophy
http://neuralensemble.org/trac/OpenElectrophy
http://groups.google.fr/group/openelectrophy
http://neuralensemble.org/trac/OpenElectrophy
http://software.incf.org/
http://www.scipy.org/Weave/
http://www.cython.org/
http://rpy.sourceforge.net/
http://mlabwrap.sourceforge.net/
http://matplotlib.sourceforge.net/
http://www.scipy.org/
http://neuralensemble.org/trac/NeuroTools
http://www.sqlalchemy.org/
http://www.mysql.com/
http://www.sqlite.org/
http://www.tdt.com/
http://www.alphaomega-eng.com/
http://spider.science.strath.ac.uk/sipbs/software_ses.htm
http://www.ced.co.uk/
http://neuralensemble.org/trac/PyNN
http://www.plexoninc.com/
http://www.micromed.eu/
http://www.unic.cnrs-gif.fr/software.html
http://sccn.ucsd.edu/eeglab
http://www.moleculardevices.com/home.html
http://www.carmen.org.uk/

