
HAL Id: hal-00553407
https://hal.science/hal-00553407

Submitted on 10 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic synthesis of working memory neural
networks with neuroevolution methods

Tony Pinville, Stéphane Doncieux

To cite this version:
Tony Pinville, Stéphane Doncieux. Automatic synthesis of working memory neural networks with neu-
roevolution methods. Cinquième conférence plénière française de Neurosciences Computationnelles,
”Neurocomp’10”, Aug 2010, Lyon, France. �hal-00553407�

https://hal.science/hal-00553407
https://hal.archives-ouvertes.fr

AUTOMATIC SYNTHESIS OF WORKING MEMORY NEURAL NETWORKS

WITH NEUROEVOLUTION METHODS

Tony Pinville

ISIR, CNRS UMR 7222

Université Pierre et Marie Curie-Paris 6

4 place Jussieu, F-75252

Paris Cedex 05, France

email: pinville@isir.upmc.fr

Stéphane Doncieux

ISIR, CNRS UMR 7222

Université Pierre et Marie Curie-Paris 6

4 place Jussieu, F-75252

Paris Cedex 05, France

email: doncieux@isir.upmc.fr

ABSTRACT

Evolutionary Robotics is a research field focused on

autonomous design of robots based on evolutionary algo-

rithms. In this field, neuroevolution methods aim in par-

ticular at designing both structure and parameters of neu-

ral networks that make a robot exhibit a desired behavior.

While such methods have shown their efficiency to gener-

ate reactive behaviors, they hardly scale to more cognitive

behaviors. One of the reasons of such a limitation might

be in the properties of the encoding, i.e. the neural net-

work representation explored by the genetic operators. This

work considers EvoNeuro encoding, an encoding directly

inspired from computational neuroscience [1] and tests its

efficiency on a working memory task, namely the AX-CPT

task. Neural networks able to solve this task are generated

and compared to neural networks evolved with a simpler

direct encoding. The task is solved in both cases, but while

direct encodings tend to generate networks whose structure

is adapted to a particular instance of AX-CPT, networks

generated with EvoNeuro encoding are more versatile and

can adapt to the new task through a simple parameter op-

timization. Such versatile neural network encoding might

facilitate the evolution of robot controllers for tasks requir-

ing a working memory.

KEY WORDS

evolutionary algorithms; neural networks; computational

neuroscience; working memory; neuroevolution.

1 Introduction

Evolutionary algorithms are stochastic algorithms based on

natural evolution. In the same way as nature uses the prin-

ciple of the “survival of the fittest” to improve the over-

all quality of the individuals in a population over a long

time, evolutionary algorithms explore a search space and

give solutions with the better fitness a higher probability to

survive and generate siblings [2]. While such algorithms

are frequently used to optimize parameters, neuroevolution

methods use them to synthetize artificial neural networks

that achieve a task described by a high level fitness func-

tion (fitness is the name of the function to optimize). It is

used in particular in Evolutionary Robotics to make real or

simulated robots exhibit a desired behavior [3].

Most evolutionary algorithms optimize a fixed size

genotype, whereas neuroevolution methods aim at explor-

ing in both parameter and structure space, in the search for

neural networks able to achieve a given task. Exploring

in the structure space requires to define an encoding, i.e. a

representation of a neural network with its dedicated search

operators. Typically, the mutation operator can individually

add or delete neurons or connections [4], but this leads to

networks with no particular regularity in their structure.

While Evolutionary Robotics up to now mainly deals

with reactive behaviors, in this work we use this method to

obtain working memory neural networks, that can be con-

sidered as a prerequisite to more cognitive behaviors. To

our knowledge, despite the fact that working memory is a

critical brain function, few works have used neuroevolution

method to build a working memory model and implement

this mechanism in a robotic agent [5].

Defined as “the ability to transiently hold and ma-

nipulate goal-related information to guide forthcoming ac-

tions” [6], working memory modeling is a central area of

research in computational neuroscience. Lots of models

have been built at different levels of abstraction, from low

level [7] to highly abstract connectionist models [8, 9].

Multiple tasks have been defined to test working mem-

ory abilities: Delayed-Response tasks (DR) [10], Delayed

Matching-to-Sample Tasks (DMS) [11], Ocular Delayed-

Response Tasks (ODR) [12], Vibrotactile Discrimination

Task [7], Stroop task [13] or AX-CPT [8, 14, 9]. This

last task has particularly caught our attention, because it

provides a relatively specific probe of goal representation,

maintenance and updating [15] and has been modeled with

highly abstract connectionist models [8, 9].

Despite computational neuroscience and neuroevolu-

tion both focus on neural networks, evolved neural net-

works present few similarities with models produced in

computational neuroscience. The main difference is based

on the fact that evolutionary methods mostly use individual

neurons, sometimes organized in modular fashion, whereas

neuroscience models rely on much more structured net-

works.

Noticing that biological systems are often based on

the repetition and combination of hierarchically organized

modules, several researchers proposed to define encodings

with some of these abilities [16, 17, 18]. The EvoNeuro

encoding [1], used in this work, directly draws inspiration

from computational neuroscience, and includes structure

primitives like neural maps, for instance. This encoding has

been tested to automatically generate neural networks ex-

hibiting the action-selection behavior of basal ganglia [1].

Results have shown that this encoding easily achieves this

task, while a basic encoding never solves it. These encour-

aging results lead us to consider other basic abilities of the

brain such as working memory.

Two main points are argued here:

• Neuroevolution can automatically generate neural net-

works with a working memory functionality;

• EvoNeuro encoding generates more versatile neural

networks than a simpler direct encoding.

2 AX-CPT task

AX-CPT task is a modified version of the classic Con-

tinuous Performance Test (CPT) [19]. Introduced by

Braver [8], this paradigm has become a standard bench-

mark to study syndroms thought to involve prefrontal cor-

tex dysfunction such as schizophrenia [14] or to evaluate

aging effect on performance [9].

The task is the following: during each AX-CPT trial,

participants are presented with a sequence of stimuli con-

taining a context cue (stimulus A or B) and a probe (X or

Y) on the computer screen. They have to respond to a tar-

get probe (X) with a manual response on the keyboard, the

target response key, but only when the target probe is im-

mediately preceded by a specific context cue (A). In every

other case, for example in AY, BX or BY sequences, they

have to respond to a probe with a nontarget response key.

AX trials occur very frequently during the experiment to

induce a strong tendency to make a target response to the

X-probe. A key aspect of the task is that in some trial con-

ditions (termed BX), the contextual information must be

used to inhibit a dominant response tendency, whereas in

other trials (termed AY) context serves an attentional bias-

ing function. This task requires a relatively simple form of

working memory, where the prior stimulus must be main-

tained over a delay until the next stimulus appears, so that

the subject can discriminate the target from non-target se-

quences.

Several high level computational models [8, 14, 9]

have been created to make novel and testable predictions

regarding the behavioral performance of the subjects.

The first model [8] is a simple model of the prefrontal

cortex based on two information processing roles for the

PFC: short-term active memory and inhibition. Following

models [14, 9] are trying to define a model of cognitive

control which simulates system interactions between PFC

and dopamine (DA).

On the other hand, Frank and O’Reilly [20, 21] pro-

pose a more biologically plausible model, the PBWM

(for Prefrontal-cortex, Basal-Ganglia Working memory

Model). It is based on the postulate that the basal ganglia

provides a selective dynamic gating mechanism for infor-

mation maintained via sustained activation in the PFC. A

wide variety of working memory tasks have been tested on

this model like the Stroop effect, the AX-CPT, the 1-2-AX

or the Wisconsin card sort task [20].

3 EvoNeuro encoding

The simplest encoding in neuroevolution is direct encod-

ing, in this case the genotype is the same as the phenotype.

Here we evolves a labeled graph which can be modified

structurally (add/remove a connection or a node) and para-

metrically (change of a label) with an evolutionary algo-

rithm. The graph is represented as a classic adjacency list

where cross-over is not used and mutation operators can:

(1) add a node on an existent connection, with random la-

bels; the connection is split in two and the two parts keep

the same labels; (2) remove a random node and its asso-

ciated connections; (3) add/remove a connection between

two random nodes. Nodes and connections can be labeled

by a list of real parameters that represent weights, thresh-

old, neuron type... These parameters are mutated using

polynomial mutation [22]. Each node describes a neuron

and the labels define then neuron parameters (time con-

stant, threshold, inhibitory status). The connections are la-

beled with a single real number interpreted as the synaptic

weight.

The Evoneuro encoding (figure 1) uses the same prin-

ciple and adds two building blocks taken from computa-

tional neuroscience models: (1) map of neurons, (2) con-

nection schemes between neural maps. Maps are defined

as spatially organized grids of identical neurons (same time

constant, same threshold, same inhibitory status). Connec-

tion schemes between maps are restricted to three cases:

(1) one to one connection with constant weights (neuron

i of map M1 is connected to neuron j of map M2, with

a positive weight identical for each connection), (2) one

to all connections with constant weights (neuron i of map

M1 is connected to each neuron of map M2, with identical

weights for all connections) and (3) one to all connections

with weights following a Gaussian distribution. As in [1],

we use a lPDS-based (locally Projected Dynamic System)

neuron model [23] which is a variant of the classic leaky

integrator with similar dynamics but which verifies the dy-

namic property of contraction [23]. See [1] for a detailled

description of EvoNeuro encoding.

Figure 1. Overview of the development process. From left to right: (1) the genotype is a labeled graph with evolvable labels;

(2) the labels are interpreted to a neuroscience-inspired description of the neural network; (3) for a given size of maps, this

neural network can be fully developed into a neural network (for instance to evaluate its fitness).

4 Experiments

4.1 AX-CPT

Here we have used the rules of classic AX-CPT task [8]

which consists of randomly cue/probe presentations with

the following constraints: (1) Target trials: A followed by

X occurs 70 % of the time (to probe the inhibitory function

of PFC); (2) A cue followed by a non-target probe letter

(A-Y) 10% of the time; (3) A non-cue followed by a target

probe letter (B-X) 10% of the time; (4) A non-cue followed

by a non-target probe letter (A-Y) 10% of the time;

A letter’s presentation corresponds to a number ran-

domly chosen in]0.9, 1[for the corresponding input and

zero on the other ones. The neural network has thus four

inputs, one per letter, and two outputs. The response of the

network is considered to be ”non-target” if the first output

is greater than the second and ”target” otherwise.

4.2 Fitness

In the remaining text, the following notations are used:

• x: a developed individual (a neural network);

• k: number of inputs; (k = 4, one for each letter);

• v: vector of input letters (v ∈ [0, 1]k);

• T : the maximum simulation duration (T = 1000);

• Tc: the end of the simulation;

• γ(x,v, t)i: activation level of the output neuron i (i ∈
{1, 2}) at time t (t ∈ [0, T]);

• γc(x,v)i: activation level of the output neuron i (i ∈
{1, 2}) at the end of the simulation (i.e. t = Tc(x,v)).

For each individual, a sequence of N letters are pre-

sented, each letter’s presentation is simulated until its

output converges to a constant vector or until it reaches

the maximum number of time-steps (t = T). From

a practical viewpoint, a neural network is considered to

have converged when S (with S randomly chosen in

{10, 20, · · · , 100}) successive outputs have a difference of

less than ε (in these experiments, ε = 10−6). S is variable,

because preliminary results have shown us that with a con-

stant S (i.e. S = 10), feed-forward networks tuned with

a high accuracy are generated most of the time. They re-

lied on neuron dynamics rather than recurrent connections

to fulfill the task, thus exhibiting a non-robust memory be-

havior specialized for a particular value of S.

To compute Tc, we first define the “convergence func-

tion” K(x, t,v):

K(x, t,v) =







0 if
∣

∣γ(x,v, t)i − γ(x,v, t − n)i

∣

∣ < ε,

∀n ∈ {1, · · · , S},∀i ∈ {1, 2}
1 otherwise

(1)

Tc can now be defined as Tc(x,v) = t with K(x, t,v) = 0
and K(x, t′,v) = 1 for t′ < t.

The main objective function (fitness) aims at check-

ing that the network answers the correct response for any

given v. Furthermore, we are interested to have the biggest

contrast between the 2 outputs.

In our case, arbitrary γc(x,v)1 correspond to the non-

target response, whereas γc(x,v)2 is the target response.

Let define R(x,v) for the response of the network:

R(x,v) =

{

0 “Target” if (γc(x,v)2 − γc(x,v)1) > 0
1 “Non-Target” otherwise

(2)

Now we can compare the network response with the ex-

pected response:

E(x,v) =

{

0 if (R(x,v) = Q(x,v))
−1000 otherwise

(3)

where Q(x,v) is the expected response and E(x,v) the

evaluation note. We test also the discrimination D(x,v)

Table 1. Parameters used in experiment 1 (with map-based

encoding and direct encoding).

Parameter /Genotype Map-based Direct enc.

min./max. nb. of nodes (rand.gen.) 1 / 5 4 / 20

min/max. nb. of links (rand. gen.) 1 / 5 4 / 20

prob. to add/remove a node 0.05 / 0.05 0.05 / 0.05

prob. to add/remove link 0.05 / 0.05 0.05 / 0.05

prob. to change each label 0.1 0.1

σ for gaussian mutation 0.05 0.05

between the two outputs:

D(x,v) =







0 if (||γc(x,v)2 − γc(x,v)1|| > 0.8)
−1 if (||γc(x,v)2 − γc(x,v)1|| > 0.3)
−2 otherwise

(4)

Let I be a set of N letters vectors. So the fitness to max-

imise is:

F (x) =
∑

v∈I

(D(x,v) + E(x,v)) (5)

The maximum value is 0 which indicates that the network

has solved the problem without any error. In these exper-

iments, N was fixed to N = 1000 and the same vectors

were employed to evaluate all individuals.

The search is restricted to networks that converge dur-

ing the simulation time and where activation level on output

is positive. The first constraint C1(x) ensures that γc(x,v)i

is strictly positive:

C1(x) =

{

0 if γc(x,v)i > 0
1 otherwise

(6)

The second constraint, C2(x) checks that the tested neural

network converges to a constant output vector before the

end of the experiment, for all the tests performed on the

neural network:

C2(x) =
∑

v∈I

(K(x, Tc,v)) (7)

These constraints are enforced with the penalty

method [22]: an arbitrary large penalty is added to

the fitness each time a constraint is violated. Instead of

maximizing F (x), we thus maximize Fc(x):

Fc(x) = −K(C1(x) + C2(x)) + F (x) (8)

where K is an arbitrary large constant (e.g.1010).

4.3 Experimental setup

Our goal is to obtain a versatile working memory neural

network. Although not included in this work, future work

will consider learning abilities to adapt the behavior of the

network online. For a neuroevolution method, it is not dif-

ficult to connect only the inputs corresponding to the inter-

esting letters while ignoring the others. For such a result,

changing the features of the task – for instance inverting

the role of the letters – implies structural changes and can’t

thus be done with an online learning algorithm. Likewise,

in an evolutionary setup, if the working memory module is

only a part of a more complex neural network controller,

the evolutionary search is expected to face more difficul-

ties when complex structural changes are required to adapt

memory module behavior.

Our objective is then twoflold: (1) obtain a network

topology able to perform an AX-CPT task; (2) test this

topology on a different instance of this task with synaptic

weights changes only to check its versatility. The fitness

function of the first step may take into account the versa-

tility, but this would require a complex evaluation process.

We have then chosen to test a posteriori the versatility.

For (1) we use EvoNeuro encoding to evolve network

structures and parameters. As a control experiment, neu-

ral networks are evolved with a simple direct encoding in

which mutation directly adds, removes neurons or connec-

tions or changes weights, as in [1]. 10 independent evo-

lutionary runs, with a budget of 400,000 evaluations each

(2000 generations with a population of 200), have been per-

formed for each experimental setup. In a second step, we

test the stability of the networks obtained. In these exper-

iments, a network is considered to stably converge to an

equilibrium state when 200 successive outputs (instead of

S = 10 previously) have a difference of less than ε (here,

ε = 10−6).

For (2) the best evolved networks of experiment (1)

are kept and their weights only are evolved with BY as a

target sequence instead of AX. One run is performed for

each evolved structure, there are then 10 parameter opti-

mization runs with networks generated by EvoNeuro en-

coding and 10 more optimization runs with networks gen-

erated by the direct encoding. We have chosen to use the

same evolutionary algorithm with a constant structure and

a fixed number of parameters, but the parameters may have

been optimized by other optimization algorithms.

The same evolutionary algorithm, the same fitness

and the same model of neurons were employed in all

experiments; only the genotype/phenotype mapping was

changed. The chosen evolutionary algorithm is a single-

objective implementation of NSGA-2 [22], an elitist

tournament-based evolutionary algorithm. The framework

used to run all these experiments is Sferes2 [24]. Parame-

ters are provided in table 2 and the source code is available

at: http://www.isir.fr/evorob_db.

5 Results

For experiment (1), with direct encoding, 9 of 10 runs find

an optimal solution with an average of 656 generations

(131,200 evalutions). For step 2, when we check neural

network stability, results shows that only 4 of 10 networks

have a constant output after 200 steps.

The EvoNeuro encoding finds an optimal solution for

8 of 10 runs, within 1016 generations on average (203,200

Output

Input

2

1

1-all w=4.36 gauss.

1-all r w=2.39 gauss.

1-all r w=2.13 gauss.

1-all r w=3.35 gauss.

1-1 w=3.19

1-all r w=2.26 gauss.

(a)

Reward

Prediction / Gating

(DA)

Input

Association

(Post. Ctx)

Response

(Motor Ctx)

Goal / Context

(PFC)

Bias

Selecting /

Updating

AAccttiivvee MMeemmoorryy

(b)

Figure 2. (a) Example of a module obtained with map-based neuroevolution. In this case, each map is composed of 4 neu-

rons. 1-1 represents one to one connections between maps, 1-all, one to all connections, gauss., weights following a gaussian

distribution; (b) Minimalist canonical model of cognitive control proposed by Braver [9]

o1o0

7

Y B 6

A X

-3.50
-2.33

-2.29
-4.30

4.51

1.36

2.55

4.82

4.46

-2.40

1.98

-3.43

0.29

Figure 3. Minimalist neural network obtained by direct en-

coding. In this case, each circle represents one neuron.

evaluations). 5 of 10 networks perform the stability test.

The two setups show then similar results..

But surprisingly unlike direct encodings (figure 3),

some generated networks present interesting features. As

shown in figure 2(a), the evolved network shares some sim-

ilarities with existing models of cognitive control. We can

identify a topology close to the simple canonical model

proposed by Braver and represented in figure 2(b) [9]. 3

key computational principles of context processing mech-

anism are defined: (1) active memory through recurrent

connections; (2) top-down bias through feedback connec-

tions ; and (3) regulated access of contextual input through

modulatory gating connections. We can find the same ac-

tive memory through recurrent connections in our model

(map 1), the feedback connection between PFC and poste-

rior cortex could be seen in the connections between map 1

and map 2. The reward prediction is not present in our net-

work, indeed in Braver’s model the timing of gating signals

is learned through a reward prediction learning mechanism,

whereas in our model no learning mechanism is included

(and the fitness function doesn’t enforce learning).

For experiment (2), we have tested every networks

which has performed experiment (1) (4 with direct-

encodings, 5 with map-based encoding). With classic

direct-encoding, none of the 4 networks can be adapted to

the new target sequence with connection weights changes

only, whereas with Evoneuro encoding 4 of 5 networks

are able to perform the task after an optimization of the

weights (with an average of 462 generations). These re-

sults confirm our hypothesis that neural networks evolved

with EvoNeuro encoding, are more versatile than neural

networks obtained with a simple direct encoding.

6 Conclusions and future work

Our experiments have shown that with the help of several

computational neuroscience building blocks (leaky integra-

tor neurons, map of neurons, projection schemes), neu-

roevolution can build simple working memory models. In-

deed our generated networks have successfully performed a

simple, but very common in human behavior studies, work-

ing memory task: AX-CPT. In the second step we have

proved that our map-based generated networks are more

versatile than those generated by a simpler neuroevolution

method (with direct encoding)

Our future work will be to test the framework on

different and more complex working memory tasks like

12-AX task which is an extension of the AX-CPT task

[20, 21], or the Stroop task [13] to simulate multiple work-

ing memory tasks in a single model like the PBWM model

[20, 21] then test such models in the context of robot be-

havior design. An other objective will be to implement a

learning mechanism on evolved neural networks to solve

different tasks with keeping the same topology.

7 Acknowledgement

This project was funded by the ANR EvoNeuro project,

ANR-09-EMER-005-01.

References

[1] J.-B. Mouret, S. Doncieux, and B. Girard. Importing

the Computational Neuroscience Toolbox into Neuro-

Evolution—Application to Basal Ganglia. In Proc. of

GECCO, 2010.

[2] A. E. Eiben and J. E. Smith. Introduction to evolu-

tionary computing. Springer, 2003.

[3] S. Nolfi and D. Floreano. Evolutionary Robotics:

The Biology, Intelligence, and Technology of Self-

Organizing Machines. Press, MIT, 2000.

[4] K. O. Stanley and R. Miikkulainen. Evolving neural

networks through augmenting topologies. Evolution-

ary Computation, 10(2):99127, 2002.

[5] T. Ziemke and M. Thieme. Neuromodulation of Re-

active Sensorimotor Mappings as a Short-Term Mem-

ory Mechanism in Delayed Response Tasks. Adapt.

Behav., 10(3-4), July 2002.

[6] D. Durstewitz, J. K. Seamans, and T. J. Sejnowski.

Neurocomputational models of working memory.

Nat. neurosci., 3 Suppl:1184–1191, November 2000.

[7] C. K. Machens, R. Romo, and C. D. Brody.

Flexible control of mutual inhibition. Science,

307(5712):1121–4, 2005.

[8] T. S. Braver, J. D. Cohen, and D. Servan-Schreiber.

A computational model of prefrontal cortex function.

Nips, page 141148, 1995.

[9] T. S. Braver and D. M. Barch. A theory of cognitive

control, aging cognition, and neuromodulation. Neu-

rosci. biobehav. r., 26(7):809–17, November 2002.

[10] D. Zipser. Recurrent Network Model of the Neural

Mechanism of Short-Term Active Memory. Neural

comput., 3(2):179–193, June 1991.

[11] T. Gisiger, M. Kerszberg, and J. P. Changeux. Acqui-

sition and Performance of Delayed-response Tasks: a

Neural Network Model. Cereb. Cortex, 15(5):489–

506, May 2005.

[12] J Mitchell and D. Zipser. Sequential memory-

guided saccades and target selection. Vision Res.,

43(25):2669–2695, 2003.

[13] M M Botvinick, T. S. Braver, D. M. Barch, C. S.

Carter, and J. D. Cohen. Conflict monitoring and

cognitive control. Psychol. rev., 108(3):624–52, July

2001.

[14] T. S. Braver, D. M. Barch, and J. D. Cohen. Cognition

and control in schizophrenia: a computational model

of dopamine and prefrontal function. Biol. psychiat.,

46(3):312–28, August 1999.

[15] T. S. Braver, J. L. Paxton, H. S. Locke, and D. M.

Barch. Flexible neural mechanisms of cognitive con-

trol within human prefrontal cortex. Proc. Natl. Acad.

Sci. U.S.A., 106(18):7351–6, May 2009.

[16] S. Doncieux and J.-A. Meyer. Evolving Modular

Neural Networks to Solve Challenging Control Prob-

lems. In Proc. EIS 2004, 2004.

[17] J.-B. Mouret and S. Doncieux. Evolving modular

neural-networks through exaptation. IEEE Congress

on Evolutionary Computation, 2009.

[18] K. O. Stanley, D. D. Ambrosio, and J. Gauci. A

Hypercube-Based Indirect Encoding for Evolving

Large-Scale Neural Networks. Artif. Life, 15(2):1–39,

2009.

[19] H. E. Rosvold, A. F. Mirsky, I. Sarason, E. D. Bran-

some Jr., and L. H. Beck. A continuous perfor-

mance test of brain damage. J. Consult. Clin. Psych.,

20(5):343–350, 1956.

[20] T. E. Hazy, M. J. Frank, and R. C. O’Reilly. Towards

an executive without a homunculus: computational

models of the prefrontal cortex/basal ganglia system.

Philos. T. Roy. Soc. B., 362(1485):1601–13, Septem-

ber 2007.

[21] R. C. O’Reilly and M. J. Frank. Making working

memory work: a computational model of learning in

the prefrontal cortex and basal ganglia. Neural com-

put., 18(2):283–328, February 2006.

[22] K Deb. Multi-objective optimization using evolution-

ary algorithms. John Wiley and Sons, 2001.

[23] B. Girard, N. Tabareau, Q. C. Pham, A. Berthoz, and

J. J. Slotine. Where neuroscience and dynamic system

theory meet autonomous robotics: a contracting basal

ganglia model for action selection. Neural Networks,

21(4):628–41, May 2008.

[24] J.-B. Mouret and S. Doncieux. Sferesv2: Evolvin’ in

the Multi-Core World. In IEEE Congress on Evolu-

tionary Computation 2010 CEC 2010, 2010.

