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Automatic Area Classification in Peripheral Blood
Smears

Wei Xiong∗, Member, IEEE, S. H. Ong, Member, IEEE, Joo-Hwee Lim, Member, IEEE, Kelvin Foong Weng
Chiong, Jiang Liu, Daniel Racoceanu, Member, IEEE, Alvin G. L. Chong, and Kevin S. W. Tan

Abstract—Cell enumeration and diagnosis using peripheral
blood smears are routine tasks in many biological and patho-
logical examinations. Not every area in the smear is appropriate
for such tasks due to severe cell clumping or sparsity. Manual
working area selection is slow, subjective, inconsistent and
statistically biased. Automatic working area classification can
reproducibly identify appropriate working smear areas. However,
very little research has been reported in the literature. With
the aim of providing a preprocessing step for further detailed
cell enumeration and diagnosis for high throughput screening,
we propose an integrated algorithm for area classification and
quantify both cell spreading and cell clumping in terms of
individual clumps and the occurrence probabilities of the group
of clumps over the image. Comprehensive comparisons are
presented to compare the effect of these quantifications and their
combinations. Our experiments using images of Giemsa-stained
blood smears show that the method is efficient, accurate (above
88.9% hit rates for all areas in the validation set of 140 images)
and robust (above 78.1% hit rates for a test set of 4878 images).
This lays a good foundation for fast working area selection in
high throughput screening.

Index Terms—Peripheral blood smear, working area, clump-
ing, classification, high throughput screening

I. INTRODUCTION

PERIPHERAL blood smears are widely used in biological
and pathological examinations. Blood smear preparation

requires the dropping of a blood sample on a glass slide,
spreading the sample and staining. Sample spreading is done
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by pulling a wedge to spread a drop of blood sample on the
slide. This produces a gradual decrease in thickness of the
blood from the thick to the thin end with the smear terminating
in a feathered edge [1]. At the thick end, most of the cells
are clumped, which increases the difficulty in identifying and
analyzing blood components. The smear gradually becomes
thinner towards the other end. Finally the cells distribute
unevenly, and grainy streaks, troughs, ridges, waves or holes
may be present. This portion of the smear has insufficient
useful information for analysis. A section with a monolayer
of cells is located somewhere between the two ends. The
thickness of the smear is influenced by the angle of the
spreader (the wedge), the size of the drop of blood and
the speed of spreading. The appearance (color, shape and
texture) of stained smears under the microscope depends on
factors such as the concentration of stains, presence of anti-
coagulants, lighting, exposure, artifacts, and so on. According
to domain experts, the areas in the smears can be categorized
into three classes in terms of cell spreading and morphology,
namely, clumped, good, and sparse, denoted by “C”, “G” and
“S”, respectively. Fig. 1 shows typical images captured from
these three areas.

(a) (b) (c)

Fig. 1. Typical areas: (a) clumped, (b) good, and (c) sparse.

In current laboratory practice, skilled users manually iden-
tify good working areas (GWAs) to acquire images for
enumeration, diagnosis, storing, transmitting and processing.
By GWAs, we refer to those areas having a high density
of well-separated cells with acceptable morphology. Due to
the aforementioned reasons, GWAs vary in morphology and
specific appearances in different slides. At the time of in-
spection, a decision has to be made as to where to start
the examination [2]. Such manual identification is tedious,
inconsistent and prone to error, and is also biased in terms
of statistics and user subjectivity. Automatic GWA detection
is desirable since it can increase consistency, reduce labor, and
achieve better accuracy.

Advances in high-throughput microscopy have enabled the
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rapid acquisition of many images (of the order of 104) without
human intervention for the purpose of large-scale screening,
i.e., high-throughput screening (HTS) [3]. Depending on the
sample size on the slide, one could easily acquire more than
ten thousand images, each containing a few hundred cells
using a 100× objective. Manual counting is impractical as
it will take about one week to count the cells in just one
slide assuming a rate of one minute per image. It would be
much faster to first automatically obtain the GWAs followed
by counting cells within these areas. Hence, in the context
of HTS and telepathology applications [4], automatic GWA
detection is necessary as a preprocessing step for large-scale
cell counting.

Despite its importance, automatic GWA detection has been
rarely investigated compared to studies on automatic blood
cell classification [5]. To our knowledge, there are only two
relevant papers in this field published by others, in 1987 [2]
and 2003 [6]. Reference [2] is a patent that describes the
measurement of areas and perimeters of cell regions by in-
corporating ad hoc conditions. The method considers a region
a GWA if the ratio η of the total area to the total perimeter
is less than a fixed threshold. It is claimed that this parameter
can be used to discriminate GWAs from those areas that are
too densely or too sparsely populated with red blood cells.
However, validation of the results was not provided.

Reference [6] presents a method for quick detection of well-
spread areas in smears under low magnification (16× or 25×
objective). The algorithm first extracts the red blood cells
(RBCs), the centers of the cells, and the cells with centers.
Although the term “cells with centers” is not explicitly defined
in [6], it is clear that the work relies on the extraction of the
so-called pale-staining central zones (PCZs) in cells caused
by their biconcavity [7]. Such PCZs are only observable in
some cells in Giemsa-stained smears without coverslips (Fig.
1(b) and Fig. 1(c)). For the purpose of long-term preservation,
smears are covered by coverslips, in which case, the cells
appear flat and biconcavity is seldom observed [8]. In [6],
the number of connected components from the three kinds
of particles are counted for calculating the coefficient of
cell spreading and the coefficient of cell overlapping. If the
coefficients are greater than 0.50 and 0.73, respectively, the
area is considered a GWA. However, both numbers are set
empirically, and hence not optimal.

In view of the above, we have recently reported an approach
[8] that measures GWAs without cell center extraction and
thus does not rely on PCZs. Instead, we employ two generic
global features in the image, namely, the average occupancy
of connected components α, and the average equivalent di-
ameter β. A cascading classification approach is proposed
to detect GWAs. The essential parts are two thresholding
methods whose parameters are determined by some intuitive
rules followed by leave-one-out cross-validation. Based on the
features η, α and β, we achieved promising results.

A pyramid image representation is adopted in [9] to
describe feature spatial distributions and to measure the fea-
ture homogeneity by using the feature percentages and their
standard derivation σ at each pyramid level. The selection of
appropriate features and quantitative image classification are

not discussed. We have applied the pyramid representation in
[10] to detect GWAs, where we also propose two new across-
scale measures.

A particular difficulty in automatic cell image processing
is to separate cell clumps into individual cells. The manner
in which cells aggregate influences the efficacy of automatic
separation. It is relatively simpler to split two touching cells
than two heavily overlapped cells, and also to separate a two-
cell clump than a multiple-cell clump.

In this work, we propose to measure, for an object, its
degree of cell clumping in terms of both its area and the
number of cells it contains. The object area (relative to the
area of a normal (i.e., healthy) cell) can be regarded as a
measure of the degree of cell overlap for individual objects.
In “C” images, some objects are significantly larger than
others, while in “G” images, the variation in object sizes is
relatively moderate. We can discriminate between these images
by computing the Shannon entropy from the area probability
distribution of all the objects in each image. In order to deliver
efficient GWA detection and area classification in the context
of HTS, it would be preferable that these measurements are
computationally undemanding. Hence, we adopt a simple, yet
efficient and accurate, cell-splitting approach that is aimed at
image area classification instead of accurate cell segmentation.
We select appropriate features for the classification task and
validate our approaches using comprehensive experiments on
large datasets.

The major contributions of this paper are: 1) an integrated
algorithm to classify a large set of blood smear images
into good, clumped and sparse regions for the purpose of
identifying GWAs, 2) a method that considers both feature
spatial distribution and cell clumping for GWA detection, and
3) optimal feature selection for image classification.

The rest of the paper is organized as follows. Sections II
and III describe the methods for image analysis and feature
extraction. We explain the classification algorithm in Section
IV. Section V presents the experimental results and discussion,
followed by the conclusion in the final section.

II. IMAGE ANALYSIS AND CLUMP CHARACTERIZATION

A. Image analysis

Our approach to GWA detection requires the quantification
of cell clumping and spreading. To measure the former, we
need to know the number of cells that are clumped together to
form a connected component (called an object here). Knowing
the total number of cells and the total number of objects in
the image is also useful. For cell spreading, the variance of
the number of cells in local regions is an indication of cell
spreading homogeneity. To obtain these features, we analyze
the images in four steps:

1) image preprocessing;
2) connected component labeling;
3) clump splitting and cell counting;
4) feature extraction.
The color images (of size 1280 × 1024 pixels) in our ex-

periments are acquired from malaria-infected Giemsa-stained
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blood smears (with covers) using an oil immersion 100× ob-
jective and a 10× ocular. The image is first represented in hue-
saturation-value (HSV) color space. To reduce the influence
of color changes due to variations in source illumination and
camera exposure, we process its value channel. The image
shown in Fig. 1(b) is used to illustrate the processing steps. In
this figure, the red blood cells appear dimmer than the plasma
(background). For the ease of manipulation, the inverse of
this channel is obtained to make the cells appear brighter than
the background. Median filtering is then applied to remove
noise. The gray level histogram (Fig. 2(a)) of the resulting
image, g(x, y), is bimodal, with the brighter mode comprising
the RBCs whose morphology and distribution are our prime
concern.

Otsu’s method [11] is a widely-used thresholding method.
Although it is a global method, it is fairly robust to different
illumination and color changes and works well for our images.
Morphological image processing is then applied to separate the
objects and remove isolated pixels. The resulting binary image
is denoted by g1(x, y) (Fig. 2(b)). Note that each image may
contain nb objects and each object i, i = 1, ..., nb, may contain
m cells. For the nb objects in the image, the region properties
of each object i, including area a(i) and perimeter c(i), are
found. Further, we have η =

∑nb

i=1 a(i)/
∑nb

i=1 c(i).
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Fig. 2. (a) Histogram of the gray image g(x, y), and (b) g1(x, y).

B. An efficient clump-splitting method
In this subsection, we describe how clumped objects are

split into individual cells. There are four major clump-
splitting approaches: binary erosion [12], watershed [13],
model-based [14] and concavity analysis [15]–[17]. Erosion-
based methods face difficulties in choosing suitable mask
sizes for erosion, and consequently a constituent object may
be completely eroded before a split occurs. The watershed
algorithm splits an image into areas according to the topology
of the image. During the flooding of an inverted distance-
transformed image (if the original image is binary) or a gray
level relief (if the original image is gray-valued), watersheds
with adjacent catchment basins are constructed [18]. Water-
shed techniques tend to over-split the clumps and generate
false splitting. Model-based approaches [14], [19], [20] require
proper initialization of the model parameters [20] and are
usually costly to compute. Concavity analysis methods [16],
[17] are based on shape alone and depend on subjective
rules to decide where to split clumps. In addition, if there
is severe cell overlap, the shape outline may not be sufficient
to determine splitting lines and the clumps may not be split
at all.

In our application, automatic area classification is a prepro-
cessing step before further accurate and detailed cell enumer-
ation and analysis. Note that, since the number of images is
large, any time-consuming approach might be inappropriate.
Hence, we require, for this step, a clump-splitting algorithm
that emphasizes speed with acceptable accuracy in GWA
selection instead of more accurate but slow cell counting.
We achieve this by combining image erosion and a modified
watershed technique.

Morphological opening is first applied to g1(x, y) using
a disk-shaped structuring element with radius u. This re-
moves regions having a radius less than u and yields f(x, y)
(Fig. 3(a)). This is followed by a clump-splitting algorithm that
works in transform space. First, we obtain fc(x, y), which is
the complement of f(x, y). Then we compute the Euclidean
distance transform of fc(x, y). For each pixel in fc(x, y),
the distance transform assigns a number that is the distance
between that pixel and the nearest nonzero pixel of fc(x, y).
The resulting image is a gray value image fd(x, y) (Fig. 3(b)).
In naive watershed techniques, the zero-distance pixels are
extracted from fd(x, y) to form splitting lines, which may
yield many false partitions.

Since we do not have to find a complete splitting of cells
or their exact boundaries, we apply an extended H-maxima
transform [21] on fd(x, y) with parameter h to obtain a binary
image fh(x, y) (Fig. 3(c)). This transform finds the regional
maxima and suppresses those external boundary pixels whose
distances from object boundaries are below h, thus separating
the connected components.

(a) (b)

(c)

Fig. 3. Splitting results: (a) f(x, y), (b) fd(x, y), and (c) the split cells (in
red) fh(x, y) overlaid on f(x, y).

The parameters u and h require fine tuning so that, ideally,
n-cell clumped regions will be separated into n isolated
regions exactly and there is a one-to-one mapping between
each isolated region and each cell identity. To achieve this,
the cell dimensions, such as the semi-major axis length, al,
and the semi-minor axis length, as, from healthy and separated
single cells are obtained. The mean and the standard deviation
of al (as) are denoted by al (as) and ãl (ãs), respectively. We
obtain as = 27.4, al = 35.0, ãs = 3.2 and ãl = 5.3, all
in pixels. The minimum value of as of single healthy RBCs
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is about 17 pixels. Our aim is to separate two cells with an
overlap of half a cell body. In this case, the distance between
the two cell centers is the diameter. Thus we choose h < 17
pixels. For u, it should not be larger than the minimum of
as as well, i.e., u < 17 pixels, so that no cell is removed.
In our experiments we have conservatively chosen h = 5 and
u = 10 pixels. The purpose for the margins in both h and u is
to cope with possible over-segmentation in pathological and
other regions as well as partial cells.

In Fig. 3, we observe that we can successfully split most
clumps but fail in a small percentage of severely overlapped
clumps. We also note that several cells are broken into multiple
isolated fragments due to over segmentation. To avoid over-
estimation, the isolated regions with very small areas should
be removed. The centroid of each isolated region in fh(x, y)
is finally used to count the number of cells in each object in
f(x, y). By labeling these regions in fh(x, y) we can find the
number of cells within each object, and the total number of
cells in f(x, y).

Finally, we compute the entropy e = −∑
pA log pA to

measure the cell clumping in the image collectively. Here pA is
the probability distribution function of all object areas within
the image.

III. CHARACTERIZING SPATIAL DISTRIBUTION OF
FEATURES

We note that cells are spread unevenly towards the feathered
edges in blood smears. Hence, measuring cell spatial distri-
bution should be useful for GWA detection. Methods in the
literature characterizing the spatial distribution of features fall
into two categories depending on whether or not individual
feature measurements are required [9]. Reference [22] extracts
the spatial coordinates of the centroids of the features. For
each feature, its nearest-neighbor feature is obtained. The
distribution of these nearest neighbor distances can be used to
measure feature spatial distribution. Finding such a distribution
is computationally expensive.

Variations in feature spatial distribution can be directly
characterized by homogeneity or inhomogeneity [9]. A dis-
crete, as opposed to a continuous, homogeneity status is
not sufficiently fine to incorporate other continuous features
for working area classification. In image processing, color
variance, kurtosis [23], and entropy [24] have been used to
measure homogeneity. We have chosen to use the standard
deviation derived from an image pyramid representation [9],
[10].

At each level of the pyramid, an image is partitioned into
four quadrants (two in each dimension). This partitions the
image hierarchically from the lowest (i.e., coarsest) scale (k =
0, without partitioning) to the highest (i.e., finest) scale (k =
K), resulting in qk = 4k blocks (child regions) at level k,
k = 0, . . . ,K. For each k, we define the spatial occupancy
αk
j of a feature in the jth block Bk

j , j = 1, . . . , qk, as αk
j =∑

x

∑
y f(x, y)/|Bk

j |, where |Bk
j | is the area of Bk

j and the
summations are over all pixels (x, y) in the block and f(x, y)
is 1 if pixel (x, y) belongs to a cell, and 0 otherwise. Of all
αk
j at each level k, their mean value, µk =

∑qk
i=1 α

k
j /qk, and

their standard derivation value,

σk =

√√√√
qk∑

i=1

(αk
j − µk)2/(qk − 1) (1)

are calculated. At level k = 0, σ0 = 0 as there is only one
block. Hence σ0 is not used here. For different scales, µk but
are almost the same [9] and thus can be treated as a single
feature. Let us denote it by α = µ0, which is the occupancy
in the entire image. Note that α is proportional to

∑nb

i=1 a(i)
and hence it is a measure of cell overlap. σk is related to
the scale of observation (i.e., the block size), the object sizes
and their spatial organization (for example, whether objects
are distributed uniformly or concentrate at certain parts of the
image) [9]. To illustrate this, Fig. 4 shows three σk ∼ k curves
for the three images shown in Fig. 1.

2 4 6 8
0

0.1

0.2

0.3

0.4

Level index k

σ k

 

 

Clumped
Good
Sparse

Fig. 4. Standard derivations (vertical axis) at different pyramid levels
(horizontal axis).

The differences among the curves are obvious, indicating
that σk can be used to encode spatial distributions. The general
shapes of the curves may be explained as follows. In our
experiments, the image size is 1024 × 1280 pixels and the
average dimension of normal cells is about 54× 70 pixels. In
the pyramid representation, the block sizes at levels k = 4, 5, 6
are 64×80, 32×40 and 16×20 pixels, respectively. The block
size at level 5 is closest to a normal cell size. At coarse levels
k = 1, 2, 3, where the block sizes are large, the blocks are
likely to contain entire cells. Since objects in “S” images tend
to concentrate at certain parts of the image (see Fig. 1(c)),
there is a high chance that some blocks contain cells while
others do not. Hence the variation in the spatial occupancies
in these blocks tends to be larger than those in “C” and “G”
images. At finer levels (k = 7, 8, 9), the blocks are small and
are more likely to contain parts of cells or parts of clumps
in “C” and “G” images as the sizes of these objects in these
images tend to be larger than the blocks. Since there are large
variations in the object parts which are contained in the blocks,
the occupancies of the blocks vary, and hence the occupancy
variances in “C” and “G” images tend to be larger than those
in “S” images at finer levels.

This analysis shows that σk at coarse or fine levels can
be used to classify the three types of images. In fact, we
can use σk both individually (a single σk at a certain k)
and collectively. For the former, we will select the optimum
through experiments. For the latter, we define the spatial
homogeneity of f(x, y) as the mean value of σk across
scales [10]: λ =

∑K
k=1 σ

2
k/K. We also observe that the “G”
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image has a lower value of area under its curve. Hence, we
include the area τ =

∑K
k=1 σk as a new feature.

IV. CLASSIFICATION METHODOLOGY

We can employ supervised classification methods using
support vector machines (SVMs). Given training samples
{(xi, zi)}, x ∈ Rm, zi ∈ {−1, 1}, i = 1, . . . , N , the two-
class soft SVM is to find Lagrange multipliers ξ = {ξi}Ni=1

such that [25]

J (ξ) =

N∑

i=1

ξi − 1

2

N∑

i=1

N∑

j=1

ξiξjzizjφ(xi, xj) (2)

is maximized subject to

N∑

i=1

ξizi = 0, 0 ≤ ξi ≤ C. (3)

Here C is the control parameter and φ (xi, xj) the kernel. We
take the linear kernel φ (xi, xj) = xT

i xj for simplicity. We let

ξ̂ =
{
ξ̂i

}N

i=1
and b = b(ξ̂) be the optimal parameters such

that f (x) = 0 is the class boundary with

f (x) =

N∑

i=1

ξ̂izik (x, xi)− b. (4)

In our case, we have three classes, clumped, good, and
sparse working areas. We employ the one-against-others
method to form three 2-class SVMs for each pair of features.
The maximum voting of the three is used to find the final
classification results. During the training phase, the models of
the three SVMs are learned from training data. In the testing
phase, the learned models are employed to generate three sets
of predictions for each test sample x. The one having the
largest prediction is the final decision.

V. EXPERIMENTAL RESULTS AND DISCUSSION

For convenience, Table I summarizes the aforementioned
elementary features and their descriptions. From these features
and their combinations, we choose the best performing set of
features in the image classification validation experiments. We
also discuss the classification benefits of the features.

TABLE I
ELEMENTARY FEATURES AND THEIR DESCRIPTIONS.

Feature Description
αk
j Spatial occupancy in block Bk

j

α Occupancy or the mean of αk
j at k = 0

σk Standard derivation of all occupancies at level k
η Total cell area/total perimeter of cell regions
λ λ =

∑K

k=1
σ2
k/K

τ τ =
∑K

k=1
σk

nc Total number of cells per image
nb Total number of objects per image
γ γ = nc/nb

e Entropy, e = −
∑

pA log pA

A. Feature spatial distributions across one slide
To select appropriate features, it would be instructive to see

the changes in feature values across the images of one slide
moving from the “C” areas to the “G” areas and finally to the
“S” areas. To visualize the changes, we choose a rectangular
region from one slide containing 52×95 images and illustrate
the two-dimensional spatial distribution of each feature in a
52 × 95 gray value image (Fig. 5). The brighter the pixel in
the gray image, the larger the feature value is at the pixel. For
comparison, we label “S”, “G” and “C” images by 1, 2 and
3, respectively. The purpose of this labeling is to differentiate
easily the classes of the images in the slide such that, when
visualizing each label as a gray level pixel in a figure, there
are three different levels of displaying brightness, namely, the
darkest level (for “S” images), the moderately bright level
(for “G” images) and the brightest level (for “C” images).
We show the class labels in the top left panel in Fig. 5 for
comparison. The border of each panel is highlighted in red.
A visual inspection will give us some idea of the suitability
of individual features to represent different classes of images.
For example, α and σ8 separate “S” images from “G” and
“C” images, e performs well in identifying “G” images, and
λ and τ can be used to classify the three classes. Features σ1

and η are not able to separate “G” and “C” but they can be
used to detect “S” images. The feature γ seems to have a low
discrimination power.
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8σ 9σ
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Fig. 5. Feature spatial distributions across the images of one slide. The
top-left panel indicates the image class labels (ICL) with the brightest pixels
corresponding to clumped images, the darkest pixels to sparse images, and
the moderately bright pixels to good images. In the 11 other panels for α,
η, σ1, σ8, σ9, nb, nc, γ, λ, τ and e, the brighter the pixel, the larger the
feature value.

B. Evaluation metrics
Before we discuss the details, we introduce the metrics

to evaluate classification performance. For n−class prob-
lems, these are derived from an n × n confusion matrix
Cn [26], whose entries cn(i, j), i, j = 1, . . . , n, is the
number of instances predicted as class i but actually be-
longing to class j. The GWA detection problem can be
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considered a two-class classification problem that distin-
guishes ”G” areas from ”C” and ”S” areas. Hence, we de-
fine [26], [27] sensitivity (or true positive rate) as SE =
c2(1, 1)/(c2(1, 1) + c2(2, 1)), specificity (or true negative
rate) as SP = c2(2, 2)/(c2(1, 2) + c2(2, 2)), positive predictive
value as PPV = c2(1, 1)/(c2(1, 1) + c2(1, 2)) and negative
predictive value as NPV = c2(2, 2)/(c2(2, 1) + c2(2, 2)). If
the four measures SE, SP, PPV, and NPV are high simultane-
ously for a classifier, then the classification is good. We thus
hope that their mean value, µ̂, is high while their variance, σ̂,
is low. µ̂ is thus considered as the major performance index.
For the classification of “C”, “G” and “S”, we define, from
the confusion matrix C3, the hit rate for each class j,

hj = c3(j, j)/

3∑

i=1

c3(i, j), j = 1, 2, 3. (5)

In particular, we denote hg = h1, hc = h2 and hs = h3, for
class “G”, “C”, and “S”, respectively. The total misclassifica-
tion rate is given by

ε =

∑3
i=1

∑3
j=1 c3(i, j)−

∑3
i=1 c3(i, i)∑3

i=1

∑3
j=1 c3(i, j)

. (6)

C. Experimental setup
The computation platform is a Xeon 3.6GHz CPU with 2GB

RAM using Matlab 7.4 calling SVMTorch [28] executables
compiled in C++. We use the linear kernel and set C = 100
in SVM. More than 15000 images are taken from four malaria-
infected Giemsa-stained blood smears using an oil immersion
100× objective and a 10× ocular with a digital camera (Pix-
elink PL-A662) linked to a motorized microscope (Olympus
BX51). We use a 10-level pyramid with K = 9 for multi-scale
image representation. From these images, experts selected and
marked some images for the three classes (“C”, “G” and “S”).
In the experiments, the training data are first normalized to
[0, 1]. The test data are then transformed accordingly.

We use 20 images for each class from one slide for training.
For feature selection and performance comparison, the test
images are from dataset D1 (41 from “C”, 48 from “G”, and
45 from “S”). Then, we include 128 extra images to form a
new dataset D2 and examine the robustness of our method.
Finally, another dataset D3 (2494 from “C”, 1316 from “G”,
1068 from “S”) from another slide are tested.

We first combine the features to form a higher-dimensional
feature space in SVM. We evaluate 50 distinct combinations
of features and test them on different data sets. These exper-
iments are indexed by an item number x (#x). The first 47
combinations are tested on D1. The performance metrics of
the 47 experiments are summarized numerically in Tables II
(for #1 to #20) and III (for #21 to #47). The remaining three
of the 50 combinations of features are however tested not only
on D1, but also on D2 and D3. The nine sets of experiments
are indexed from #48 to #56 with their performance metrics
compared in Table IV. In Fig. 6 we show an error bar plot for
all experiments indexed by their item numbers, where each
µ̂ is marked by a cross (x) and the corresponding σ̂ is the
half length of the vertical bar located symmetrically above
and below µ̂.
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Fig. 6. An error bar plot for all experiments: each µ̂ is marked by a cross
(x) and the corresponding σ̂ is the half length of the vertical bar locating
symmetrically above and below µ̂.

D. Results after feature selection

Actually, features σk, k = 1, ..K, at different scales,
perform differently in image classification. As seen in Table II,
σ8 and σ9 perform better than σ1, σ2, ..., σ7 while σ1 has a
poor hit rate for class “G”. Hence, σ8 is preferred to separate
“S” and “G”, and σ9 to separate “C” and “G”. We choose σ8

for further feature fusion in GWA classification.
In Table II, we also compare the performances of #10 to

#20 using σ1 and/or σ8. Generally, feature combinations using
σ8 perform better than those using σ1. For example, the feature
pair (η, σ8) outperforms (η, σ1) in the detection of “G” as the
hit rate hg of (η, σ8) is higher than that of (η, σ1). (α, η, σ8)
is also better than (α, η, σ1).

TABLE II
PERFORMANCE (%) COMPARISONS: BENEFITS FROM σ8 AND λ.

# Feature(s) SE SP hg hc hs ε
1 σ1 0.0 100.0 0.0 0.0 100.0 69.4
2 σ2 91.7 54.7 91.7 0.0 97.6 37.3
3 σ3 72.9 65.1 72.9 13.3 100.0 38.8
4 σ4 22.9 89.5 22.9 55.6 97.6 43.3
5 σ5 37.5 61.6 37.5 6.7 26.8 76.1
6 σ6 41.7 83.7 41.7 11.1 48.8 66.4
7 σ7 100 4.7 100.0 0.0 9.8 61.2
8 σ8 91.7 58.1 91.7 0.0 65.9 47.0
9 σ9 91.7 58.1 91.7 51.1 0.0 50.0
10 α, σ1 37.5 95.3 37.5 91.1 100.0 25.4
11 η, σ1 87.5 68.6 87.5 44.4 65.9 33.6
12 α, η, σ1 97.9 73.3 97.9 53.3 95.1 17.9
13 α, σ8 0.0 100.0 0.0 100.0 65.9 46.3
14 σ8, η 93.8 67.4 93.8 35.6 61 35.8
15 α, σ8, η 93.8 84.9 93.8 71.1 100.0 11.9
16 η 100.0 45.3 100.0 42.2 0.0 50.0
17 λ 29.2 86 29.2 20.0 48.8 67.9
18 σ8, λ 91.7 70.9 91.7 42.2 100.0 22.4
19 τ 43.8 70.9 43.8 48.9 24.4 60.4
20 σ8, τ 91.7 68.6 91.7 37.8 100.0 23.9

E. Performance benefits using defined features

The features that we have defined, namely, the number
of objects nb, the entropy e and the number of cells nc

in the image have different functionalities in classification.
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This subsection discusses their performance benefits as well
as the best performing feature combinations. Previously, we
had regarded objects as collections of pixels and benchmarked
the classification using pixel-based features. Here, we directly
count the number of objects. Since cells have finite sizes, the
number of non-overlapping cells must be constrained within
a certain range. Hence, nb measures the clumping degree
implicitly.

In Table III, experiments #21 to #28 are used to show per-
formance improvements introduced by nb. The improvement
in GWA classification due to nb can be seen. Although α and
nb have similar µ̂ and σ̂, α is good at detecting classes “C”
and “S” while nb has good discriminative ability in detecting
class “G”. They appear to complement each other. Hence, the
feature combination of α and nb will produce better results
than α or nb alone. Since nb and σ8 have similar hit and miss
rates for the three classes, either of them or their combination
should result in almost the same performance. This explains
the observation that the feature combination (α, nb) performs
well but slightly worse than (α, σ8, nb). The best feature
combination is (α, σ8, nb) with µ̂ and σ̂ equal to 88.0% and
4.4%, respectively. The hit rates are above 80.0% and the total
misclassification rate is 11.2%.

TABLE III
PERFORMANCE (%) COMPARISONS: BENEFITS FROM nb , e AND nc .

# Feature(s) SE SP hg hc hs ε
21 α 41.7 95.3 41.7 91.1 100.0 23.9
22 nb 95.8 74.4 95.8 13.3 80.5 36.6
23 α, nb 87.5 87.2 87.5 75.6 100.0 12.7
24 σ8, nb 89.6 77.9 89.6 53.3 51.2 34.3
25 nb, η 95.8 74.4 95.8 33.3 87.8 27.6
26 nb, λ 91.7 81.4 91.7 33.3 48.8 41.0
27 α, σ8, nb 87.5 89.5 87.5 80.0 100.0 11.2
28 σ8, nb, η 91.7 75.6 91.7 46.7 63.4 32.1
29 e 95.8 74.4 95.8 37.8 68.3 32.1
30 α, e 87.5 89.5 87.5 80.0 100.0 11.2
31 σ8, e 93.8 75.6 93.8 48.9 53.7 33.6
32 nb, e 87.5 86.0 87.5 73.3 43.9 30.6
33 η, e 95.8 74.4 95.8 35.6 87.8 26.9
34 λ, e 95.8 76.7 95.8 40.0 68.3 31.3
35 α, σ8, e 87.5 93 87.5 86.7 100.0 9.0
36 α, nb, e 87.5 87.2 87.5 75.6 100.0 12.7
37 α, η, e 89.6 88.4 89.6 77.8 100.0 11.2
38 α, nc 95.8 81.4 95.8 64.4 100.0 13.4
39 σ8, nc 100.0 0.0 100.0 0.0 0.0 64.2
40 nc, η 95.8 76.7 95.8 55.6 97.6 17.2
41 α, σ8, nc 91.7 91.9 91.7 84.4 100.0 8.2
42 σ8, nc, η 97.9 82.6 97.9 66.7 97.6 12.7
43 nc, λ 100.0 60.5 100.0 22.2 100.0 26.1
44 nc, e 87.5 89.5 87.5 80.0 100.0 11.2
45 nc, τ 100.0 61.6 100.0 24.4 100.0 25.4
46 nc, σ1 93.8 52.3 93.8 17.8 87.8 33.6
47 nc 100.0 20.9 100.0 0.0 43.9 50.7

Experiments #29 to #37 in Table III involve the entropy e.
Comparing these results, we see clear improvements obtained
by introducing e. Entropy is especially good at GWA detection
(with a hit rate 95.8% for class “G”). Very good performances
are obtained by combining α and e and also by combining e
with other features. For the feature combination (α, σ8, e), all
hits are above 86.7% and the misclassification rate is 9.0%.
For the detection of GWAs, we achieve µ̂ of 90.3% and σ̂

3.2%, respectively.
We have proposed the total cell count nc for GWA clas-

sification. The count nc is an explicit quantification of cell
clumping, just as nb is. However, nc is more effective in
discriminating different working areas. The quantitative re-
sults involving nc are detailed in #38 to #47 in Table III.
Comparing #21 (α, SE =41.7%, SP=95.3%) and #47 (nc,
SE=100.0%, SP=20.9%), we find that they are complementary
in SE and SP. Hence the number of cells per object and the
object area are two different factors in measuring the degree
of cell clumping in the object. By using them together in #38
(α, nc), we obtain high values of both SE (95.8%) and SP
(81.4%). The combination (α, σ8, nc) works very well with
µ̂ = 91.3% which is the highest so far we have achieved for
3-feature combinations. The variance σ̂ = 3.7% is also the
lowest. For (α, σ8, nc), the hits are better than 84.4% and the
total misclassification rate is 8.2%.

F. Results for large datasets and computational time

We can generally achieve better performances when more
features are combined. However, it does not mean that using all
features will present the best result. Using dataset D1, the three
top performing feature combinations are #48 (α, σ8, λ, e), #49
(α, σ8, η, γ, τ ) and #50 (α, σ8, nc, η, λ, e) (see Table IV for
details). To further check the robustness of our method, we
conducted two sets of experiments using the same feature sets
with #48, #49 and #50 but tested on datasets D2 (#51, #52
and #53) and D3 (#54, #55 and #56), respectively. The
results are presented in Table IV as well. Comparing their
corresponding performance metrics, we observe a decrease in
performance when more data are tested. However, we notice
that such a decrease is not significant, especially for class “G”,
in the sense that, for the tested 4878 images from a slide
different from those used for training, the hit rates for “C”,
“G” and “S” are still above 78.1%, with the sensitivity and
the specificity above 80.0% as well.

Finally, it took, on average, less than 5 seconds for all pre-
classification steps, including image processing and feature
extraction for each image. In addition, both training and testing
using SVMs for each classification took less than 5 seconds.

TABLE IV
PERFORMANCE (%) COMPARISONS: DIFFERENT DATASETS.

# µ̂ σ̂ SE SP hg hc hs ε
48 91.9 2.7 89.6 94.2 89.6 88.9 100.0 7.5
49 91.4 4.9 93.8 90.7 93.8 82.2 100 8.2
50 92.7 2.5 91.7 94.2 91.7 88.9 100 6.7
51 83.2 8.6 81.6 87.1 81.6 70.4 98.1 15.3
52 83.3 9.4 84.2 85.5 84.2 66.7 97.1 16.0
53 84.1 8.2 82.9 87.6 82.9 70.4 97.1 15.3
54 78.0 13.1 79.8 80.4 79.8 71.3 97.0 20.8
55 77.5 15.2 83.6 76.6 83.6 66.0 96.2 22.7
56 77.4 12.9 78.1 80.6 78.1 71.4 94.8 21.7

VI. CONCLUSION

The automatic detection of suitable working regions and
classifying different types of regions in peripheral blood
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smears have several advantages for later detailed cell enumer-
ation and diagnosis, in particular, improving the consistency
in identifying regions; broadening the inspection region range
from around ten to a few hundred images depending on the
actual sample size; reducing statistical bias for diagnosis based
on more region samples; and facilitating subsequent automatic
high throughput screening and telepathology applications.

We have reported promising results in 2008 [8], [10]. The
present paper extends our previous work by not only providing
comprehensive details but also including new methods with
improved performances. We have adopted an efficient algo-
rithm to split clumped cells. As the current objective is to use
GWA detection as a preprocessing step before further detailed
cell analysis in the context of high throughput screening, an
efficient area selection is desired, instead of an accurate but
computationally more expensive method for very accurate cell
segmentation. Furthermore, our primary concern is to measure
the goodness of GWAs, such as the degree of clumping and
cell spatial distributions. The method combines the erosion-
based technique and the watershed technique for cell clump
splitting, which is efficient and accurate enough for image
classification.

We have shown that the area of a clump and the number of
cells it contains are different features quantifying the degree
of clumping. We can achieve better sensitivity and specificity
in classifying images by using both features at the same time.
We have demonstrated that entropy e as a collective measure
for the occurrence frequency of differently sized objects in an
image can be used to improve the detection of GWAs. We have
also shown that, the cell spatial spreading quantified by using
σ8 and λ is also helpful to improve classification performance.
Our results show that the top performing combinations of
features normally involve these elementary features.

Extensive validations have been done on 60 training images
and 134 other test images. We have obtained (µ̂,σ̂) to be
(92.7% , 2.5%), and 91.7% sensitivity and 94.2% specificity
for GWA detection, with all hit rates better than 88.9% and a
total misclassification rate 6.7% for the three classes. Finally,
we have tested the method on a test set of 4878 images
and achieved above 78.1% hit rates, demonstrating acceptable
robustness of the current work. In a Matlab implementation,
it took less than 5 seconds for image analysis and less than
5 seconds for each classification, respectively. This lays the
foundation for efficient GWA detection as a preprocessing step
in high throughput microscope screening.
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