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ABSTRACT 

While sensory and motor systems have attracted most 
of the research effort in Brain-Computer Interfaces 
(BCI), little attention has been devoted to higher order 
cortical processes [1]. Here, we propose to apply BCIs 
to the study and manipulation of visuospatial attention, 
an endogenous process at the interface between sensory 
and motor functions. As a first step to this aim, we 
investigate whether the activity of a population of 
frontal eye field neurons (FEF) in response to an 
endogenous cue can be readout on a trial by trial basis 
to provide a precise description of the cue’s attributes, 
namely, its location and identity, but also the allocation 
of attention following its interpretation. Using the 
procedure described in Ben Hamed et al. [2, 3], we 
reach over 78% correct predictions for all decoded 
variables, including the spatial allocation of endogenous 
attention. We show that the decoding performance 
drops on incorrect trials, indicating that cue encoding 
participates to the animal’s behavioral performance. 
Last, we show that the temporal resolution of the 
decoding influences readout performance. These results 
are a strong indication of the feasibility of the readout 
of endogenous variables by standard decoding 
algorithms, on a suboptimal dataset. Its validity remains 
to be proved in a real-time situation. 
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Introduction 
While sensory and motor systems have attracted most 
of the research effort in BCIs [4, 5, 6; for review, 7, 8, 
9], little attention has been devoted to higher order 
cortical processes [1]. From a clinical and societal point 
of view, such deficits of cognitive abilities are far from 
negligible and introducing BCIs to this field could lead 
to novel rehabilitation techniques. Here, we propose to 
apply BCIs to the study and manipulation of 
visuospatial attention, a process at the interface between 
sensory and motor functions. Endogenous spatial 
attention guides the active selection of sensory 
information based on cognitive priors; for example 
when looking for the phone, the likelihood of it being 
on the table is higher than on the ceiling. This process 
which is distinct from subsequent perceptual processes 
is a key cortical function. For example, following 
parietal acute lesions, hemineglect patients develop the 

inability to attend and thus to perceive and interact with 
their contralesional environment [10, 11].  

In a recent study, we have recorded from the FEF while 
monkeys were engaged in a variant of a cued target 
detection task [12, 13]. The experimental design of this 
task allowed to dissociate in time the processes related 
to the orientation of attention from processes related to 
target detection. In particular, a non-spatial abstract cue 
informed the monkey in which hemifield he should 
direct his attention. We found that FEF holds explicit 
information about the allocation of attention in response 
to the cue. We also showed that activity in this area 
reflects whether the monkey has perceived the target 
and is going to correctly detect it. We are currently 
investigating whether the information about attention 
allocation and perception can be read out from the 
activity of the FEF on a trial by trial basis, following the 
procedure described in [2] and [3]. We use a neural 
network approach which is formally equivalent to a 
linear decoding approach. Here we focus on the 
decoding of cue-related attributes (its location, its 
identity, and the allocation of attention following its 
interpretation) from the response of an FEF neuronal 
population. We provide an estimate of how the different 
attributes can be readout from new neuronal single trial 
activities and we discuss some of the factors that 
contribute to the improvement of this decoding.     
 
Methods 
 
Description of the neurophysiological database. The 
activity of 123 frontal eye field (FEF) neurons were 
recorded from two macaque monkeys engaged in a cued 
target detection task (Ibos, Duhamel and Ben Hamed, 
2009, submitted). The experimental design of this task 
allows to dissociate in time the processes related to the 
orientation of attention from those related to target 
detection. In particular, the cue is a non-spatial abstract 
cue that informs the monkey in which hemifield he 
should direct his attention. Briefly, the monkeys had to 
fixate a central point on the screen. Two streams of 
visual objects were presented, one in the visual 
receptive field of the neuron being recorded and the 
other in the contralateral side. One of the streams 
included a cue which instructed with a certain 
probability the position of the target. The cue could be 
green (resp. red), predicting that the target would appear 
in the same (resp. other) stream. The monkey had to 
release a lever to report the presence of the target. In 
67% of the trials, the target appeared in the instructed 
stream (valid trials), in 17% of the trials, it appeared on 



the opposite stream (invalid trials), and in 16% of the 
trials it didn’t appear at all (catch trials) to discourage 
systematic responses. The monkey was rewarded for 
releasing the lever 150 to 750ms following target onset 
on valid and invalid trials and holding to it on catch 
trials. Invalid trials were used to check that the monkey 
used the predictive information provided by the cue in 
order to optimize his behavior. Sessions in which this 
was not the case were discarded from the analysis.  
 
Cell categories. The recorded neurons were categorized 
as a function of their cue-related responses into 
different groups [12, 13]: neurons encoding the position 
of the cue (n=17), neurons encoding the instructed 
position of attention (n=20) and neurons specifically 
encoding one of the two types of cues (n=39). In all 
there were thus 76 cue related neurons.  

 
Figure 1. Network architecture. The input layer encodes the activity 
of N FEF neurons following cue presentation (N=17, 20, 39 or 76, 
depending on the functional category of interest). The output layer 
contains 1 unit. The network is trained to encode the predicted 
attribute of the cue amongst two possible states, given current input 
activities. Training involves optimizing weights using a Levenberg-
Marquardt back propagation algorithm and a linear transfer function. 
A symmetric hard limit function is applied to the 1 unit output in 
order to clip the readout to two discrete values, -1 and 1. 

Decoding. We use a neural network approach which is 
formally equivalent to a linear decoding approach. The 
network was a one-layer feed-forward network 
constructed as follows (figure 1). The input layer of this 
network has one unit per cell of recorded in FEF during 
the whole length of the study, in the category of 
interest. Cells are thus artificially considered as one 
neuronal population. The output layer is a single binary 
unit corresponding to the state of one possible attribute 
of the cue: physical position (left/right), instructed 
position of attention (left/right) or cue identity (stay, 
shift). A linear activation function is used and the 
outputs of the network are clipped to two discrete 
values (-1 and 1) using a symmetrical hard limit 
function. Training: The input data is the cell activity 
averaged over 100 ms time bin centered around the time 
point where responses of interest have been shown to be 
maximal (200ms following cue or target onset). The 
network is trained on 50% of the trials available for 
each cell drawn randomly. Training is performed using 
Levenberg-Marquardt backpropagation function and the 

weights are optimized to minimize the square distance 
between the estimate of the cue attribute and its true 
value. Stopping: Training is stopped using a regular 
stopping technique based on the performance of the 
network for a second subset of trials, called the 
validation set (random 20% of the remaining trials). 
Testing: The performance of the network is then tested 
for this time point (200ms post-cue) on the remaining 
trials, never experienced by the network, as well as on 
all trials for activities averaged over successive 100ms 
around the training time reference, with a 1ms 
resolution. The readout performance of the network is 
defined as the percentage of match between the output 
of the network and the actual physical state of the cue 
on the corresponding trials. This performance thus 
reflects whether the network can predict state of the cue 
when it is experiencing neuronal inputs that were 
collected when the monkey needed to interpret it for a 
successful behavior. The training testing procedure is 
repeated over 15 runs and yields an average decoding 
performance. This is the main measure that will be 
discussed in the following.  
 
Results 
 
Readout of the physical attributes of the cue. 

The first question that was addressed was whether the 
physical and abstract attributes of the cue could be 
readout from neuronal activities never previously 
experienced by the system. With a first network, we 
thus tried to predict the physical position of the cue, as 
described in the methods, either from the specific 
subpopulation of cells (fig.2a, black curve) or from the 
total cell population (fig.2a, gray curve). A maximum 
readout performance of 80% +/- 2 correct predictions is 
achieved in the 150-250ms time window following cue 
onset.  

Later on, readout performance decreases, but remains 
above chance level (50%), at around 63% correct 
predictions.  At this point in the task, other events are 
going on such as target presentation and detection, 
accounting for this decay in the availability of the 
information about the physical position of the cue. 

With a second network, we sought to predict a non-
spatial physical attribute of the cue, namely, its identity, 
whether the cue appeared in the left or in the right 
visual field (fig.2b, black curve, decoding from cells 
specifically encoding either the shift cue or the stay cue, 
gray curve, decoding from the total cell population).  
Here, a maximum readout performance of 86.1% +/- 
2.3 correct predictions is achieved in the 150-250ms 
time window following cue onset. This readout 
performance then decreases, but stabilizes around 67%. 

With a third and last network, we tried to readout the 
abstract instruction held by the cue, that is to say the 
final position of attention. Whereas cue position and 
cue identity refer to some physical property of the cue 
(position, or color), the instructed position of attention 
requires an interpretation of the cue. Indeed, while for 
the stay cue, the position of the cue is congruent to the 
instructed location of attention, for the shift cue, this is 



not the case. The results are described in figure 2c 
(black curve, decoding from cells specifically encoding 
the position of attention, gray curve, decoding from the 
total cell population).   

 

 
 

 
 

 
 
Figure 2. Readout performance of (A) the position of the cue, (B) the 
identity of the cue and (C) the instructed position of attention from the 
subpopulation selectively encoding the variable of interest (in black) 
and from the whole FEF population (in gray). Each curve represents 
mean +/- std of readout performance taken as the % of correct 
predictions of the network with respect to the actual configuration of 
the cue. The horizontal 50% performance line corresponds to random 
readout. The zero on the x-axis corresponds to cue onset. Note that on 
these data, the earliest timing at which a target could appear following 
the cue is 300ms. 
 
Here, a maximum readout performance of 78.5% +/- 
2.8 correct predictions is achieved in the 150-250ms 

time window following cue onset. This readout 
performance then decreases, but stabilizes around 65%. 
 
Interestingly, the readout performance was hardly 
affected by whether the decoding was performed on a 
selected subset of cells or on the whole population. This 
confirms the procedure by which neurons were 
classified in relation to their response to the cue. 
Indeed, this suggests that the connectivity weights 
assigned to the unit cells that are not contributing to the 
decoded variable are very low and do not participate to 
the variable being decoded. This is worth noting from a 
neuroprosthetic perspective, as the decoding is expected 
to be performed on all cells without a priori 
classification, the classification being carried out by the 
decoding procedure itself. As a consequence, in the 
following, all decodings will be performed on the whole 
FEF population. 

Not surprisingly the decoding performance is maximal 
at the delay used to train the network and in the 
surrounding 50ms bins (partially overlapping data). 
However, the achieved performance remains 
remarkable as it is calculated from neuronal response 
patterns that have not been experienced previously by 
the network. The decoding performance of the 
instructed position of attention is particularly 
noteworthy. Indeed, this attribute of the cue requires an 
endogenous operation leading to the interpretation of 
the cue from the combination of its physical attributes 
(position and identity).   
 
Effect of the animal’s behavioural performance on 
the readout of the physical attributes of the cue. 

The task was designed so that the monkey needed to 
correctly interpret the cue in order to optimize its 
behavioral performance. Invalid trials allow us to check 
that this is indeed the case. Indeed, on these trials, the 
animals’ reaction times are significantly slower and 
their performance significantly deteriorated with respect 
to valid trials, thus reflecting the behavioral cost of cue 
invalidity. This proves that the cue is used by the 
monkeys in order to perform the task. The question we 
are asking here is whether the encoding of the cue as 
reflected by the population response is different on 
incorrect trials than on correct trials.  
 
We thus presented the networks trained to decode the 
different cue parameters (position, identity and 
instruction) with the population response on incorrect 
trials and compared the performance to that obtained for 
correct trials (figure 3). The readout performance for 
the position of the cue (80% +/- 2 vs. 61.4% +/- 6.1, 
p<0.0001), the identity of the cue (86.1% +/- 2.3 vs. 
65.2% +/- 7.1, p<0.0001) and the position of attention 
(78.5% +/- 2.8 vs. 62.4% +/- 6, p<0.0001) are 
significantly deteriorated on incorrect trials with respect 
to correct trials, though they remain significantly 
different from chance (p<0.0001). This suggests that a 
miss-encoding of the cue has a partial causal 
relationship with the animal’s behavioral performance. 
Obviously, the encoding of the target is also expected to 
have a causal effect on behavioral performance, error 



trials arising from a conjunction of miss-encoding of 
both the cue and the target. 

 

 

 
 
Figure 3. Readout performance as a function of the animal’s 
behavioural performance. In Black, decoding performance of the 
position of the cue, its identity and the instructed position of attention, 
on trials on which the monkey successfully performed the task. In 
gray, decoding performance on trials on which the monkey failed in 
correctly reporting the target’s presence. ***: p<0.0001. 
 
 
Effect of temporal resolution on the readout of the 
physical attributes of the cue. 

Although the decoding is performed on 1ms time-steps, 
the activity is averaged over 100ms time bins. This has 
as effect to reduce noise and to smooth the neuronal 
responses. Here, we compare the readout performance 
of the different attributes of the cue, obtained for 
activities averaged over different window lengths 
(figure 4). We show that decoding improves steadily as 
bin width increases although this improvement 
stabilizes for analysis time windows beyond 100ms. 

 
Figure 4. Readout performance as a function of neuronal activities 
time averaging window length.  
 

While this difference in decoding performance between 
small and larger bins can seem surprisingly important, it 
is worth noting that the information that is being 

decoded here is not a sensory information but rather a 
cognitive information involving an endogenous 
processing of the cue. Indeed, the cue is embedded into 
a visual stream of stimuli. We have shown elsewhere 
[13] that the FEF does not encode the transient changes 
in the stream of visual stimuli and that all the observed 
response modulations (apart from the response to 
stream onset), both at the single cell and at the 
population level were due to the cognitive processing of 
either the cue or the target. While sensory responses are 
expected to be locked to the stimulus onset, cognitive 
processes are expected to have a more variable temporal 
dynamics. Corroborating this point, the cue responses 
have an overall higher onset variability (std = 18.75) 
than the visual response to the first stream onset (std = 
15.76), p<0.000001 on an F-test for variance equality. 
This might explain in part the results presented in fig. 4. 
 
Processing time 

Neuroprosthetics requires a high read out performance 
of neuronal content achieved fast enough to allow a 
reactivity that lies in the biological range. Indeed, 
among the objectives of neuroprosthetics is the ability 
to predict an outcoming behaviour before it takes place, 
to produce a surrogate response to the naturally 
occurring one or to interfere with an ongoing cognitive 
process. This implies a trade-off between the improved 
decoding performance on larger time averaging 
windows and the incurred decrease in temporal 
resolution.  

After an initial training of the decoding network on an 
average performance PC (Intel Xeon Quad Core E5430 
bi-processor, 2.66 GHz, a TYAN S5397 mother board, 
16 Go of RAM –DDR2-667 FB Dimm-, a RAID 
3WARE 9550SX controller card and 6 hard discs 
SATA2 80 GO – 7200 cycle/min), we evaluated the 
average time taken by the readout on a given trial both 
for the total population (n=76) and for the attention only 
cells (n=20). This decoding time depended on the size 
of the population and was longest for the largest 
population (900ms versus 490, n=10, p<0.0001). 
 
Discussion and conclusion 
As a first step to reading out endogenous variables from 
cortical neuronal ensembles, we have hereby 
demonstrated the feasibility of decoding different 
attributes of a visual cue and most notably of its spatial 
attention significance with a performance above 78%, 
offline from neuronal activities collected separately. 
This performance is probably a lower limit on what can 
be achieved with real-time data; indeed, the neuronal 
activities presented to the network on given ‘trial’ were 
actually recorded independently. This is obviously a 
source of noise expected to draw this decoding 
performance to the worst, as each trial is associated 
with a different specific attentional dynamics. However, 
these preliminary data were free of the detrimental (in 
terms of information capacity) neuronal correlations 
that we expect to find in parallel recordings. Decoding 
endogenous variables from a neuronal population will 
be the next step in the present endeavor. 



From a neuroscience point of view, our intuition is that 
the access to whole population dynamics in cortical 
oculomotor areas such as the FEF is a key tool to bridge 
the gap between the neuropsychology of visuospatial 
attention and the electrophysiological descriptions of 
individual cells. From a neurocomputational point of 
view, we believe that accessing to such decision-
making processes will help refine the decoding of motor 
intentions, improve neuroprostheses and ultimately lead 
to novel rehabilitation techniques. 
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