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SPIKE TRAINS STATISTICS IN INTEGRATE AND FIRE MODELS: EXACT
RESULTS.

Bruno Cessachttp://www-sop.inria.fr/neuromathcomp/, Hassan Nasser, Juan-Carlos Vasquez∗,

ABSTRACT We briefly review and highlight the conse-
quences of rigorous and exact results obtained in [1], char-
acterizing the statistics of spike trains in a network of
leaky Integrate-and-Fire neurons, where time is discrete
and where neurons are subject to noise, without restriction
on the synaptic weights connectivity. The main result is
that spike trains statistics are characterized by a Gibbs dis-
tribution, whose potential is explicitly computable. Thises-
tablishes, on one hand, a rigorous ground for the current in-
vestigations attempting to characterize real spike trainsdata
with Gibbs distributions, such as the Ising-like distribution
[2], using the maximal entropy principle. However, it tran-
spires from the present analysis that the Ising model might
be a rather weak approximation. Indeed, the Gibbs poten-
tial (the formal “Hamiltonian”) is the log of the so-called
“conditional intensity” (the probability that a neuron fires
given the past of the whole network [3, 4, 5, 6, 7, 8, 9, 10]).
But, in the present example, this probability has an infinite
memory, and the corresponding process is non-Markovian
(resp. the Gibbs potential has infinite range). Moreover,
causality implies that the conditional intensity does not de-
pend on the state of the neurons at thesame time, ruling out
the Ising model as a candidate for an exact characterization
of spike trains statistics. However, Markovian approxima-
tions can be proposed whose degree of approximation can
be rigorously controlled. In this setting, Ising model ap-
pears as the “next step” after the Bernoulli model (inde-
pendent neurons) since it introduces spatial pairwise cor-
relations, but not time correlations. The range of validity
of this approximation is discussed together with possible
approaches allowing to introduce time correlations, with
algorithmic extensions.

KEY WORDS Spike trains statistics, Gibbs measures, In-
tegrate and Fire Models, chains with complete connections,
Markov approximations, Ising model.

1 Introduction.

At first glance, the neuronal activity is manifested by the
emission of action potentials (“spikes”) constituting spike
trains. Those spike trains are usually not exactly repro-
ducible when repeating the same experiment, even with a
very good control ensuring that the experimental conditions
have not changed. Therefore, researchers are seeking sta-
tistical regularities in order to provide an accurate model
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for spike train statistics, i.e. a probability distribution fit-
ting the experimental data and/or matching what neurosci-
entists believe models should predict. However, obtaining
statistical models from experimental data remains a diffi-
cult task.

It appears simpler to characterize spike trains statis-
tics in neural networksmodelswhere one controls exactly
the neural network parameters, the number of involved neu-
rons, the number of samples, and the duration of the exper-
iment (with a possible mathematical extrapolation to infi-
nite time). Especially, producing analytical (and when pos-
sible, rigorous) results on those statistics provide cluesto-
ward resolving experimental questions and new algorithms
for data treatments. Here, we propose a complete and rigor-
ous characterization of spike train statistics for the discrete-
time leaky Integrate-and-Fire model with noise and time-
independent stimuli. This framework affords extrapolation
to more realistic neural networks models such as general-
ized Integrate-and-Fire [11, 12]. Our results hold for finite-
sized networks, and all type of synaptic graph structure are
allowed. Also, we are not constrained by an ad hoc choice
of the initial conditions distribution of membrane poten-
tials; instead we propose a procedure where this distribu-
tion is selected by dynamics and is uniquely determined.
More precisely, we show that spike train statistics are char-
acterized by a (unique) invariant probability distribution
(equilibrium state) whatever the model-parameters values,
which satisfies a variational principle (the maximal entropy
principle) and is a Gibbs distribution whose potential is ex-
plicitly computed. This has several deep consequences dis-
cussed in this paper.

2 Model definition.

We consider a discrete-time (continuous state) Integrate
and Fire model, introduced in [13, 14], whose dynamics
is given by:

Vi(t+1) = γVi (1 − Z[Vi(t)])+

N
∑

j=1

WijZ[Vj(t)]+Ii+σBBi(t),

(1)
where i = 1 . . . N is the neuron index,Vi the mem-
brane potential of neuroni (this is a continuous variable),
γ ∈ [0, 1[ is the leak rate,Z(x) = 1 wheneverx ≥ θ and
Z(x) = 0 otherwise, whereθ is the firing threshold,Wij is
the synaptic weight from neuronj to neuroni, Ii is a con-
stant external current,σB > 0, andBi(t) is a noise, namely
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theBi(t)’s are Gaussian i.i.d. random variable with mean
zero and variance1. The term(1 − Z[Vi]) corresponds to
the reset of membrane potential whenever neuroni fires
while the term

∑N
j=1 WijZ[Vj ] is the post synaptic poten-

tial generated by the pre-synaptic spikes.

3 Spike train statistics.

To each membrane potential valueVi(t) we associate a
variableωi(t) = Z(Vi(t)). The “spiking pattern” of the
neural network at timet is the vectorω(t) = (ωi(t))

N
i=1:

it tells us which neurons are firing at timet, (ωi(t) = 1)
and which neurons are not firing at timet (ωi(t) = 0). We
denote byωt

s the sequence orspike blockω(s) . . . ω(t). A
bi-infinite sequenceω = {ω(t)}

+∞
t=−∞ of spiking patterns

is called a “raster plot”. It tells us which neurons are fir-
ing at each timet ∈ Z. In practical experimental raster
plots are obviously finite sequences of spiking pattern but
the extension toZ, especially the possibility of consider-
ing an arbitrary distant past (negative times) is a key tool
in the present work. We are seeking invariant probability
distributions on the set of raster plots, generated by the dy-
namical system (1). In the next sections we give our main
results whose proofs can be found in [1].

4 The transition probability.

In this model it is possible to compute exactly and rigor-
ously the probability, calledconditional intensityin [3, 4,
5, 6, 7, 8, 9, 10], of a spiking pattern at timet+1, ω(t+1),
given the past of the networkωt

−∞. To our knowledge this
is the first time that such an exact and rigorous computation
is achieved at the level ofnetwork. It is given by:

P
(

ω(t + 1)|ωt
−∞,

)

=

N
∏

i=1

P
(

ωi(t + 1)|ωt
−∞

)

, (2)

with

P
(

ωi(t + 1)|ωt
−∞

)

=

ωi(t + 1)π
(

θ−Ci(ω
t

−∞
)

σi(ωt

−∞
)

)

+

(1 − ωi(t + 1))
(

1 − π
(

θ−Ci(ω
t

−∞
)

σi(ωt

−∞
)

))

,

(3)

where

Ci(ω
t
−∞) =

N
∑

j=1

Wijxij(ω
t
−∞) + Ii

1 − γt+1−τi(ω
t

−∞
)

1 − γ
,

with

xij(ω
t
−∞) =

t
∑

l=τi(ωt

−∞
)

γt−lωj(l),

is the deterministic contribution of the network to the mem-
brane potential of neuroni at time t + 1, when the spike

train up to timet is ωt
−∞. The termCi(ω

t
−∞) integrates

the pre-synaptic flux that arrived at neuroni in the past, as
well as the external currentIi. As a consequence, this term,
depends on the past history up to a timeτi(ω

t
−∞) which is

the last time beforet when neuroni has fired, in the se-
quenceωt

−∞ (the mathematical definition is given below).
Likewise,

σ2
i (ωt

−∞) = σ2
B

1 − γ2(t+1−τi(ω
t

−∞
))

1 − γ2

is the variance of the noise-induced term applied to neu-
ron i at time t + 1 and resulting from the integration of
the noise from timeτi(ω

t
−∞) to time t. Finally, π(x) =

1√
2π

∫ +∞
x

e−
u
2

2 du.

The mathematical definition ofτi(ω
t
−∞) is:

τi(ω
t
−∞)

def
=

{

−∞, if ωi(k) = 0, ∀k ≤ t;
max {−∞ < k ≤ t, ωi(k) = 1} otherwise.

Basically, this notion integrates the fact that the state of
neuroni depends on spikes emitted in the past by the net-
work, up to the last time when this neuron has fired(thus,
the present analysis relies heavily on the structure of IF
models where reset of the membrane potential to a fixed
value erases the past evolution). Depending on the se-
quenceωt

−∞, this time can go arbitrary far in the past.
Now, here, sequences such thatτi(ω

t
−∞) < −c for some

positivec, have apositiveprobability (decaying exponen-
tially fast with c). The consequence is that the transition
probability (2) depends on the history of the network on
an unboundedpast. As a consequence dynamics is non
Markovian.

Note also that (evidently ?) the structure of the neural
network dynamics imposescausality. This appears explic-
itly in (3) where the probability that neuroni fires at time
t+1 depends on spikes emittedup to timet. In other words,
this probability does not depend on the spikes emitted by
the other neuronsat the same time(t + 1). We shall come
back to this remark when discussing the relevance of Ising
model.

Finally, remark that the factorization of the probabil-
ity (2) expresses theconditional independence of spikes
at given time. This is simply due to the fact that the only
source of stochasticity, when past spikes are fixed (by
the conditioning), is the noise, which is assumed, in this
model, to be independent between neurons. But, (2) does
not imply that spikes are independent.

Let us emphasize what we have obtained. We have an
explicit form for the probability that a neuron fires given
its past. From this we can obtain the probability of any
spike block. But, here there is technical difficulty, since the
corresponding stochastic process is not Markovian. Such
process corresponds to a more elaborated concept called a
chain with compete connections. As a consequence the ex-
istence and uniqueness of an invariant measure is not given
by classical theorems on Markov chains but requires more



elaborated tools, widely developed by the community of
stochastic processes and ergodic theory (see [15] for a nice
introduction and useful references). The price to pay is a
rather abstract mathematical formalism but the reward is
the possibility of considering spike statistics arising insuch
models, including memory effects and causality, with, we
believe, possible extensions toward more realistic neural
models.

5 Gibbs distribution.

In the present setting whereIi does not depend ont, P

is stationary. Namely, fix a spiking sequence{an}n≤0,
then, ∀t, P (ω(t) = a0 |ω(t − n) = a−n, n ≥ 1) =
P

(

a0 | a
−1
−∞

)

. Therefore, instead of considering a family
of transition probabilities depending ont, it suffices to
define the transition probability at one timet ∈ Z, for
examplet = 0. The next results are based on techniques
from ergodic theory and chains with complete connections
[15].

We recall first a few definitions. AGibbs distribution
is a probability distributionµψ, on the set of (infinite) spike
sequences (raster plots)X, such that one can find some
constantsP (ψ), c1, c2 with 0 < c1 ≤ 1 ≤ c2 such that for
all n ≥ 0 and for allω ∈ X:

c1 ≤
µψ (ωn

0 )

exp [−(n + 1)P (ψ) +
∑n

k=0 ψ(T kω)]
≤ c2.

whereT is theright shift1 over the set of infinite sequences
X i.e. (Tω)(t) = ω(t − 1). P (ψ), called the topologi-
cal pressure, is formally analogous to the free energy and
is a central quantity since it allows the computation of av-
erages with respect toµψ. In the previous equation, the
term

∑n
k=0 ψ(T kω) may be viewed as a formal Hamilto-

nian over a finite chain of symbolsωn
0 . However, as exem-

plified below (eq. (5)) this term depends also on the past
(infinite chainω−1

−∞). There is an analogy with statistical
physics systems with boundary conditions where the Gibbs
distribution not only depends on the configuration inside
the lattice, but also on the boundary term [16].

Moreover, µψ is an equilibrium stateif it satisfies
(“maximum entropy principle”):

P (ψ)
def
= h(µψ) + µψ(ψ) = sup

µ∈PT (X)

h(µ) + µ(ψ), (4)

wherePT (X) the set ofT -invariant finite measures onX,

h(µψ) is the entropy ofµψ, andµ(ψ)
def
=

∫

ψdµ is the av-
erage value ofψ with respect to the measureµ. Though
Gibbs states and equilibrium states are non equivalent no-
tions in the general case, they are equivalent in the present
setting.

Now, our main result is:

1The use of the right shift instead of the left shift is standard in the
context of chains with complete connections [15].

The dynamical system (1) has a unique invariant-
measure, µψ, whatever the values of parameters
Wij , i, j = 1 . . . N, Ii, i = 1 . . . N, γ, θ. This is a Gibbs
distribution and an equilibrium state, for the potential:

ψ(ω) = log(P
(

ω(0)|ω−1
−∞

)

) ≡ ψ(ω0
−∞)

=
∑N

i=1

[

ωi(0) log
(

π
(

θ−Ci(ω)
σi(ω)

))

+

(1 − ωi(0)) log
(

1 − π
(

θ−Ci(ω)
σi(ω)

))]

,

(5)

where we noteω
def
= ω−1

−∞.

Note therefore that the Gibbs potential is simply the
log of the conditional intensity. We believe that this last
remark extends to more general models.

Knowing thatµψ is Gibbs distribution with a known
potential allows one to control the probability distribu-
tion of finite sequences. Note that here the potentialψ

is explicitly known. This has several other deep conse-
quences. First, this formalism opens up the possibility of
characterizingP (ψ) and µψ by a spectral approach, be-
ing respectively the (unique) largest eigenvalue and related
left eigenfunction of the Ruelle-Perron-Frobenius operator
Lψf(ω) =

∑

ω′ : T (ω′)=ω ψ(ω′)f(ω′), acting onC(X,R),
the set of continuous real functions onX. This last property
has deep consequences at the implementation level [17].

Also, it is possible to propose Markovian approxima-
tions of this distribution, whose degree of accuracy can be
controlled, as we now discuss.

6 Markov approximations.

The main difficulty in handling the transition probabilities
(2) and the related equilibrium state is that they depend on
an history dating back toτi(ω

t
−∞), whereτi(ω

t
−∞) is un-

bounded. On the other hand, the influence of the activ-
ity of the network, say at time−l, on the membrane po-
tential Vi at time 0, appearing in the termxij(ω

0
−∞) =

∑0
l=τi(ω0

−∞
) γ−lωj(l), decays exponentially fast asl →

−∞. Thus, one may argue that after a characteristic time
depending on 1

| log(γ)| the past network activity has little
influence on the current membrane potential value.

Assume that we want to approximate the statistics of
spikes, given by the dynamics (1), by fixing a finite time
horizonR such that the membrane potential at time0 de-
pends on the past only up to some finite time−R. In
this way, we truncate the histories and we approximate the
transition probabilitiesP

(

ω(0) |ω−1
−∞

)

, with unbounded
memory, by transition probabilitiesP

(

ω(0) |ω−1
−R

)

, thus
limiting memory to at mostR time steps in the past. These
approximated transition probabilities constitute therefore a
Markov chain with a memory depthR. But how good is
this approximation ?

The truncation of histories leads to a truncation of the
Gibbs potential, denotedψ(R). The invariant measure of
the Markov chain is a Gibbs distribution for the potential



ψ(R), denotedµψ(R) . One can show that the Kullback-
Leibler divergence between the exact measureµψ and the
Markov measureµψ(R) obeys:

d
(

µψ(R) , µψ

)

< CγR, (6)

whereC can be computed explicitly as a function of synap-
tic weights and current.

Therefore, the Kullback-Leibler divergence decays
exponentially fast, with a decay rateγ, as expected from
our prior qualitative analysis. It is thus sufficient, for prac-
tical purposes, to approximateψ with a potential of range:

R ∼
1

| log γ|
. (7)

Consequently, the smaller the leak, the shorter is the range.
Note that the previous result is classical in ergodic

theory and expresses that finite range potentials are dense
in the set of Gibbs potentials [16]. What we bring is the
computation of the decay rate and an estimation of the con-
stantC for the present model (see [1] for details).

7 Raster plots statistics

As discussed in the introduction, the neuroscience commu-
nity is confronted to the delicate problem of characterizing
statistical properties of raster plots from finite time spike
trains and/or from finite number of experiments. This re-
quires an a priori guess for the probability of raster plots,
what we call astatistical model. These models can be ex-
trapolated from methods such as Jaynes’ [18]: “Maximis-
ing the statistical entropy under constraints”. Actually,this
is none other that the variational formulation (4). Now, this
method only provides an approximation of the sought prob-
ability, relying heavily on the choice of constraints usually
fixed from phenomenological arguments, and this approxi-
mation can be rather bad [19]. Moreover, note that Jaynes’
method is typically used for a finite number of constraints
while (4) holds for a very general potential, actually cor-
responding, in the present context, to infinitely many con-
straints.

On phenomenological grounds, spiken-uplets
(i1, t1), . . . , (in, tn) (neuron i1 fires at time t1, and
neuron i2 fires at timet2, . . . ) provide natural choices
of constraints since they correspond to experimentally
measurable events whose probability of occurrence has a
phenomenological relevance. For example, the probability
of occurrence of(i1, t1), µψ(ωi1(t1)), is the instantaneous
firing rate of neuroni1 at timet1. On a more formal ground
a spiken-uplet corresponds to anorder-n monomial; this
is a functionφ which associate to a rasterω the product
ωi1(t1) . . . ωin

(tn), where1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ N

and−∞ < t1 ≤ t2 ≤ · · · ≤ tn < 0, and where there is
no repeated pair of indexes(i, t). Hence,φ(ω) is equal to
1 if and only if neuroni1 fires at timet1, and neuroni2
fires at timet2, . . . in the rasterω (and is0 otherwise). A
polynomialis a linear combination of monomials.

Fixing constraint on spike-uplets (monomials) aver-
age leads to specific forms of Gibbs distribution. As an
example, constraining firing rates only corresponds to a
Bernoulli distribution where neurons spike independently
and where the potential reads

∑N
i=1 λiωi(0). Constrain-

ing rates and probability that 2 neurons fire simultaneously
leads to the so-called Ising distribution where the potential
reads

∑N
i=1 λiωi(0)+

∑N
i,j=1 λijωi(0)ωj(0) [2]. Here, the

related probability measure does not factorize any more but
all information about spike train statistics is contained in
the first and second order spike-uplets at time0.

More generally, imposing constraint on a (finite)
set of monomialsφ1, . . . , φL, leads to a parametric form
of Gibbs potentialφguess(ω) =

∑L
l=1 λlφl(ω), where

the λl are Lagrange multipliers. Note that theλl’s are
related by an additional constraint, the normalisation of
the probability. Again, this potential relies heavily on the
choice of constraints.

On the opposite, in the present example, instead
of an ad hoc guess, an exact polynomial expansion
can be obtained from the explicit form of the potential
(5). It is given by expanding (5) in series via the se-
ries expansion oflog(π( θ−Ci(ω)

σi(ω) )) (note that θ−Ci(ω)
σi(ω)

is bounded in absolute value provided the synaptic
weights are finite and the noise intensityσB is posi-
tive. Thus,0 < a < π( θ−Ci(ω)

σi(ω) ) < b < 1, for some
a, b). This series involves terms of the formCi(ω)n

leading to monomials of the formωj1(t1) . . . ωjn
(tn)

where j1, . . . , jn are neurons pre-synaptic toi (with
Wijk

6= 0, . . . k = 1 . . . n) and tk < 0, k = 1 . . . n.
As a consequence, the potential (5) has the form
∑N

i=1

∑∞
l=1 λi,lφi,l(ω) where theφi,l’s are monomials

of the form ωi(0)ωj1(t1) . . . ωjn
(tn), t1, . . . tn < 0

and the λi,l’s contains products of the form
γt1 . . . γtnWij1 . . . Wijn

.
Note that terms of the formωi1(0)ωi2(0) . . . do not

appear in this expansion. Especially, itdoes not contain the
Ising term.

As discussed in the previous section, truncating this
series to a finite polynomial involving monomials with a
time depthR (i.e. of the formωj1(t1) . . . ωjn

(tn) with
−1 ≤ tk ≤ −R) amounts to considering Markovian ap-
proximations ofψ. How the corresponding Gibbs distri-
bution approximates the exact one is controlled by eq. (6)
whereC depends on the synaptic weights and currents.

This expansion contains an exponentially increasing
number of terms asR, or N , the number of neurons,
growths. However, it does not contain all possible mono-
mials. Indeed, beyond, the remark above about the van-
ishing of non causal term the form of the potential can be
considerably reduced from elementary considerations such
as stationarity. Moreover, someλ(l)

i1,t1,...,il,tl
’s can be quite

close to zero and eliminating them does not increase signif-
icantly the Kullback-Leibler divergence. This can be used
to perform systematic (algorithmic) reduction of the poten-



tial in a more general context than the present model (see
next section and [17] for more details).

To summarize, one can obtain, from the previous
analysis, a canonical form for a range-R approximation of
ψ, of the form:

ψ
(R)
λ

=
K

∑

l=0

λlφl, (8)

where all terms contribute significantly to the probability
distribution i.e. removing them leads to a significant in-
crease of the KL divergence between the exact Gibbs dis-
tribution and its approximation. Thus, in the present case,
the relevant constraints (and the value of the relatedλl’s)
can be estimated from the analytic form of the potential.

8 Parametric estimation of spike trains
statistics.

This analysis opens up the possibility of developing effi-
cients algorithms to estimate at best the statistic of spike
trains from experimental data, using several guess poten-
tial and selecting the one which minimizes the KL diver-
gence between the Gibbs measureµ

ψ
(R)
λ

and the empirical

measure attached to some experimental rasterω(exp) [17].
The idea is to start from a parametric form of potential (8),
of rangeR, and to compute the empirical average of all
monomialsφl from the experimental rasterω(exp). Then,
one adjust the parametersλl by minimizing the KL diver-
gence. This computation can be easily done using spectral
properties of the Perron-Frobenius operator. This algorithm
described in [17], will be presented in this conference, in
another communication, and is freely available as a C++
source athttp://enas.gforge.inria.fr.

9 Discussion

In this paper we have addressed the question of character-
izing the spike trains statistics of a network of LIF neurons
with noise, in the stationary case, with two aims. Firstly,
to obtain analytic and rigorous results allowing the charac-
terization of the process of spike generations. Secondly, to
make a connection from this mathematical analysis toward
the empirical methods used in neuroscience community for
the analysis of spike trains. Especially, we have shown that
the “Ising model” provides, in this example, a bad approx-
imation of the exact Gibbs potential. This is due, on one
hand, to the fact that Ising potential does not take into ac-
count causality, and on the other hand, to the fact that the
exact potential includes quite a bit more “constraints” than
the mere average value of pairwise spike coincidence. Al-
though the first objection can somewhat be relaxed when
considering data binning (that we do not consider here),
the second one seems unavoidable.

Also, we have shown that the Jaynes method, based
on an a priori choice of a “guess” potential, with finite
range, amounts to approximate the exact probability

distribution by the Gibbs distribution of a Markov chain.
The degree of approximation can be controlled by the
Kullback-Leibler divergence.

One may wonder wether our conclusions, obtained
for a rather trivial model from the biological point of view
as any relevance for the analysis of real neurons statistics.
We would like to point that the main ingredients making
this model-statistics so complex are causality induced by
dynamics, and integration over past events via the leak
term. We don’t see any reason why the situation should
be simpler for more realistic models. Especially, what
makes the analysis tractable is the reset of the membrane
potential to a constant value after firing, inherent to IF
models, and rather unrealistic in real neurons. Thus, the
memory effects could be even worse in realistic neurons,
with a difficulty to extract from a thorough mathematical
analysis, the relevant times scales for a memory cut-off,
as the log of the leak is in the present model. Neverteless,
this work is a beginning with a clear need to be extended
toward more realistic models.

A natural extension concerns the so-called General-
ized Integrate and Fire models [11] , which are closer to
biology [21]. The occurrence of a post-synaptic potential
on synapsej, at timet

(n)
j , results in a change of membrane

potential. In conductance based models this change is in-
tegrated in the adaptation of conductances. It has been
shown in [12], under natural assumptions on spike-time
precision, that the continuous-time evolution of these equa-
tions reduces to the discrete time dynamics. In this case the
computation of the potential corresponding to (5) is clearly
more complex but still manageable. This case is under cur-
rent investigations.

One weakness of the present work is that it only con-
siders stationary dynamics, where e.g. the external current
Ii is independent of time. Besides, we consider here an
asymptotic dynamics. However, real neural systems are
submitted to non static stimuli, and transients play a crucial
role. To extend the present analysis to these case one needs
the proper mathematical framework. The non stationar-
ity requires to handle time dependent Gibbs measures. In
the realm of ergodic theory applied to non equilibrium sta-
tistical physics, Ruelle has introduced the notion of time-
dependent SRB measure [22]. A similar approach could be
used here, at least formally.

In neural networks, synaptic weights are not fixed,
as in (1), but they evolve with the activity of the pre- and
post-synaptic neuron (synaptic plasticity). This means that
synaptic weights evolve according to spike train statistics,
while spike train statistics is constrained by synaptic
weights. This interwoven evolution has been considered
in [23] under the assumption that spike-train statistics is
characterized by a Gibbs distribution. It is shown that
synaptic mechanism occurring on a time scale which is
slow compared to neural dynamics are associated with a
variational principle. There is a function, closely related

http://enas.gforge.inria.fr


to the topological pressure, which decreases when the
synaptic adaptation process takes place. Moreover, the
synaptic adaptation has the effect of reinforcing specific
terms in the potential, directly related to the form of the
synaptic plasticity mechanism. The interest of this result
is that it provides an a priori guess of the relevant terms in
the potential expansion. A contrario, it allows to constrain
the spike train statistics of a LIF model, using synaptic
plasticity with an appropriate rule which can be determined
from the form of the expected potential.
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