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ABSTRACT 
Strong regularities of early visual areas interconnections 
led to the suggestion that rostral directed connections 
are feedforward (FF) pathways channelling information 
from lower to higher order areas, while caudal directed 
connections constitute feedback (FB) pathways [1]. 
Analysis of these pathways in primate enabled the 
identification of a hierarchical organization [2], 
providing a major conceptual framework for 
understanding structure-function relationships of the 
cortex. Because previous description of cortical 
topology have been restricted to binary connectivity 
leading to strong indeterminacy [3], we re-examined 
network description of cortex structure by making 
retrograde tracer injections in areas spanning all cortical 
lobes. We used quantitative tools to estimate 
hierarchical distance and relative weights of 
connections [4-5] and used computational modeling 
analysis to analyse the underlying hierarchical structure 
of cortical networks. Comparing weighted and 
unweighted analyses, we demonstrated a significant 
hierarchical tendency in the pattern of laminar relations 
between cortical areas. Further, we evidenced a highly 
parallel system with high degree of reciprocity and 
found that rare pairs of areas are reciprocally connected 
by FF connections, constituting unexpected descending 
paths [6] in an otherwise surprisingly hierarchical 
system of cortical areas.  
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1.  Introduction 
 

In 1991 Felleman and Van Essen were the first to 
order cortical areas according to previously described 
criteria for inter-areal projection classification [1]. Two 
broad types of anatomo-functional relationships can be 
distinguished in the cortex: (i) feedforward projections 
were historically defined as projections from primary 
sensory areas to subsequent areas processing 
progressively higher-level properties of the input 
(bottom-up). Anatomically, they stem mostly from the 
supragranular compartment (layers II-III) and target the 
granular layer (layer IV) of the target area after crossing 
the white matter. (ii) Feedback projections which stem 
mostly from the infragranular compartment (layers V-
VI) of the source area and project outside of layer IV in 
the target area. Their function is still not clear, but they 
have been ascribed a modulatory top-down influence. 

This led to a simple hierarchical rule, stated as 
follows: if an area A projects in a FF fashion onto an 
area B, then area A is lower than area B in a 
hierarchical series going from primary sensory areas to 
higher levels, i.e. FF projections are ascending. 
Similarly, FB projections are descending, i.e. if area C 
feeds back to area B, then C is above B in the hierarchy. 
The anatomical model of visual cortices built using this 
rule was widely adopted because it accounted for 
almost all of the then known binary relations (i.e. either 
FF or FB) between pairs of visual areas: approximately 
300 documented relations involving 30 areas, out of 
900 possible pairwise relations in this set, collated from 
more than 200 different papers. If the system did not 
present a strong hierarchical trend in its anatomical 
organization, many of them would be contradicting 
each other within even in the most optimally 
hierarchical ordering. Since then, this hierarchical 
framework has shaped our understanding of cortical 
organization and function, which is constrained by 
anatomical structure. 

An evolutionary optimization analysis showed that 
the hierarchical model implemented by F&VE cannot 
nail down the hierarchy of the primate cortical system. 
Even though the system is surprisingly hierarchical, it  
is also indeterminate: there are at least 150.000 different 
orderings of the 30 areas with the same minimal 
number of violations of the building rule [3]. Indeed, 
while hierarchy provides a major conceptual framework 
for understanding structure-function relationships of the 
cortex [2, 7-10], the actual hierarchy of cortical 
connectivity is still ambiguous, because the set of 
known binary relationships is not enough to fully 
constrain the system into a directed acyclic graph with a 
fixed number of discrete levels. Nevertheless, interareal 
rostral-directed projections are assumed to link areas in 
feedforward ascending series having a driving role, and 
caudal-directed projections to link areas in feedback 
descending series having a modulatory influence. This 
has led to the suggestion that all FF paths (series 
projections are uniquely reciprocated by FB projections 
[6]; this hypothesis, known as the “no strong loops 
hypothesis”, has not been rejected yet neither has it 
been verified experimentally. Meanwhile, other authors 
have made the emphasis on distributed function in 
several parallel but hierarchically organized systems 
[11-12]. 

We accordingly re-examined the network 
descriptions of cortex structure by making retrograde 
tracer injections in several cortical areas spanning the 
occipital, parietal, temporal and frontal lobes, and used 
well defined quantitative tools to estimate hierarchical 
distance and relative weights of connections [4-5]. We 



estimated hierarchical distances between area-pairs 
using generalized linear model (GLM) on binary and 
distance-weighted data (using the numbers of neurons 
in each compartment). Similar results were obtained for 
the weighted and unweighted analyses. Evidence for an 
underlying hierarchy was demonstrated by a significant 
linear relation between the observed and GLM 
predicted proportions of supragranular layer neurons 
(SLN) with a slope approaching unity when the weakest 
projections were eliminated.  

While adding support toward a hierarchical structure 
of the cortex by demonstrating a significant hierarchical 
tendency in the pattern of laminar relations between 
cortical areas, we identified particular relationships 
(closed loops of FF projections) that have been 
previously discounted because of their anti-hierarchical 
nature and possible physiological implications [6]. Here 
we provide some evidence that these unexpected paths 
in the cortical hierarchy may share a crucial role in the 
transfer of information carried out in supragranular 
layers [13]. 
 
Brain-wide analysis of cortical networks evidence 
underlying hierarchical structure 

We injected 26 cortical areas across the occipital, 
parietal, temporal and frontal lobes. Retrograde tracers 
have been used because of their high sensitivity, and the 
fact that parent cell origin of a cortico-cortical 
connection alone is a good indicator of FF or FB 
category when coupled with quantitative computation 
of labelled neurons with high frequency sampling [14]. 
We use this quantitative, continuous measure of the 
nature of a projection, the proportion of supragranular 
parent neurons or SLN [4] and computed this measure 
following injections in areas distributed across the 
whole brain (so this subset of areas is representative of 
the global cortical network). 

Since retrograde tracers only describe the incoming 
connectivity of an injected area (coming from the whole 
cortex segmented into 83 source areas), we restricted 
our analysis to the set of 26 injected areas. This way, 
for any pair of areas within this set, the relation between 
them is fully characterized (connected or not, and the 
quantitative nature and relative strength of the 
projections, in both directions). 

In this subnetwork of 26 cortical areas, we found a 
density much higher than previously reported, which 
can be explained by the high sensitivity and 
exhaustiveness of the technique used. 

SLN varies between 0 (purely FB) and 1 (purely 
FF); it is correlated with hierarchical position in the 
binary-based hierarchy of Felleman and Van Essen, i.e. 
for every projection from A to B: (i) the closer SLN is 
to 1 (FF projection), the further A is below B (in 
number of discrete hierarchical levels crossed by the 
projection); (ii) the closer SLN is to 0 (FB projection), 
the further A is above B; and (iii) the closer SLN is to 
0.5 (lateral projection), the closer A is to B. 

Based on this correlation, our group already showed 
that SLN was a measure of hierarchical distance 
between source and target area. The use of a distance 
lifts the indeterminacy that can be very high when using 
binary relations. Using the difference between SLN (A-

>C) and SLN (B->C) as a measure of the hierarchical 
distance between A and B allowed reconstructing most 
of FvE’s model using only two injections instead of 
hundreds of different studies (figure 1). The 
quantitative method used also provides a measure of the 
relative strength of all incoming connections to a target 
area (known as FLN, for fraction of labelled neurons). 
It was proposed that SLN would be used to designate 
connections as either FF or FB, and together with FLN 
would be used to compute a weighted, hierarchical 
model of the cortical network. 

However, SLN values and SLN differences from 
different injections can differ: some pairs of injections 
show a remarkable agreement, but others are less 
correlated. Thus, the strong assumption about SLN as a 
measure of distance has to be relaxed to derive a 
consistent picture of hierarchical relations in the cortex, 
and we have distinguished several possible ways of 
addressing this issue. First, use the binary information 
contained in SLN (i.e. simply segregate FF and FB by 
comparing SLN to 0.5). Second, use the ordinal 
information given by SLN, i.e. for each injection, order 
all labelled areas according to their SLN. This gives the 
hierarchical relation of all pairs of labelled areas, but 
does not retain the distance information (SLN 
difference) used to derive those relations. Third, use 
GLM applied to SLN values associated with existing 
projections. The use of GLM is based on the idea that 
SLN correlates with hierarchical distance, but that some 
monotonic transformation of SLN data should describe 
more accurately the hierarchical relations in the system. 
Finally, considering only the direct projections (as in 
the previous method), use continuous, rather than 
discrete, hierarchical levels, and allow for each 
projection a range of acceptable values rather than 
attempting to fit fixed hierarchical distances [15-16]. 

 
Matrix optimization: Since there is no strict hierarchy 
among the possible orderings [3], the aim of this study 
was to find an optimal one. Of course, there are many 
ways to define optimality, but the most straightforward 
measures of the un-hierarchical nature of an ordering is 
to count the number of violations (number of 
descending FF + number of ascending FB). One can 
also count or the total number of neurons contained in 
these violations, or their cumulative hierarchical 
distance (based on SLN difference). The number of 
possible orderings of 26 areas (i.e. of possible 
hierarchies to be evaluated) is large (factorial(26) ~ 
10^26 possible orderings), so it is not possible to 
compute the cost of every order to find the lowest one 
and retain the ordering associated with it as the 
hierarchical model. Thus, heuristic methods are to be 
used rather than brute-force computation, which mean 
that the best order may not be found, but by choosing 
correctly the method, a “good” result is established, 
which has a cost close to the (unknown) real minimum. 
These methods are based on an exploration of the space 
of all possible ordering, and moving from one order to 
the next by simultaneous row-column permutations. 
 
   



Figure 1. Comparison of the hierarchical model of visual system from F&VE1991 (right) and using SLN from Barone et al., 2000 (left). Adapted 
from Vezoli et al.2004 
 

They necessitate the definition of a neighbourhood 
for each order, and starting from one, they explore the 
search space by moving away from this order to try and 
find a good cost (avoiding local minima). So far, we 
have used both a simulated annealing method, and a 
greedier algorithm exploring the search space with a 
metric based on number of permutations necessary to 
go from one order to another. The best result obtained 
by these methods is shown in figure 2. Although almost 
a quarter of the projections are in the unexpected 
direction (descending FF or ascending FB), these 
violations account for only a tenth of the total number 
of neurons in every known projection, indicating that 
the whole of the cortex is surprisingly hierarchical. 

 

 
Figure 2: Graphic representation of SLN matrix. A black cell 
indicate the absence of projection, and SLN values are color-coded 
along the scale shown on the right: the more FB projections are in 
dark blue, the more FF ones in bright red, with more lateral 
projections in light blue and yellow. The diagonal of these matrices is 
left empty even though the intrinsic FLN is very high, because we are 
here only interested in inter-areal connectivity. 
 
Statistical modeling using GLM: Paired-comparisons 
are typically used in psychophysics to estimate 
perceptual scale values based on observer judgments of 
the relative strengths of stimuli. With connectivity data, 
each SLN value can be seen as the output of a paired-
comparison: an SLN > 0.5 (FF projection) indicates that 
the source area is lower than the target area in the 

hierarchy, and conversely, if the source area feeds back 
to the target area, then it is higher up. Since a single 
injection yields relations (S1, T), … , (Sm, T) with m 
the number of labelled areas, then from several 
injections there will be sufficient information to 
estimate a scale, even though not every pair of areas can 
be compared (when the projection is found absent). 
The paired-comparison analysis assumes that there is a 
representation that describes the data such that there 
exist numbers assigned to each area, h(Area), such that 

h(A) > h(B) + e  when A is above B, i.e. when SLN(A->B) < 0.5 , 
where e indicates a random error. The set of relations 
over all injections can be set up as a model where we 
try to predict scale values h, that maximize the 
likelihood of observing the ordering indicated by the 
SLN. The estimated scale values correspond to the 
relative hierarchical position of the areas. This model 
can be conceptualized as a generalized linear model 
with a binomial family, and this approach has the 
advantage that it is not necessary to know the relation 
between every pair of areas in order to perform the 
estimation. It additionally accommodates data from 
multiple injections at the same site: they are treated as 
replications. Finally, the actual numbers of neurons in 
the supra- and infragranular compartments can be 
incorporated into the analysis which then provides a 
weighted analysis. The GLM is set up as an equation of 
the following form g(E[Y]) = Xβ , where X is an 
incidence matrix, β is a vector of the scale values to be 
estimated and E[Y] is the expected value of the 
response. The incidence matrix, X, has a column for 
each area involved in a projection and a row for each 
pair of areas that are connected. A given row contains a 
1 and -1 in the columns corresponding to the target and 
source of the projection, respectively, and 0 elsewhere. 
Here the response can be either a binary variable taking 
on values 1/0 depending on whether a relation is FF or 
FB, or in the weighted case, a vector indicating the 
numbers of supra- and infragranular neurons. The 
function g is referred to as a link function and its role is 
to transform the response to a scale in which it is 
linearly related to the explanatory variables, here the 
cortical areas considered. The expected response of a 
binary variable is a proportion or rate in the interval (0, 
1). The Barone et al. analysis in which the differences 



in SLN were taken directly as a measure of hierarchical 
distance would be equivalent to assuming that g is the 
identity function. Typical link functions are based on 
sigmoidal families such as the logistic, the Gaussian or 
the Cauchy distribution. These links map the unit 
interval onto the real line and thus might permit greater 
resolution in the hierarchical relations between areas. 

Several link functions have been tested, and yield in 
general similar results (with most differences being 
reversals of 1 or occasionally 2 steps.). Figure 3A 
shows the estimated scale values for the 26 areas from 
the unweighted GLM fit and the canonical link (the 
logit function). In other words, the only information 
used to constrain the hierarchical ordering was a binary 
variable indicating whether the pair of areas in a given 
projection was in a FB (SLN < 0.5) or a FF (SLN > 0.5) 
relation. Even though the GLM analysis was performed 
on the binary SLN relations (i.e., SLN > 0.5 or SLN < 
0.5), the procedure generates a prediction for the 
quantitative SLN for each connection. These fitted 
values are plotted against the quantitative SLN values in 
figure 3B. If the fit perfectly predicted GLM, the points 
would fall on a line of unit slope through the origin. The 
best fit line obtained by linear regression is indicated by 
the black line. The slope is less than 1 though the linear 
relation is significant and yields nearly identical slopes 
for each link (slope between 0.51-0.52 and p << 0.001). 
The significance of the slope indicates that SLN does 
provide some measure of ordering the areas, i.e., a 
hierarchy, even if not perfect. 

Because of the nature of SLN (proportion), it is 
more “granular” when very low numbers of neurons are 
involved: in this case it can only take a few discrete 
values and is not really continuous. The very weak 
projections are also less reliable because overlooking a 
small number of neurons could modify the nature of the 
projection, and it may be that the imprecision of their 
SLN value dilutes the underlying hierarchical relation. 
In figure 3B, the points have been colored with a grey 
level that depends on the number of neurons of the 
projection: the darker the point, the higher the total. On 
the plot, it does appear that the darker points yield a 
more systematic relation between the fitted and 
obtained SLN values. To quantify this, the regression 
line was recalculated for the projection with more than 
a thousand neurons (green line), and it does not differ 
significantly from a line with a unit slope and an 
intercept at the origin (intercept = -0.05, p = 0.38). 
Thus, excluding the weakest connections reveals a 
stronger hierarchical relation in the data. 

Another indication of the goodness of fit is the 
proportion of misclassified projections. Here, we 
consider a projection misclassified if its SLN < 0.5 and 
the fitted value (predicted SLN) is greater, or vice 
versa. This corresponds to the proportion of points in 
quadrants 2 and 4, and the different links give a similar 
misclassification rate of about a quarter. This result 
suggests that including the number of neurons in a 
projection as a weight could enhance the GLM fits. As 
described above, this is easily done by modeling the 
numbers of supra- and infragranular neurons as 
binomial outcomes rather than just the FF/FB binary 
relation. 

 

 
Figure 3: Comparing GLM fitted against observed values. A. 
Estimated scale values from the unweighted GLM fit and the 
canonical link (logit function); B. Fitted values plotted against 
observed values, black line is linear regression (highly significant but 
less than 1) and green line is also linear regression but applied on 
SLN values without weak connections (the darker the points the 
greater the FLN).  
 

In summary, the assumption that hierarchical 
distance can be directly inferred from SLN differences 
(as in GLM with identity link function) may be 
tempered when extended to areas of the brain that are 
wider apart both spatially and functionally, and whose 
hierarchical correlation may be lower. However, with 
distances one does not need to assume a priori 
transitivity of “above” or “below” relations to 
determine a hierarchy, and indeterminacy is indeed 
decreased by the redundancy of hierarchical 
information in our data. On the other hand, SLN alone 
cannot capture the essence of what the FF or FB nature 
of a projection means, and the use of this quantitative 
measure also introduces disparity and some 
contradictions in the data set. Still, ordinal information 
can be extracted from SLN (matrix optimization), and a 
likely continuous scale may be obtained (GLM with 
binomial family). The fact that these different methods 
yield similar results suggests that the cortex has a robust 
hierarchical trend even across lobes and modalities. 
These methods also revealed unhierarchical features 
that should be clearly identified and taken out so as to 
study the hypothesized superposition in the brain of 



underlying hierarchies and some special relationships 
that can sustain additional properties of the system.  
 
Strong Loops in the hierarchy and large-scale 
distribution of supragranular computation 

The network can be described as the 
superimposition of FF directed and FB directed graphs 
that could be studied separately. If the system is purely 
hierarchical, all FF paths should go from lower levels to 
higher ones and not come back to their starting point i.e. 
each FF and FB directed sub-graph would be acyclic. 

In our dataset, we have found a small subset of pairs 
of areas exhibiting a reliable FF-FF relation (e.g. two 
reciprocal connections between areas A and B, with 
SLN of 0.51 and 0.54, do not constitutes a strong dyad: 
it is more likely these two areas are simply very close in 
the hierarchy, and so share a lateral reciprocal relation). 

The exact list of dyads has yet to be finely tuned, 
based on global properties of the cloud of data points, 
but preliminary results on a subset of all injections (21 
out of the 26 areas injected) already show the presence 
of such strong dyads, and of an interesting property they 
share: when present, the network of FF projections is 
not hierarchical (figure 4A), and contrary to what was 
assumed [6], FF information can travel from higher-
order areas in the descending direction, as low as to 
early visual area V4. We found that these FF cycles can 
involve more than 2 areas and used 2nd order 
connections to the define the "anomalous" FF direction 
within dyads (figure 4B); when removed from the 
network, FF can flow only from lower to higher areas, 
as predicted in the hierarchical framework. 

Current ongoing analyzes show that the trend is 
present in the larger data set, so that these few 
anomalous connections would constitute unexpected FF 
descending pathways allowing a re-engagement of FF 
information at the lower levels, in an otherwise strongly 
hierarchical system. 

We predict that more of these FF dyads will be 
found as more injections are added to dataset. Also, 
from the first one to be detected (FEF-V4, see [4]) to 
the others discovered so far, strong loops seem to be 
involved in some specialized cortical circuits [17-18]. 
This idea is supported by a graph theoretical analysis of 
information flow throughout the cortical graph, and fit 
with the Global Workspace Theory [11, 19]. 

Such dyads were predicted not to exist under the no-
strong-loop hypothesis because they are intrinsically 
antihierarchical. However, if there is an underlying 
hierarchical trend, and the analyses of Felleman and 
Van Essen and Barone et al, certainly suggest that there 
is, then attempting to characterize it in spite of noise or 
anti-hierarchical relations is still be of value. We are 
now assessing this hierarchical structuring of remaining 
projections, which constitute the bulk of connectivity 
data. 
 
3.  Conclusion 
 

These analyses demonstrated a significant 
hierarchical tendency in the pattern of laminar relations 
between cortical areas. Further, results evidenced a 
highly parallel system with high degree of reciprocity.  

However, we found that the FF network does not have a 
perfect tree structure, and not all FF connections are 
reciprocated by FB ones: contrary to what was assumed 
so far [6], rare pairs of areas are reciprocally connected 
by FF connections (strong loops) in an otherwise 
hierarchical system.  
 

 
Figure 4: Reachability matrices of the feedforward connectivity. 
A. Red cells indicate there is no path (direct or multi-step) from areas 
on the left to areas at the bottom. Green cells indicate such a path 
exists. Within the graph FF information can go back as low as the 2nd 
level using only FF connections; B. In A, FF information can travel in 
both directions (from bottom-up but also from top-down) because of a 
few reciprocal FF-FF connections. When the anomalous path of these 
strong dyads is removed, then the information can only travel in a 
bottom-up fashion. Strong loops thus allow a reengagement of FF 
information during cortical processing. Note that matrixes presented 
here have been optimized. 
 

Based on quantitative measurement of the FF or 
feedback nature of each projection we found some 
strong loops (i.e. pairs of areas with a reciprocal FF 
relation). Higher-order loops are also present, and the 
overall network is not thus strictly an acyclic directed 
graph. These dyads are part of this network, which has 
implications for the spread of FF information in the 
cortex. With respect to the hierarchical ordering of 
cortical areas, we found that each strong dyad is made 
of a regular, hierarchical projection, and an anomalous 
one which constitutes an unexpected descending path 
allowing re-engagement of FF information at the lowest 



levels of the visual hierarchy (as low as V4). We also 
found that removing these rare anomalous connections 
resulted in a directed acyclic graph as predicted in the 
hierarchy framework, with ascending, uni-directional 
spread of FF information. This, and the central role of 
the areas involved in strong loops indicate that a few 
anomalous descending paths are adding new properties 
onto an underlying hierarchical system. 

Finally, strong loops form long-distance links, and 
have higher than average weights for their distance 
values; further, they have a special profile linking 
different modalities and constitute unexpected 
descending paths in the hierarchical system of cortical 
areas. One consequence of this network is that the 
computations carried out in supragranular layers of the 
cortex [20] can be widely distributed in large-scale 
cortical networks mediating top-down control. The 
present anatomical results are unexpected but can be 
incorporated into theories and models already inspired 
of neuroanatomical findings e.g. [11, 21] . Strong loops 
could be part of constitutive synchronized networks that 
play an essential role in cognitive integration of 
information [22-23]. 
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