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A SIMPLE ALGORITHM FOR FINDING SHORT SIGMA-DEFINITE

REPRESENTATIVES

JEAN FROMENTIN AND LUIS PARIS

Abstract. We describe a new algorithm which for each braid returns a quasi-geodesic σ-
definite word representative, defined as a braid word in which the generator σi with maximal
index i appears either only positively or only negatively.

Introduction

Since [4], we know that Artin’s braid groups Bn are left orderable, by an ordering that
enjoys many remarkable properties. This braid ordering is based on the property that every
nontrivial braid admits a σ-definite representative, defined to be a braid word in standard Artin
generators σi in which the generator σi with highest index i appears either with only positive
exponents or with only negative exponents. In the past two decades, many different proofs of this
result have been found, some of them based on algebra [3, 4, 5, 14], other on geometry [2, 8, 9].
All these methods turn out to be algorithms. But in the best cases, starting with a braid word w
of length ℓ, they only prove the existence of a σ-definite word w′ equivalent to w with length
bounded by an exponential on ℓ. In [10], an algorithm returning a quasi-geodesic σ-definite
representative has been introduced. It is heavily based on technical properties of the so-called
rotating normal form on the Birman–Ko–Lee monoid. Quite effective, this algorithm remains
complicate.

The aim of this paper is to describe a simple algorithm returning a quasi-geodesic σ-definite
representative. It is based either on the alternating normal form introduced in [6] or on the
rotating normal form intoduced in [10, 11, 12]. The main advantage of this new algorithm is
that it can be describe with few technical results on these normal forms. Part of the algo-
rithm presented here uses some ideas from [10]. However, this new algorithm goes beyond the
simplification of the previous one, and the paper can be read independently from [10].

The paper is organized as follows. In Section 1, we give an overview on reversing processes and
give some elementary algorithm that will be needed to describe the main algorithm. In Section 2
we recall the definition of the Φn-splitting, that is a natural way to describe each braid of B+

n

from a finite sequence of braid of B+

n−1, and we give an algorithm to compute it. In Section 3,
we introduce two different algorithms that allow us to express a braid of Bn as a quotient of
braids lying in B+

n. In Section 4 we describe and prove the correctness of the main algorithm
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in the context of the alternating normal form. Finally, in the last section, we investigate the
complexity of our algorithm in the context of the Birman–Ko–Lee monoid B+∗

n .

1. Reversing process

In this section, we recall how to perform elementary computations in a finitely generated
Garside monoid. The main tool is the reversing algorithm introduced in [7].

Assume that M is a Garside monoid. Then, we define two partial orderings on M . Given
elements β and β′ of M , we say that β left divides (resp. right divides) β′, denoted by β ≺ β′

(resp. β ≻ β′), if there exists γ in M such that β γ = β′ (resp. β = γ β′) is satisfy.
The left lcm of two elements β and β′ of M is the minimal element γ in M , with respect to ≺,

satisfying β ≺ γ and β′ ≺ γ, and we denote it by β ∨L β′. Of course, we define symmetrically
the right lcm of β and β′ in M , which is denoted by β ∨R β′.

Definition 1.1. Let M be a monoid generated by a finite set S.
(i) A word on the alphabet S is called a positive S-word,
(ii) A word on the alphabet S ∪ S−1 is called a S-word,
(iii) The element represented by an S-word w is denoted by w,
(iv) For w,w′ two S-words, we say that w is equivalent to w′, denoted by w ≡ w′, if w = w′

holds.

Let M be a Garside monoid generated by a finite set S. A left lcm selector on S in M is a
mapping fn

L : S × S → S∗ such that, for all x, y in S, the words x fn
L (x, y) and y fn

L (y, x) both
represent x ∨L y. We define also a right lcm selector on S in M to be a mapping fn

R such that
fn
R (x, y) y and fn

R (y, x)x represent x ∨R y for all x, y in S.

Example 1.2. We recall that the positive braid monoid B+

n is defined for n > 2 by the presen-
tation 〈

σ1, ... , σn−1;
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉+

. (1)

We put Σn = {σ1, ..., σn−1}. Then the applications fn
L and fn

R defined on Σn × Σn by

fn
L (σi, σj) = fn

R (σi, σj) =

{
σj for |i− j| > 2,

σjσi for |i− j| = 1.

are respectively left and right lcm selectors on Σn in B+

n .

For the rest of this section, we fix a Garside monoid M , a finite generating set S of M , a left
lcm selector fn

L and a right lcm selector fn
R on S in M .

Definition 1.3. Let w,w′ be S-words. We say that wy(1)
R w′ is true if w′ is obtained from w by

replacing a subword x−1y of w by fn
L (x, y) fn

L (y, x)−1. We say that w yR w′ is true if there exists

a sequence w = w0, ... , wk = w′ of S-words such that wiy
(1)
R wi+1 holds for all i = 0, 1, ... , k−1.

Symmetrically, we say that w yL w′ is true, if w′ is obtained form w by repeatedly replacing
a subword x y−1 of w by the word fn

R (y, x)−1 fn
R (x, y).

We now introduce the notion of right reversing diagrams. Assume that w0, ... , wk is a reversing
sequence, i.e., a sequence of S-words such that wiy

(1)
R wi+1 holds for each i. First we associate

with w0 a path labelled with its successive letters: we associate to a positive letter x a horizontal
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right-oriented arrow labelled x, and to a negative letter x−1 a vertical down-oriented arrow
labelled x. Then we successively represent the S-words w1, ... , wk as follows: if wi+1 is obtained
form wi by replacing the subword x−1y of wi by fn

L (x, y) fn
L (y, x)−1, then we complete the pattern

corresponding to x−1y using a right-oriented arrow labelled fn
L (x, y) and a down-oriented arrow

labelled fn
L (y, x) to obtain a square:

completed into

y

x x

y

fn

L (x, y)

fn

L (y, x)yR

Symmetrically, we define a left reversing diagram, in which we complete the pattern cor-
responding to xy−1 using a right-oriented arrow labelled fn

R (x, y) and a down-oriented arrow
labelled fn

R (y, x):

completed into

x

y fn

R (y, x)

fn

R (x, y)

x

yyL

Proposition 1.4. [7] For every S-word w, there exist unique positive S-words u and v such that

w yR u v−1 holds. Moreover the words u and v are obtained from w in time O(pos(w) ·neg(w)),
where pos(w) is the number of positive letters occurring in w and neg(w) is the number of

negative letters occurring in w. A similar result occurs for yL.

Let w be a S-word. As there exist unique positive S-words u, v such that w yR uv−1 holds, we
say that u is the right numerator of w, denoted by NR(w), and that v is the right denominator

of w, denoted by DR(w). Symmetrically, we define left numerator and left denominator of w
respectively denoted by NL(w) and DL(w). An immediate consequence of [7] is:

Proposition 1.5. For all positive S-words u, v:
(i) u ≺ v holds if and only if DR(u

−1v) is the empty word ε,
(ii) u ≻ v holds if and only if DL(uv

−1) is the empty word ε.

Let β, β′ be two elements of M . The left gcd of β and β′ is the maximal element γ with
respect to ≺ such that γ ≺ β and γ ≺ β′ holds.

Proposition 1.6. [7, Proposition 7.7] Let u, v be positive S-words. Then the left gcd of u and

v is the element represented by

NL(uDL(NR(u
−1v)DR(u

−1v)−1)−1). (2)

See Figure 1 for a description of (2) in terms of reversing diagrams.
The reversing process takes a word on input and returns a word. In order to simplify notations

we shall use divisor and gcd symbols on words.

Notation 1.7. Let u, v be positive S-words.
(i) If u ≺ v holds, we denote by u\v the word NR(u

−1 v).
(ii) If u ≻ v holds, we denote by u/v the word NL(u v

−1).
(iii) We denote by u ∧L v the word of (2).
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v

NL(uu
′′−1

)

yL

NL(u
′v′

−1
)

u v′=DR(u
−1v)yL

u′′=DL(u
′v′

−1
)

u′=NR(u
−1v)

Figure 1. Reversing diagram corresponding to the computation of the left gcd of u and v.

Firstly, we right reverse u−1v to obtain u′v′
−1
. Secondly we left reverse u′v′

−1
to com-

pute D
L
(u′v′

−1
), denoted by u′′. Finally we left reverse uu′′

−1
to compute N

L
(uu′′

−1
),

which represents u ∧
L
v.

With these notations, the element u\v is equal to u−1v, the element u/v is equal to u v−1 and
the element u ∧L v is the left gcd of u and v.

In the sequel we will consider two Garside monoids naturally generated by a finite set, namely
the positive braid monoid B+

n generated by Σn and the dual braid monoid B+∗
n generated by An

(see Section 5). From now on, we will not specify the lcm selectors for left and right reversing
operations in these monoids, if not needed.

2. The Φn-splitting

It is shown in [6] how associate with every braid β of B+
n a unique sequence of braids in B+

n−1,
called the Φn-splitting of β, that completely determines β. As mentioned in the introduction, our
algorithm is based on this operation. In this section we recall the definition and the construction
of the Φn-splitting of a braid.

We recall that the positive braid monoid B+
n is a Garside monoid with Garside element ∆n

defined by

∆n = (σ1 ... σn−1) · (σ1 ... σn−2) · ... · (σ1 σ2) · σ1.

See [7, 13] for a definition of a Garside monoid.
We denote by Φn the flip automorphism of B+

n , i.e., the application defined on B+

n by Φn(β) =
∆n β∆−1

n . The initial observation of the construction of the alternating normal form is that
each braid of B+

n admits a unique maximal right divisor lying in Φk
n(B

+

n−1) for all k.

Lemma 2.1. For n > 3 and k > 0, every braid β of B+
n admits a unique maximal right divisor β1

lying in Φk
n(B

+

n−1).

Proof. The braid β1 is a maximal right divisor of β lying in Φk
n(B

+

n−1) if and only if Φ−k
n (β1)

is the maximal right divisor of Φ−k
n (β) lying in B+

n−1. As the submonoid B+

n−1 of B+

n is closed

under right divisors and left lcm, the braid Φ−k
n (β1) exists and is unique. �

Definition 2.2. The braid β1 of Lemma 2.1 is called the Φk
n(B

+

n−1)-tail of β.

By iterating the tail construction, we then associate with every braid of B+
n a finite sequence

of braids of B+

n−1.
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Proposition 2.3. [6, Proposition 2.5] Assume n > 3. Then for each nontrivial braid β of B+

n,

there exists a unique sequence (βb, ... , β1) in B+

n−1 satisfying

βb 6= 1 and β = Φb−1
n (βb) · ... · Φn(β2) · β1 (3)

for each k > 1, Φk−1
n (βk) is the Φk−1

n (B+

n−1)-tail of Φ
b−1
n (βb) · ... · Φ

k−1
n (βk) (4)

Definition 2.4. The sequence (βb, ... , β1) of Proposition 2.3 is called the Φn-splitting of β and
its length is called the Φn-breadth of β.

We give now an algorithm to compute the Φn-splitting of a braid given by a positive Σn-
word w. More precisely the algorithm returns a sequence (wb, ... , w1) of positive Σn−1-words
such that (wb, ... , w1) is the Φn-splitting of w.

Algorithm 1. Compute the Φn-splitting of the braid represented by w
Input: A positive Σn-word w with n > 3
1. Put s = ( ), w′ = w and k = 0.
2. While w′ 6= ε do

3. Put u = ε.
4. While there exists x ∈ Σn−1 such that w′ ≻ Φk

n(x) do

5. Put w′ = w′/Φk
n(x) and u = xu

6. Insert u on the left of s.
7. Put k = k + 1
8. Return s.

Proposition 2.5. Running on w, Algorithm 1 ends in time O(|w|2) and returns a sequence

(wb, ... , w1) of positive Σn−1-words such that (wb, ... , w1) is the Φn-splitting of w.

Proof. We denote by β the braid represented by the value of w′ at Line 3. Lines 3, 4 and 5

compute the maximal right divisor of β lying in Φk
n(B

+

n−1). At Line 6, the braid Φk
n(u) is equal

to the Φk
n(B

+

n−1)-tail of β and w′ is equal to β/Φk
n(u).

Therefore the algorithm applies successively the Φk
n(B

+

n−1)-tail construction for k = 1, 2, ... .
Then, by Proposition 2.3 it must stop and return the expected sequence of words.

As for time complexity, testing if w′ ≻ Φk
n(x) holds and computing w′/Φk

n(x) need to run the

left revering process on w′ (Φk
n(x))

−1. Proposition 1.4 guarantees that these two operations can
be done in time O(|w′|), and so, in time O(|w|) since |w′| 6 |w| holds. Then an easy bookkeeping
shows that the algorithm ends in time O(|w|2). �

3. Garside quotient

In the previous section we have seen how to compute the Φn-splitting of a braid lying in B+
n.

Of course there is no possible extension of the notion of Φn-splitting to the braid group Bn.
However, we have the following.

Proposition 3.1. Each braid β admits a unique decomposition ∆−t
n β′ where t is a nonnegative

integer and β′ is a braid belonging to B+
n, which is not left divisible by ∆n, unless t = 0.

Proof. The monoid B+
n is a Garside monoid with Garside elements ∆n, see [13]. As Bn is the

group of fractions of B+
n , there exist a smallest nonnegetive integer t such that ∆t

n β lies in B+
n.
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If t is positive, the minimality hypothesis on t implies ∆n 6≺ ∆t
n β. Then we define β′ to be the

braid ∆t
n β.

Assume now that ∆−t′

n β′′ is another decomposition of β satisfying the hypothesis of the

proposition. As ∆t′

nβ belongs to B+
n , we have t′ > t. Assume t′ > t. Then we have t′ > 0. As

the braid β′′ is equal to ∆t′−t
n β′, the relation ∆n ≺ β′′ holds, that is in contradiction with t′ > 0

and the hypothesis of the proposition. Hence t′ is equal to t and then β′ is equal to β′′. �

Algorithm 2. Compute the decomposition ∆−t
n v given in Proposition 3.1 of the braid repre-

sented by the Σn-word w.
Input: An Σn-word w
1. Write w as w0 x

−1
1 w1 ... wt−1 x

−1
t wt (where wi is a positive word and xj is a letter).

3. For i = 1 ... t compute ui such that ∆n = ui xi.
4. Put v = Φt

n(w0)Φ
t−1
n (u1 w1) ... Φn(ut−1 wt−1)ut wt.

5. While ∆n ≺ v and t > 0 hold do

6. Put v = ∆n\v and t = t− 1.
7. Return ∆−t

n v.

Proposition 3.2. Running on w, Algorithm 2 ends in time O(|w|2) and has the correct output.

Moreover we have |∆−t
n u| 6 (n2−n−1) · ‖w‖σ, where ‖β‖σ is the minimal length of a Σ-word

representing β.

Proof. For i = 1, ... , t, we denote by x−1
i the negative letters occurring in w. Then we replace

each x−1
i by ∆−1

n ui to obtain

w ≡ w0 ∆
−1
n u1w1 ... wt−1∆

−1
n utwt. (5)

The definition of Φn implies u∆−1
n ≡ ∆−1

n Φn(u) for every positive Σn-word u. From relation (5),
we obtain

w ≡ ∆−t
n Φt

n(w0)Φ
t−1
n (u1 w1) ... Φn(ut−1 wt−1)ut wt. (6)

So the word v introduced in Line 4 is equivalent to ∆t
nw. After Lines 5 and 6, the braid v is not

left divisible by ∆n unless t = 0. At the end, we have w ≡ ∆−t
n v, hence the algorithm returns

the correct output.
As for the length, replacing x−1

i by ∆−1
n ui multiplies it by at most 2|∆n| − 1, i.e., by at

most n2−n−1. Indeed, the relations in the presentation (1) preserve the length, hence we
have |ui| = |∆n|−1. By Proposition 3.1, the integer t and the braid v depend only of the braid w
and not on the word w. Hence, applying the algorithm to a geodesic word representing w gives

|∆−t
n v| 6 (n2−n−1) · ‖w‖σ.

As for time complexity, the word of Line 4 is obtained in time O(|w|). The while command
of Line 5 needs at most |v| steps. Testing if ∆n ≺ v holds and computing ∆n\v need to run
the right reversing process on ∆−1

n v. Proposition 1.4 guarantees that these two operations can
be done in time O(|v|). Then, from |v| 6 (n2−n−1) · |w|, we deduce that the algorithm ends in
time O(|w|)2. �

Now, for a braid β, the decomposition which we shall introduce in the next proposition is
called the Garside–Thurston normal form of β. We use this normal form for computing the
minimal k such that β lies in Bk. Indeed, as we will see, the Garside-Thurston normal form
depends only on β and not on the group Bn in which it is viewed.



A SIMPLE ALGORITHM FOR FINDING SHORT SIGMA-DEFINITE REPRESENTATIVES 7

Proposition 3.3. [7, Corollary 7.5] Each braid β of Bn admits a unique decomposition β′−1 β′′

where β′, β′′ belong to B+

n and such that β′ ∧L β′′ is trivial. Moreover if β is represented

by w then the braid β′ is represented by DL(NR(w)DR(w)
−1) and the braid β′′ is represented

by NL(NR(w)DR(w)
−1).

Since for k 6 n the lattice operation ∧L in B+

k coincides with that of B+

n , a direct consequence
of Proposition 3.3 is the following.

Corollary 3.4. Let k 6 n, β in Bn and β = β′−1β′′ be the Garside-Thurston normal form of β.
We have β ∈ Bk if and only if β′, β′′ lie in B+

k .

Definition 3.5. We define the index of a Σn-word w to be the maximal i such that w contains
a letter σi−1. The index of a braid β is the minimal index of a word which represents β.

Obviously, the index of a braid β is the minimal integer n such that β lies in Bn.

Algorithm 3. Compute the index k of w and a Σk-word w′′ equivalent to w.
Input: An Σn-word w
1. Right reverse w into w′.
2. Left reverse w′ into w′′.
3. Let k be the index of w′′.
4. Return (k,w′′).

The correctness of this algorithm is a direct consequence of Proposition 3.3 together with
Corollary 3.4. Moreover, by Proposition 1.4 it ends in time O(|w|2).

4. The main algorithm

Putting all pieces together, we can now describe our algorithm which returns a quasi-geodesic
word equivalent to a given word. However, we first recall the definition of σ-definite words and
give the result of [6] which will be used to prove the correctness of the algorithm. As ever we
assume Σn ⊂ Σn+1 (as well as Bn ⊂ Bn+1) for all n > 2, and we set Σ =

⋃
∞

n=2Σn.
Definition 4.1.

(i) A Σ-word is said to be σi-positive (resp. σi-negative) if it contains at least one letter of
the form σi, no letter σ−1

i (resp. at least one letter σ−1
i , no letter σi) and no letter σj with j > i.

(ii) A Σ-word is said to be σ-definite if it is either trivial, or σi-positive or σi-negative for a
certain i.

(iii) A braid is said to be σi-positive (resp. σi-negative) if it can be represented by a σi-positive
word (resp. a σi-negative word).

Recall form [4] that the celebrated Dehornoy ordering on Bn is defined by β < γ if β−1γ is
σi-positive for some i 6 n. The key property that will be used on the Φn-splitting operation is
its coincidence with the Dehornoy ordering <.

Proposition 4.2. [6] Let β and γ be two braids of B+

n. Let (βb, ... , β1) and (γc, ... , γ1) be the

Φn-splittings of β and γ respectively. Then β < γ holds if and only if we have either b < c or

b = c and, for some t 6 b, we have βt′ = γt′ for t < t′ 6 b together with βt < γt .

In [6], Dehornoy proves that the minimal positive braid of a given Φn-breadth b+ 2 (see 2.4)

with b > 0 is ∆̂n−1,b = ∆b
n∆

−b
n−1, and the Φn-splitting of the latter is the following sequence of
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length b+ 2

(σ1, σn−1 ... σ2 σ
2
1 , ... , σn−1 ... σ2 σ

2
1 , σn−1 ... σ2 σ1, 1). (7)

As the braid ∆n−1 lies in B+

n−1, we deduce that the Φn-splitting of ∆b
n is the following sequence

of length b+ 2

(σ1, σn−1 ... σ2 σ
2
1 , ... , σn−1 ... σ2 σ

2
1 , σn−1 ... σ2 σ1,∆

b−1
n−1). (8)

The idea of our algorithm is that we can easily decide if a quotient ∆−t
n β with β lying in B+

n

is σn−1-negative or not.

Lemma 4.3. Assume that β is a braid of B+

n such that ∆̂n−1,b 6 β 6 ∆b
n holds, then the

quotient ∆−b
n β lies in Bn−1.

Proof. The relation ∆̂n−1,b 6 β 6 ∆b
n and Proposition 4.2 imply that the Φn-splitting of β is

the following sequence of length b+ 2

(σ1, σn−1 ... σ2 σ
2
1 , ... , σn−1 ... σ2 σ

2
1 , σn−1 ... σ2 σ1, β1), (9)

with 1 6 β1 6 ∆b
n−1. Hence β is equal to ∆̂n−1,b β1 where β1 belongs to B+

n−1. Then, as the

quotient ∆−b
n β is equal to ∆−b

n−1 ∆̂n−1,b β, we obtain ∆−b
n β = ∆−b

n−1 β1. As β1 and ∆n−1 lie

in Bn−1 the braid ∆−b
n β lies in Bn−1. �

Proposition 4.4. Assume n > 3 and β is a braid of B+

n. Let t be a positive integer and b
the Φn-breadth of β. If t > b− 1 holds then the quotient ∆−t

n β is σn−1-negative. Otherwise it is

not σn−1-negative.

Proof. Let (βb, ... , β1) be the Φn-splitting of β. Then the braid ∆−t
n β is equal to

∆−t
n · Φb−1

n (βb) · ... · Φn(β2) · β1. (10)

Pushing b− 1 powers of ∆n to the right in (10) and dispatching them between the factors βk,
we find

∆−t
n β ≡ ∆−t

n · Φb−1
n (βb) · ... · Φn(β2) · β1

≡ ∆−t+b−1
n ·∆−b−1

n Φb−1
n (βb) · ... · Φn(β2) · β1

≡ ∆−t+b−1
n · βb ·∆

−1
n ·∆−b−2

n · ... · Φn(β2) · β1

≡ ... ≡ ∆−t+b−1
n βb ∆

−1
n βb−1 ∆

−1
n ... β2 ∆

−1
n β1.

If the relation t > b− 1 holds then the braid

∆−t+b−1
n βb ∆

−1
n βb−1 ∆

−1
n ... β2 ∆

−1
n β1, (11)

is σn−1-negative. Indeed, by definition, the braid ∆−1
n is σn−1-negative, while for each k the

braid βk lies in B+

n−1. So, as −t+ b− 1 is nonpositive, the expression (11) contains t letters σ−1
n−1

and no letter σn−1.
Now assume t < b− 2. The Φn-breadth of ∆t

n is t+ 2 and we have t+ 2 < b. Then Proposi-
tion 4.2 implies ∆t

n < β, i.e., ∆−t
n β is σi-positive for a certain i, hence it is not σn−1-negative.

Finally assume t = b− 2. If the relation ∆t
n < β holds we concluse as in the previous case.

Then assume β 6 ∆t
n. As the Φn-breadth of β is b, which is equal to t+ 2, Proposition 4.2

implies ∆̂n−1,t 6 β. Then by Lemma 4.3 the quotient ∆−t
n β lies in Bn−1, hence it is not

σn−1-negative. �
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The following algorithm takes in entry a braid word w representing a braid β and it returns a
σ-definite word representing β. The main idea is to bring all possible cases to the case where β
is σn−1-negative, i.e., when β satisfy the conditions of Proposition 4.4.

Algorithm 4. Compute a σ-definite representative.
Input: A Σn-word w
1. Put e = 1.
2. Let (k, v) be the output of Algorithm 3 applied to w.
3. Use Algorithm 2 to compute ∆−t

k u ≡ ve.

4. If t = 0 or k = 2 then return ∆−t
k u.

5. Use Algorithm 1 to compute the Φk-splitting (ub, ... , u1) of u.

6. If t > b− 1 then return (∆−t+b−1
k ub∆

−1
k ub−1∆

−1
k ... u2∆

−1
k u1)

e.
7. Else put e = −1 and goto Line 3.

Proposition 4.5. Algorithm 4 ends and returns in time O(|w|)2 a σ-definite word w′ equivalent

to w with |w′| 6 (n2−n−1)·‖w‖σ, where ‖β‖σ is the minimal length of a Σ-word representing β.

Proof. We use Algorithm 3 to compute the index k of w and a Σk-word v equivalent to w. In
particular, the braid w is either σk−1-positive or σk−1-negative.

Next, we use Algorithm 2 to compute a quotient ∆−t
k u that is equivalent to v and so to w.

By Proposition 3.1 the exponent t and the positive braid u depends only of the braid w and not
on the word v. Moreover, we have

|∆−t
k u| 6 (k2−k−1)‖w‖σ 6 (n2−n−1)‖w‖σ.

If t is equal to 0 then the quotient ∆−t
k u is equal to u, that is a positive word, hence a σ-definite

word. If n is equal to 2 with t 6= 0 then u is empty and ∆−t
k u is equal to ∆−t

k , that is a negative
word, hence a σ-definite word.

Next, we use Algorithm 1 to compute the Φk-splitting (ub, ... , u1) of u. Then the word ∆−t
k u

is equivalent to u′ defined by

u′ = ∆−t+b−1
k ub ∆

−1
k ub−1 ∆

−1
k ... u2 ∆

−1
k u1. (12)

If the relation t > b− 1 holds then the word u′ is σk−1-negative—see proof of Proposition 4.4—
hence it is σ-definite. So in this case the algorithm returns a σ-definite word equivalent to w.

Now, assume t < b− 1. In this case we redo the same process with the word w−1. Note that,
as the index of w and w−1 are the same, we can directly go to Line 3 of the algorithm. In this
case, by Proposition 4.4, the braid w is not σk−1-negative, i.e., it is σk−1-positive or it lies in
Bm with m < k. As k is the index of w, the braid w is σk−1-positive. So the braid represented
by v−1 is σk−1-negative. Hence the new value of t and b satisfy the relation t > b− 1 and the
algorithm ends.

For length complexity, the length of the Σk-word u′ given in (12) is equal to the length of the
Σk-word ∆−t

k u. By Proposition 3.1 we have

∆−t
k u 6 (k2−k−1) · ‖ve‖σ = (k2−k−1) · ‖we‖σ 6 (n2−n−1) · ‖we‖σ.

Then, ‖w−1‖σ = ‖w‖σ implies |u′| 6 (n2−n−1)‖w‖σ. �
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5. Dual braid monoid

The dual braid monoid is another submonoid of Bn. It is generated by a subset of Bn

that properly contains {σ1, . . . , σn−1}, and consists of the so-called Birman-Ko-Lee generators

introduced in [1].

Definition 5.1.

(i) For 1 6 p < q, we put ap,q = σp... σq−2 σq−1 σ−1
q−2... σ

−1
p .

(ii) For n > 2, the set An is defined to be {ap,q | 1 6 p < q 6 n}.
(iii) The dual braid monoid B+∗

n , is the submonoid of Bn generated by An.

For p < q, we denote by Jp, qK the interval {p, ... , q} of N, and we say that Jp, qK is nested
in Jr, sK if we have r < p < q < s. A presentation of B+∗

n in terms of ap,p is as follows.

Proposition 5.2. [1] In terms of the ap,q, the monoid B+∗
n is presented by

ap,q ar,s = ar,s ap,q for Jp, qK and Jr, sK disjoint or nested,

ap,q aq,r = aq,r ap,r = ap,r ap,q for 1 6 p < q < r 6 n.

As the positive braid monoid, we can endow the Birman–Ko–Lee monoid B+∗
n with a Garside

structure. The corresponding Garside element is

δn = a1,2 a2,3 . . . an−1,n.

We denote by φn the Garside automorphism of B+∗
n , i.e., the application defined on B+∗

n

by φn(β) = δn β δ−1
n .

An analog of the alternating normal form of the positive braid monoid B+
n exists for the dual

braid monoid B+∗
n : the rotating normal form (see [11, 10] for more details about this normal

form). The rotating normal form is also based on an operation of splitting: the φn-splitting.
Moreover, for each result on the alternating normal form used in this paper there exists a
counterpart in the B+∗

n context, see [11] or [12] for more details.
A An-word w is said to be σ-definite if all the letters a±p,q with highest q appear only positively

or only negatively. This definition coincides with that given for Σn-words if we translate each
letter ap,q of an An-word to the Σn-word given in Definition 5.1 (i). Hence all the previous
algortihms can be translated to the dual language, replacing Φn by φn, ∆n by δn and Σn by An.
One of the advantage of the dual braid monoid is that its Garside element δn has length n− 1,

while ∆n has length n(n−1)
2 . Therefore in the dual context, Algorithm 2 runing on w returns

a word δ−t
n u whose length is at most (2n−3)‖w‖A,where, for β ∈ Bn, ‖β‖A denotes the word

length of β with respect to An (as An contains Σn, we have necessary ‖β‖A 6 ‖β‖σ for all
braid β of Bn). Hence Algorithm 4 running on w returns a word of length at most (2n−3)‖w‖A.

References

[1] J Birman, K. H Ko, and S. J. Lee, A new approach to the word and conjugacy problems in the braid groups,
Adv. Math. 139 (1998), no. 2, 322–353.

[2] X. Bressaud, A normal form for braids, J. Knot Theory Ramifications 17 (2008), no. 6, 697–732.
[3] S. Burckel, The wellordering on positive braids, J. Pure Appl. Algebra 120 (1997), no. 1, 1–17.
[4] P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1994), no. 1,

115–150.
[5] , A fast method for comparing braids, Adv. Math. 125 (1997), no. 2, 200–235.



A SIMPLE ALGORITHM FOR FINDING SHORT SIGMA-DEFINITE REPRESENTATIVES 11

[6] , Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212 (2008),
no. 11, 2413–2439.

[7] P. Dehornoy and L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc.
London Math. Soc. (3) 79 (1999), no. 3, 569–604.

[8] I. Dynnikov and B. Wiest, On the complexity of braids, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 801–840.
[9] R. Fenn, M. T. Greene, D. Rolfsen, C. Rourke, and B. Wiest, Ordering the braid groups, Pacific J. Math.

191 (1999), no. 1, 49–74.
[10] J. Fromentin, Every braid admits a short sigma-definite representative, arXiv:0811.3902, to appear in J. Eur.

Math. Soc.
[11] , A well-ordering of dual braid monoids, C. R. Math. Acad. Sci. Paris 346 (2008), 729–734.
[12] , The well-ordering of dual braid monoid, J. Knot Theory Ramifications 19 (2010), no. 5, 631–654.
[13] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235–254.
[14] D.M. Larue, Left distributive and left-distributive idempotent algebras, Ph.D. thesis, University of Colorado,

Boulder, 1994.

Jean Fromentin

Univ Lille Nord de France, F-59000 Lille, France
ULCO, LMPA J. Liouville, B.P. 699, F-62228 Calais, France
CNRS, FR 2956, France
fromentin@lmpa.univ-littoral.fr

Luis Paris
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