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ABSTRACT

Models of cerebral blood flow and metabolism have
been very successful in reproducing the shape and
timing of the haemodynamic response to neural activ-
ity. On the other hand, as these models are mechanical
or phenomenological in nature, they do not allow for
judging the efficiency of the underlying allocation
of energy. Here, we describe a complementary
approach, suggesting that optimality with respect to
resource constraints contributes to the characteristics
of the haemodynamic response.
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1 Introduction

When investigating how the brain works, it is natural
to look at the different kinds of activity it produces.
The electrical activity displayed by single neurons,
local networks, and entire brain regions has been
studied for many decades. More recently, the brain’s
haemodynamic activity has additionally attracted
attention. It is often being considered as merely
an indirect way of measuring neural activity, and
theoretical investigations of the phenomenon are
usually limited to investigating the link between the
two. It is commonly accepted that an increase in
neural activity will induce a haemodynamic response
carrying with it additional metabolic resources.

While there is no doubt about the virtues of using such
haemodynamics as an indirect, often non-invasive
measure of electrical activity, we believe it is worth
wondering why there is such a signal in the first place.
Different ways of allocating resources both spacially
and temporally are conceivable, and it is not obvious
what the constraints are with respect to which the
common haemodynamic response might be optimal.

Current models of cerebral blood flow focus on
predicting the shape of the haemodynamic response
to an increase in local activity, i.e. to a local signal

triggering an increase in blood flow [1]. Therefore,
there is a number of questions which cannot be
answered by any of these models. For instance, it is
unclear how the brain manages to allocate its limited
energy resources to a particular cortical region, how
this allocation evolves over time, and how closely it
reflects metabolic demand at a specific moment.

We suspect that, in addition to the factors sug-
gested by other authors, the shape and timing of the
haemodynamic response may arise from resource
limitations. We suggest that this response balances
the need to efficiently spend these limited resources,
thereby seeking to minimize overall consumption, and
the need to safeguard against prolonged undersupply
of individual regions. To investigate this hypothesis,
we propose a minimal model of energy management
inside a single cortical area, featuring local energy
storage in particular. We introduce these concepts in
general terms, and subsequent communications will
then investigate their actual biological implementa-
tions in more detail.

2 Linear model of energy storage

Here, we propose a simple model for energy man-
agement within a single cortical area. By energy
management, we mean a set of rules describing how
the system reacts to a disparity between local energy
demand and energy supply. We do so by introducing
three time-dependent variables: the influx of energy
into that region, the metabolic energy demand within
it, and the amount of energy stored locally. The basic
concept of our model is illustrated in figure (1).

Biologically, this kind of energy storage may be im-
plemented in the form of glycogen stores [2][3]. For
the purpose of our model, though, the precise nature
of these stores is secondary. Furthermore, we are con-
sciously referring to the flow of “energy” in the broad
sense, changes of which may or may not be directly
related to changes in parameters of blood flow such as
total blood volume or desoxyhaemoglobin concentra-
tion.
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Figure 1: Flux of energy, as described by our model.
Energy demand is satisfied by both external energy in-
flux into the region and from local energy stores. On
the other hand, energy influx is used to meet current
energy demand and to restore depleted energy stores.
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Figure 2: Circuit diagram of our model: locally stored
energy E, external energy influx x, current energy de-
mand y, control function u.

Naturally, the level of energy storage E(t) will evolve
according to the balance of energy influx z(¢) and en-
ergy demand y(¢) following local neural activity:

TE(t) = x(t) — y(t) 1)

We assume that in the absence of energy demand, the
influx will die out exponentially by diffusing into the
surrounding tissue and out of the region we consider.
T is the time constant of the system. We assume on-
going activity to give rise to a constant background
demand, and therefore a constant background influx.
We set the mean of these to zero and consider excess
demand and influx only. We furthermore postulate a
control function u(t) which relates the current level of
energy influx to the current energy demand, and ad-
justs the influx accordingly:

ri(t) = —x(t) + u(t) 2)

The first term on the right hand side of this equation
ensures the exponential decay we desire. In fact, the
metabolic processes involved in shaping the response
are significantly more complex than this [10][11], but
for the sake of simplicity, we shall neglect this for
now.

We assume that the control function u(t) will de-
pend not only on the amplitude of energy demand, but
also on how much energy is available in local energy
stores. If we denote the default level of stored energy

the cells seek to maintain by F and introduce a non-
negative parameter « weighting the influence of en-
ergy storage, a simple control function is given by

u(t) = a(Eo — E(t)) + y(t) 3)

This control function will not only adapt the influx of
energy to match energy demand at a given time, but
also make sure that local stores are refilled in a timely
fashion. Figure (2) shows a circuit diagram of this
control system. In matrix notation, we can combine
equations (1), (2) and (3) to obtain:

\ (-1 —a) [z aky+y
(&)= T)(E) () @
From this, we can see that the eigenvalues of the sys-
tem are given by:

1 1

Because « is non-negative, there is a stable fixed
point, the location of which is determined by the null-
clines of the system. These can be identified by setting

E=0, =0 (6)

in equations (1) and (2), respectively. For an energy
demand y which slowly varies over time, the null-
clines with respect to E and x are hence defined by

E=FEy+2 - @)
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Note that these nullclines are time-dependent as the
energy demand y may change over time. As illustrated
in figure (3), the fixed point of the system is located at
the intersection of these two nullclines at
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The vector field in that same figure illustrates that,
from any given initial condition, the system will oscil-
latorily converge towards this fixed point if o > 1/4.
For smaller values of «, it will converge exponentially,
as in the case of an overdamped oscillator. Eventu-
ally, the influx of energy will precisely match energy
demand, and local energy stores will stabilize at their
default value. This is true as long as we consider en-
ergy demand to vary slowly compared to the other pa-
rameters of the system.
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Figure 3: Null isoclines of this minimal system with re-
spect to E (dashed line) and x (solid line), as a func-
tion of the time-dependent energy demand y. Vector
field indicates (E, i)T.

The impulse response of the system for a > 1/4 is
shown in figure (4). Following a transient rise in de-
mand, influx and stored energy evolve according to
equations (1) and (2). After the sudden displacement
by the impulse, they oscillatingly return to their equi-
librium value. The precise shape of this falling edge
is determined by the parameters o and 7. Note that,
although the shape of this relaxation may roughly re-
semble the falling edge of haemodynamic responses
known from neuroimaging experiments, we are not
directly modelling variables describing blood flow.
Nonetheless, it is conceivable that our model may be
combined with existing models of cerebral blood flow
to reproduce this haemodynamic response.

3 Discussion

In the last two decades, functional magnetic reso-
nance imaging (fMRI) has arguably been the most
prominent technique in neuroimaging. The blood
oxygen level dependent (BOLD) signal used in fMRI
depends on the concentration of deoxyhaemoglobin
(dHb) within a given voxel. This concentration per
volume of tissue depends both on the dHb concentra-
tion inside local blood vessels and the relative volume
of these blood vessels within the voxel. In order
to account for the nonlinearities in BOLD signals,
several models of cerebral blood flow featuring such
nonlinearities have been proposed in recent years.

Among the most noted contributions was the so-
called balloon model initially proposed by Buxton
and Frank [4][5] and extended by Friston et al. [1].
In its more recent shape, this model can be split
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Figure 4: Impulse response of the system. Time course
of stored energy E (dashed line) and influx x (solid
line) before and after a brief impulse in y (arrows).
Model parameters were settoo = 1 and T = 1.

in two parts. First, there is a mechanistic model
linking the local inflow of blood into a voxel to the
change in BOLD signal which ensues: increased
inflow inflates a passive venous balloon, from which
blood can then flow out gradually once the influx
declines. The resulting changes in blood volume
and dHb concentration give rise to the BOLD signal.
The mechanical properties of the venous balloon are
assumed to be nonlinear [6], and so is the signal.
Second, the authors propose a purely linear model
to describe how the increase in inflow comes about
in the first place; i.e., how this inflow is evoked by
precedent neural activity. In summary, the purpose
of these models is to reliably predict the shape of the
BOLD response to an increase in local activity, i.e. to
a local signal triggering an increase in blood flow.

As argued before, such models are not sufficient to
answer questions regarding the optimality of energy
allocation. However, they provide a versatile frame-
work into which energy-based models like the one
we propose can be integrated if desired. With respect
to the work by Friston et al., it could potentially
replace the phenomenological second part of the
model, linking neural activity to the inflow of blood.
Still, our emphasis is not on deriving alternative ways
of reproducing the haemodynamic response, but on
exploring why there is such a response at all.

As to the biological feasibilty of local energy storage,
it is worth considering just how energy is supplied
to brain tissue: Increased metabolic activity in
neurons and glial cells leads to higher extraction
rates of metabolites, such as oxygen and glucose,
from local blood vessels. Whenever the body is



at rest, the brain consumes about 20% of its total
energy budget. Notably, glial cells such as astrocytes
contribute significantly to this energy demand, al-
though their exact share is still under debate [7][8].
This is particularly interesting as the metabolisms of
astrocytes and neurons are tightly linked: e.g., the
recycling of neurotransmitters released by neurons is
accomplished by astrocytes.

Additionally, there is significant experimental evi-
dence of stores of metabolites such as glycogen within
these astrocytes. Glycogen can be converted into
glucose, which is the main fuel for ATP synthesis.
As it has been proposed that lactate, a derivative
of glucose, might be shuttled between astrocytes
and neurons [9][10], such glycogen stores within
astrocytes could serve as local energy reserves for
neighbouring neurons [2][3]. Considering that these
stores have been found to contain three to four times
as much glucose as is freely available within the cell
[11], such processes may be crucial for determining
the time scales on which increased metabolic activity
within tissue requires its perfusion with fresh blood.

Hence, and despite the large variety of hypotheses
on cerebral metabolism, we can identify metabolites
corresponding to elements of our model: glucose
and oxygen released from local capillaries certainly
contribute to energy influx, while glycogen stores may
participate in energy storage. Amongst other factors,
the consumption of ATP within the cell is a certain
cause of energy demand.

4 Concluding remarks

The model described here represents a minimal
control system for energy management in brain
tissue. Although its limitations are obvious, it will
serve as a basis on which to construct more elaborate
models more closely mapping experimental data.
As part of the system presented here, we assume a
simple control function which instantaneously reflects
changes in energy demand. This, in turn, gives rise
to the steep initial increase in the impulse response
(see figure (4)). The metabolic processes actually
involved in shaping the response are significantly
more complex. In subsequent communications, we
shall thus investigate higher-order control functions
to account for this. Available knowledge on neurovas-
cular coupling and the time constants involved may
be incorporated to enhance our model.

Beyond providing just another tool for improving the
reproduction of the shape and timing of the haemody-
namic function, the true potential of models like the

one presented here lies in approaching the question of
optimality. Building on the simple concept laid out in
this article, we shall develop an optimal control model
of energy management in the brain.
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