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ABSTRACT 
 

The operation of real world networks is largely 
determined by their weighted and spatial characteristics. 
Surprisingly little is known about these features in 
cortex. We generated in macaque, a consistent database 
of inter-areal connections comprising projection 
densities (link weights) and physical lengths. Contrary 
to previous assumptions, the cortical connection matrix 
is dense (66%) and therefore, not a small-world graph. 
Link weights are both highly specific and 
heterogeneous and we show that it is these properties 
that characterize the network. The embedding of this 
weighted network is governed by a distance rule that 
predicts both its binary features as well as the global 
and local communication efficiencies. Analysis of the 
efficiency of this weighted network suggests that small 
changes in global communication efficiency are offset 
by large changes in local efficiency. These findings 
indicate a weight-based hierarchical layering in cortical 
architecture and processing. 
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1.  Introduction 
 
 There is a long history of attempts at 
understanding how information flow through the cortex 
is shaped by the organizational principles of cortical 
connectivity. The work of Hubel and Wiesel was 
greatly inspired by the structure/function relations in the 
visual system and their formulation of the functional 
architecture of the visual cortex is a monument in favor 
of this approach to understanding mechanisms 
underlying perception and development [1]. Using both 
single unit recording and transynaptic labeling of 
thalamic terminals in area V1 they were able to describe 
the ocular dominance and orientation columns. They 
extended this approach to tackle the issue of interareal 
connectivity from a functional perspective. Their 

insight into the anatomy of the cortex coupled with 
single-unit recording suggested that simple, complex 
and hypercomplex receptive fields reflected stages of 
information processing in successive and distinct levels 
of the system. 
 With the discovery of increasing numbers of 
connections, the more interesting approaches to the 
issue of cortical connectivity have looked at general 
principles rather than the detailed connectivity of a 
single area. Probably one of the most influential 
publications in this direction is that of the investigation 
of the hierarchy of the cortex, conducted by Felleman 
and Van Essen [2]. Their study employed concepts of 
cortical organization developed earlier by Pandya and 
Rockland [3]. In their pioneering work, Rockland and 
Pandya had noted that the laminar organization of 
interareal connections shows strong regularities. 
Projections from the primary sensory areas to 
subsequent levels of cortical processing (associated to 
the increase of both size and complexity of the 
receptive field) predominantly stem from supragranular 
layers, whereas projections from higher to lower areas 
originate mostly from infragranular layers. This and the 
analogy with cortical projections to subcortical 
structures led to the suggestion that these two sets of 
projections constitute bottom-up (feed-forward) and 
top-down (feed-back) pathways of a sequential 
processing of information. 
In their meta-analysis of the connections linking 
cortical areas, obtained from numerous tract-tracing 
experiments in different laboratories, Felleman and Van 
Essen presented a model in which their 32 cortical areas 
are distributed over 10 hierarchical levels (Fig 1). In 
this layout, virtually all known feedforward projections 
link a source area to a target higher up in the hierarchy, 
and these feedforward projections are reciprocated by 
feedback ones. They had been able to find a hierarchical 
ordering of the cortical areas with almost no exceptions 
to these simple topological rules, which were 
subsequently shown to be a consistent feature of 
sensory cortex [2, 4]. In many ways the famous 
Felleman and Van Essen model of the cortical hierarchy 



is the best map we have of the cortex. It captures many 
features of the cortex, it reveals a clearly hierarchical 
structure with numerous parallel pathways including the 
main trunks of the ventral and dorsal streams, it shows 
that feedforward information can only go from lower to 
higher levels, whereas feedback information travels in 
the opposite direction. In their study Young and 
colleagues showed that non-metric multidimensional 
scaling of an adjacency matrix (a matrix containing the 
binary connection information within a set of areas) 
obtained from the database compiled by Felleman and 
Van Essen confirmed a hierarchical organization of the 
major cortical pathways as well as their levels of 
convergence [5]. However, because of the numerous 
parallel pathways and given the arbitrary number and 
positions of levels used in the Felleman and Van Essen 
model, the analysis of Young’s group showed that there 
were 150,000 equally plausible solutions to the model 
[6]. One way to resolve this ambiguity is to use a 
hierarchical distance measure that holds the promise of 
allowing a definitive solution to the hierarchy [7]. 
 While the Felleman and Van Essen map 
reveals important unifying features of the cortex, it 
remains conceptually frustrating. Its construction 
depends entirely on the notion that there are 
feedforward, ascending pathways versus feedback or 
descending pathways. The common assumption is that 
feedforward pathways contribute to determining the 
receptive field features in their target areas while 
feedback projections have a modulatory role. At the 
systems level there are few experimental verifications 
of these notions [8, 9], and none at the cellular level. 
This is in large part due to the fact that interareal 
cortico-cortical projection cells are hard to identify, for 
they are only a minute fraction of cortical cells, and we 
still do not dispose of molecular marker for this cellular 
type.  
 Recently an alternative approach to 
understanding cortical pathways appeals to graph 
theoretic analysis of cortical networks. Since the early 
1990s there has been an increasing focus on network 
representations of complex systems with the goal of 
gaining an insight into the functional processes 
supported by these networks [10, 11]. Among the major 
discoveries coming out of this approach was the 
recognition that many real-world networks, on the 
binary connectivity level, share small-world [12] and 
scale-free properties [10]. The description of the small-
world and scale-free phenomena seemed to be 
particularly relevant to understanding the brain [13]. In 
particular, small-world networks are characterized by 
short path lengths between nodes, coupled with high 
levels of clustering and ensure maximum integration 
with minimum wire length. Translated in to anatomical 
terms, nodes are areas and a small world network would 
imply that the average number of areas (hops or steps) 
crossed in the path between any two areas would be 
small even though areas are mostly linked to a few 
other areas forming a densely clustered neighborhood. 
Minimum wire would mean that there would be 
multiple interconnections within a set of areas but only 
some of these areas will have extensive connections that 
form long-distance pathways, to other tightly grouped 

areas. These would effectively provide the shortcuts 
necessary to keep average path lengths optimally short, 
while avoiding the expense of direct pathways between 
numbers of areas. Small world networks were initially 
used for describing social networks where it has been 
claimed that no two individuals on the planet are more 
than 6 handshakes from each other. Truly a small 
world, made possible, because although most of your 
friends know each other (clustering), some of them plug 
into other social groups (and provide the shortcuts 
across the graph). These features provide the integrative 
function typical of modern society, and it is easy to 
imagine that they are important in cortical function 
[14]. Inspired from these early studies on small worlds, 
and using the compilation of Felleman and Van Essen 
[2], several studies have confirmed the clustering of 
functionally related areas and found evidence of short 
average path lengths suggestive of small-world 
architecture [15, 16].  
 Previous graph theory studies of the cortex 
have largely described cortical topology obtained from 
binary data (i.e. describing areas as being connected or 
not connected) [15, 16]. Modeling studies of the cortex 
have used published databases compiled from numerous 
studies, many using antiquated techniques, variable 
definitions of a cortical area, and restricting their 
investigations to limited regions of the cortex, so that 
the present day cortical graph is predicted to be 
incomplete. Further, it is increasingly recognized that 
new and fundamental insight into the functional 
organization of real-world systems requires the use of 
weighted networks (i.e. the strength of connections), 
possibly incorporating spatial distance [17]. In cortex 
however, the study of spatial, weighted networks is 
hindered by the absence of reliable published data 
concerning the distance and numbers of neurons 
involved in the links between cortical areas [18]. We 
have therefore undertaken a detailed anatomical 
investigation of the macaque cortex using stereotyped 
protocols. This has amounted to a huge work effort (on 
the order of 70 man-years). It has enabled us to compile 
a consistent and extensive database of the weight and 
distance of interareal connections, which we have 
analyzed using graph theoretic procedures. To achieve 
this goal we used retrograde fluorescent tracers, which 
as we have previously demonstrated have maximum 
sensitivity. These tracers are picked up by axon 
terminals at the injection site, and retrogradely 
transported back to the cell body of the neuron 
projecting to the injected area. Previously, we have also 
shown that folding of the cortex makes it necessary to 
have high frequency sampling of the projection zone in 
each area [19]. Many previous studies have suffered 
from the “looking under the street lamp” bias, 
restricting their observations to those areas which are 
known to project to the injected area. Here we show 
that the optimization of tracer sensitivity coupled with 
brain-wide examination reveals many (in the region of 
30%) pathways that have not been previously reported. 
We have made retrograde tracer injections in 26 target 
areas distributed across occipital, temporal, parietal, 
frontal and prefrontal lobes. The number of labeled 
neurons in a given source structure (cortical area or sub-



cortical nuclei) over the total number of labeled neurons 
in the brain defines the fraction of labeled neurons 
(FLN) of that structure. 
 
Cortical Connectivity Profiles. 
 If connectivity weight does play a role in shaping 
the network properties of the cortex, then we predict 
that cortical areas would exhibit weight-specific 
connectivity profiles. That is to say, we would predict 
that if area X, Y, and Z have respectively strong, 
medium or weak projections to area W, that this will be 
consistent across animals. There have been very few 
studies that have attempted to test this possibility. The 
few quantitative studies that have been reported claim 
that there is a 100-fold, inter-individuals variation in the 
density of connections of a given cortical pathway [18, 
20-23]. We have therefore examined this issue in visual 
areas V1, V2 and V4. Here the advantage is that the 
areal limits of these large areas are well established as 
are the retinotopic maps, making it possible to make 
large, stereotypic injections of retrograde tracers in 
similar retinotopic positions across animals. By 
employing standardized methods to define areal 
boundaries, within the whole cortical sheet, we obtained 
a range of variations for FLN values with median and 
means less than a factor of two. Thus, while the 
observed values are over-dispersed with respect to a 
Poisson distribution, importantly they are systematically 
less than that predicted by a geometric distribution. The 
negative binomial distribution has proven valuable in 
the analysis of over-dispersed count data [24-26] and 
provides a reasonable prediction of the relationship 
between the mean and the standard deviation of FLN 
values. For repeated injections in the same site (V1, V2 
or V4), the model that best predicts without over-
parametrization, includes no main effect of the factor 
“injection CASE” and therefore each area exhibits a 
connectivity profile (Fig 2). These results show that 
there is a connectivity profile despite large inter-case 
variation and the observed consistency is possible 
because the connection weights span nearly 7 orders of 
magnitude. The FLN distribution is heavy-tailed and 
resembles a lognormal distribution (Figure 1). Globally 
the connectivity profile is expressed as follows. The 
mean intrinsic connectivity FLN % was nearly 80% 
(68-89%) of the total connectivity, and is highly local 
occurring within 1.2-1.9mm from the injection site. The 
next largest contribution is from the neighboring 
cortical areas (14%). The remaining connectivity is 
shared between 3.3% long-range cortico-cortical 
connections and 1.3% subcortical connections. This 
pattern of high local connectivity coupled with very 
small sub-cortical input and weak long distance 
connectivity is consistent across the 

cortex.

 
Figure 1 Connectivity profiles of areas V1, V2, V4. 
 
Effects of distance on connectivity weight  
 The lognormal distribution of the FLN is the 
expression of a distance rule, which has a profound 
effect on the organization of the cortex. The pathways 
linking cortical areas were measured through the white 
matter and their distribution estimated, by determining 
the fraction of labeled neurons extending to a given 
distance. This showed that in all injections there is an 
exponential decay in the density of connections with 
distance. This distance information enabled us to show 
that the strength of interconnections follows an 
exponential distance rule (EDR) (i.e. strength of 
connections decays exponentially with increasing 
projection distance). We examined how distance and 
strength of connections shapes cortical connectivity by 
building random models of connectivity based on the 
same number of pathways and areas as in the 
experimental data and complying to the EDR, and 
compared this to the properties of networks generated 
by using a constant distance rule (CDR).  
 We then examined the capacity of the two models 
(EDR and the CDR) to capture the measured features of 
the data. The rational being that if the EDR is an 
important principle governing cortical connectivity then 
it will show an enhanced capacity compared to the CDR 
to capture the characteristic features.  
 The average number of uni-directional and bi-
directional (reciprocated) connections (as area pairs) 
measured on 1000 random graphs based on the EDR 
gives an almost perfect match to the experimental data, 
while that for CDR differs considerably. One 
characteristic binary feature of a network is the relative 
frequency distribution of directed triads (Figure 2). Any 
three areas are taken and the connections examined 
giving a total of 16 possible motifs. 
 

 
Figure 2 The 16 possible triadic motifs. 
 
Studies looking at motifs distribution frequencies have 
reported that specific types of network (signal 
transduction, gene transcription, social etc) have 
characteristic motif distributions, which are thought to 
constrain the function of the network [27]. We were 
able to show that random models of cortical 
connectivity constructed with CDR failed to capture the 
motifs and bi-directionality of the data. This contrasted 
with the EDR model that leads to excellent estimations 
of these binary features. 
 



Graph density and efficiency  
Global Efficiency reflects the average bandwidth for 
information flow through the weighted graph  [28]. 
Regardless of the pattern of terminal arbors a projection 
build from numerous neurons is able to convey higher 
dimensionality information than projections originating 
from smaller number of neurons and so needing some 
compression of the information send though he 
pathway. Here we have sought to determine the 
pathways that ensure the global efficiency of the graph. 
If someone considers the relative strength of connection 
as the compliance to information transfer then we are 
able to estimate the conductivity trough any possible 
pathway between a pair of areas. The pathway with 
highest conductance will be the one requiring less hops 
and using projections with high compliance. The global 
efficiency is the sum of the conductance between all 
pairs of areas, where the maximum resistance come 
from the weakest links. We tested the effect of attacking 
the graph by removing connections, starting with the 
weakest ones (Figure 3A). This does not show an effect 
on global efficiency until 81% of pathways (containing 
7% of total neurons) have been removed.  Hence the 
efficiency of the network is assured by the remaining 
19% of pathways exhibiting the highest weights (93% 
of the cortical projection neurons). These pathways with 
the highest FLN that ensure the global efficiency, have 
a mean projection distance of 14mm, considerably 
shorter than the 38mm of the connections that do not 
contribute to global efficiency. The network formed by 
19% pathways that confer efficiency, constitute a 
backbone of the graph. It is the minimal set of 
connections that provide unaffected global efficiency. 
Interestingly, given the large average path length (3.7 
hops) and the diameter of the graph (9 hops!) the 
efficiency backbone does not seem to correspond to a 
small world architecture. A complementary measure of 
efficiency is the local efficiency [29] which is the 
summed conductance between all the areas connected 
to an area X, after removal of area X. It is like assessing 
how easily you can travel between the satellites of a 
town, without using routes passing through the town. 
Again this is averaged across the entire graph. Local 
efficiency evolves differently with weak link removal 
(Fig 4A). Whereas global efficiency shows a very 
modest decline with weak link removal, local efficiency 
shows a gradual increase, peaking in the region just 
prior to the breakdown of the global backbone. The 
differential responses of the local and global 
efficiencies are predicted by the EDR but not by the 
CDR, this shows that the geometry and weight 
configuration (in other words the physical embedding) 
has a particular significance in the efficiency 
configuration of the network. Further the differential 
response of the local and global efficiencies suggests 
interesting dynamics of the system. The effect of weak 
pathway removal is one way of examining how 
threshold changes in the network will influence 
information flow. High activity levels in the network 
could raise neuron response threshold [30-32]. 

 
Figure 3 Efficiency of the cortex. A) Effect of removal 
of weak projections on efficiency. B) Kamada-kawai 
plot of the cortical graph unweighted. C) Weighted plot 
of the graph with the same algoritm converges in layout 
representing functional clusters. 
 
 
   
This suggests that activity dependent increases in 
threshold [30] could lead to a small decrease in global 
efficiency that is off-set by a large increase in local 
efficiencies, as has been suggested in the local 
microcircuit [33]. In this way the control of assembly 
dynamics in the cortex will have a spatial component in 
large part due to the spatial and weight characteristics 
of the cortical network described here. A simple way to 
illustrate the role of connection weight and distance is 
to plot the graph either using a binary or weighted, 
adjacency matrix. When weights are not taken in to 
account the algorithm converges to a layout where there 
is no biologically relevant node clustering (Fig. 4B). 
Remarkably when the weighted matrix is provided to 
the algorithm it converges to areal groupings that 
strongly reflect the functional lobes (Fig. 4C). This is 



highly illustrative of the link between connection 
weight and distance that we reveal in the EDR. 
 
3.  Conclusion 
 
The novel anatomical connectivity data, including the 
strengths of connections and spatial information suggest 
a revision of the cortical network given by previous 
studies. In particular, the newly uncovered anatomical 
connections lead to a very strongly connected inter-
areal network (over 66% of the possible connections 
exist). In the light of such high density the small-world 
like properties of the graph (average directed path 
length = 1.34 and diameter = 2) are not significant. 
Neither can the network be described as scale-free in 
terms of its binary connectivity, given that the number 
of nodes is small and given their non-power-law degree 
distributions. 
 With a density of over 66%, binary features of the 
cortex, such as small world properties and hubs provide 
little functional insight, given that non sparse graphs 
can hardly be rewired in a manner not to express short 
path and high clustering. Instead, the range of weights 
of connection and distance must be examined. Doing so 
reveals a strong regularity of the cortex, where each 
area has strong connections with its neighbors, and 
where weights of connections fall off exponentially 
with distance to give place to weak, mid to long 
distance projections. These latter connections greatly 
contribute to linking areas standing on very distant 
levels of the cortical hierarchy and yet appear to make 
only a poor contribution to the global efficiency of the 
cortex. We see a dichotomy between the circuit of few 
very strong connections and the myriad of weak links 
that do not provide channels broad enough to transfer 
detailed, extensive fine grain information. 
 The out-standing reason why interareal 
connectivity does not correspond to a small world 
network is that the density of the graph is way too high. 
Lock 100 people into a room and shortly they will all 
know each other, leading to a social graph of 100% 
density, with path length of 1 hop and a single large 
cluster. Small world properties only become interesting 
when the number of nodes is large and the number of 
links is small. 
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