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Abstract 

In the past, the kinetics of aggregation has been extensively studied. Aggregation rates 

were measured and calculated thanks to a population balance. Aggregate morphologies 

were measured or got by computer simulations. However, the link between the 

aggregation kinetics and the morphology changes with time is not so clear. The 

modelling of aggregation may be even more complex as restructuring of aggregates 

occurs. The aim of this paper is to propose a new formulation taking into account at 

once kinetics of collision and morphology change rate. We built a bivariate population 

balance with matter volume and porous volume as internal parameters. The population 

balance equation contains the standard collision term and a convective term 

representing the porous volume change. The latter is split into two contributions, which 

is due to the aggregation process itself and the other one is due to the restructuring. The 

expressions of the first contribution are determined for Brownian and shear 

aggregations. 

 

keywords: population balance, bivariate, aggregation, restructuring 
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1. Introduction 

 

Aggregation of small particles often occurs during industrial processes. The first step of 

this phenomenon is the collision of particles, which can be due to differential 

sedimentation, Brownian motion or shear flow in a duct or an agitated vessel. The size 

of the resulting clusters or aggregates increases with time. However, aggregates become 

looser and looser and undergo breakage. There is a competition between the cohesive 

forces inside the aggregate and the shear stress due to the liquid flow. Thus, the final 

size of aggregates can be calculated from a balance between aggregation and breakage. 

Aggregation and breakage have been investigated by a lot of researchers. Under certain 

operating conditions (supersaturation, mass transfer inside the aggregate …), 

consolidation or strengthening of aggregates happens. This takes place at the neck 

between adherent primary particles. The consolidation prevents the breakage of 

aggregates and leads to more porous clusters than the ones made without consolidation. 

At the same time, interaction between the flowing liquid and the aggregate can modify 

the internal structure of aggregates, breakage being the consequence of such a strong 

interaction. This results in a relative motion of primary particles inside the aggregates 

and leads to denser aggregates (see, for instance, [1-3]).  

The aim of this paper is to propose a new framework to take into account these 

phenomena. The corresponding modelling will result in a new formulation of the 

population balance, including aggregation coupled with changes in morphology. The 

second section of this paper reminds us of any fundamentals on Brownian and shear 

aggregation. The third section addresses the state of the art about aggregate 

restructuring and population balance with morphological parameters. The fourth one 

introduces the new formulation. The fifth one presents the relationship between 

previous and new formulations. The sixth one gives results for Brownian and shear 

aggregations and the last one is a discussion about its application. 

 

2. Fundamentals on elementary aggregation processes  

 

Several experimental works and computer simulations show that aggregates have a 

fractal morphology. In fact, an aggregate containing i identical primary particles of 
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radius R1 is characterised by: the fractal dimension Df and the outer diameter Ri. These 

two parameters are linked by the following relations:    

( )1/
1 / fD

iR R i S=   (1) 

The structure factor S is depending on Df. Its value is close to 1. 

Another way to consider fractality uses a continuous variable (volume v) for matter: 

1/ fDR v∝  

In case of a process with only aggregation, i.e. without nucleation and growth, the 

aggregates are formed from initially non aggregated particles, the mean volume value 

of which can be expressed as: 1v

1 1/v N= Φ  
Φ  and N1 are respectively  the volume fraction of solid and the number concentration of 

particles. Then, equation (1) can be written: 

( )1/
1 1/ / fD

iR R v Sv=          (2) 

With 
3

1 14 / 3v Rπ=  
The main causes of particle collision are the Brownian motion of particles and the local 

shear in a laminar or a turbulent flow [4]. The aggregation rate between two (i and j) 

aggregates is characterized by a kinetic constant or kernel . ,i jK

The Brownian kernel can be approximated by [5, 6]: 

( )( ),

,0 1 1
, , ,

2
3i j

B B B B
i j i j i j i j i j

k TK K R R R R Bα α− −= = + +
μ

                                                    (3a) 

kB, T and µ are respectively the Boltzmann constant, the temperature and the fluid 

dynamic viscosity. 

B

,
B
i jα  is the collision efficiency. In the case of only attractive 

physical interaction between primary particles, a rough approximation of Eq.(3a) is: 

,

,0 8
3i j

B B B Bk TK K Bα α= =
μ

                                                                                      (3b) 

With Bα  having a constant value (≈0.5) [7]. 

The shear aggregation kernel is currently written as: 

,0 3
, , ,

4 ( )
3 ,

s s s s
i j i j i j i j i jK K R Rα γ= = + α                                                                               (4a) 

,
s
i jα  and γ  are respectively the collision efficiency and the shear rate. 
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Several relations have been proposed for the collision efficiency. So, in the case of only 

attractive physical interaction between primary particles, Veerapaneni [5] writes: 

( )3

,
4
3 j j

s
i j i iK Rγ η η= + R

        (4b)
 

iη  are the fluid collection efficiency by the aggregate i. From this work, the following 

approximation can be considered for large porous aggregates:  

( ) ( )1.12
1/ fDk R Rη − −=          (5) 

with k=0.55. 

Then, equation (4b) can be written:  

( ) ( )( )
3/ 2 3''1

, 1/ /
ffs

i j i jK
v k v Sv v Svγ
π

= + 1
      (6) 

with          (7) ' 1.56 0.5f f= −

and 1/ ff D= . f’ is smaller than f for standard f values. Brownian and shear flow 

kernels, that are homogeneous functions of volume, obey: 

( ) (, ,h
j ji iK v v K v vλ λ λ= )  

with h=0 for Brownian kernel and h=3f’ for shear aggregation kernel. 

 

3. State of the art 

 

Collision and aggregation lead to an increase of particle size whereas the restructuring 

decreases the porous volume of the aggregate. Various causes give place to 

densification: physical forces between primary particles, e.g. Van der Waals forces, 

Brownian motion of the primary particles leading to thermal restructuring, relative 

motion of the primary particles due to the shear flow, fragmentation-reaggregation 

steps, i.e fragmentation of a large and loose aggregate followed by aggregation of the 

two fragments. At our knowledge, the modelling of these phenomena has not yet been 

performed. However, changes in morphology connected with restructuring have been 

partially studied by several authors. Their results will be helpful to build a new 

formulation.  

Firstly, we will describe the morphology change of a single aggregate or of a colliding 

two-aggregate set. Then, we will consider the relationship between morphology change 

and population balance. 

 

3.1 restructuring laws 
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Empirical equations 

As a first approximation, clusters keep the same fractal dimension along the aggregation 

process. However, it follows from some experimental evidence [1-3] that the fractal 

dimension value increases with time. So, the simplest way for describing this observed 

increase considers a relaxation law: 

( max/fdD dt D D ) /f τ= −         (8) 

max, ,fD D τ  are respectively the actual fractal dimension, its maximum value and a 

relaxation time. The relaxation time includes the above-mentioned physical 

contributions. 

Relaxation time may have a constant value [8], may be a function of the actual 

aggregate size [9] or may be a function of the mean aggregate size at a given time [10-

12]. 

The relaxation time [9-12] is expressed by means of empirical equations containing 

fitted parameters. So, 2 or 3 fitted parameters are used for each physical contribution. 

These empirical equations well represent the reality, but can be only applied to the 

considered systems. 

 

Simulations  

Starting from assumed restructuring mechanisms at the primary particle scale and being 

given an initial aggregate morphology, computer simulations lead to the morphology of 

the aggregate at a given time. As a result, the relaxation time can be deduced. So, in the 

case of thermal restructuring, Dalis et al. [13] show that the relaxation time depends on 

the temperature, on the size and the number of primary particles in the aggregate: 

( )1, ,f i R Tτ ∝  

The computer simulations also give the maximum value of fractal dimension. 

Simulation of aggregation has been extensively studied [4]. We will mention the work 

of Gmachowski [14]. He proposes a new approach of the aggregation modelling by 

considering an aggregation act for which the fractal dimension can vary along the 

process. The master equation is the following: 

( ) ( )1/ 1/1/1

2

ji
D DDFi j i j

F
+ = +  

with  ( )( )1/ 221.56 1.228 0.228k kF A= − − −
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and 1
1
1

DA
d

−
=

−
, 2 1w

dA
d D

=
+ −

 

(, , ,w i i jd D D D D += )

i

 are respectively the space dimension, the trajectory dimension, the 

fractal dimension of the aggregate having i primary particles and the one of the resulting 

aggregate.  

The author deduces that: 

- cluster-cluster aggregation is such as iD D= ∀  

- cluster-primary particle aggregation [15] is such as the fractal dimension value 

increases from about 1.75 to 2.5 as the primary particle number increases. Then, the 

exponent in the mass-size relation is not equal to the standard fractal dimension when 

i<106.  

- the fractal dimension can be calculated [16] if the asymptotical population density is 

assumed as a log-normal function (and by using the maximum entropy principle)  

- restructuring may be taken into account [17] by changing the value of F2.  

Kostoglou and Konstandopoulos [18] use a similar aggregation act for studying 

Brownian aggregation. 

 

3.2 population balance equation and restructuring 

Population balance equation (PBE) is a partial derivative equation, the solution of which 

is the population density. The latter is a function of the time t and internal parameters 

for homogeneous suspension.  The phenomena acting on the population density are the 

nucleation, growth, agglomeration and breakage. The corresponding terms are 

classically included in the PBE.  Two ways were proposed in order to take into account 

aggregate restructuring in the PBE. 

3.2.1  1D population balance 

More often, the particles are described with only one internal parameter  (for 

instance, radius R if the particle shape is a sphere).  can be also the volume v or the 

number of primary particles i in the aggregate if only the aggregation of primary 

particles is considered. So, the population density for homogeneous suspension depends 

on  t et : . 

1p

1p

1p ( )1,n p t

A simple way of considering the restructuring is as follows: if the relaxation time has a 

constant value or depends on the mean size at a given time, the fractal dimension will be 
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recalculated at each time step by means of Eq. (8) and the new value will be introduced 

in the aggregation kernel [8,10,11]. 

Another way due to Baldyga et al. [12] is to add a convective term or a growth term 

Gn
R

∂
∂

 into the PBE. The restructuring law appears as: 

/iG dR dt=  

Then, 

( )1ln / f
i i

f

dD
G R R R

D dt
= −         (9) 

 

3.2.2  2D population balance 

The 2D PBE contains two internal parameters  of the aggregate. Thus, the 

population density is written as 

1 2,p p

( )1 2, ,n p p t . These internal parameters can be:  

1 2, , , fp R v i p a D= =  

a is the surface area of the aggregate. 

The consolidation, i.e. the sintering, of the primary particles inside the aggregate leads 

to a decrease of the surface area of the aggregate. This can be taken into account (see for 

instance [19] 1 2p v p a= = ): 

( ) ( ) ( )
sin

, , ,

aggregation tering

n a v n a v n a v
t t t

∂ ∂ ∂
= +

∂ ∂ ∂
     (10a) 

with 

( ) ( )
sin

, ,a

tering

n a v G n a v
t a

∂ ∂
= −

∂ ∂
       (10b) 

with the relaxation law for the surface area: 

( )min /aG a a τ= − −  

It can be emphasized that the agglomeration term is such as:  

i j i j

i j i j

v v v

a a a
+

+

= +

= +
 

However, the collision integral contains a step function and integration limits that make 

it more complicated its use and solving. 

Likewise, Kostoglou et al. [9] propose to use the internal parameters 1 2 fp v p D= =  

in the case of restructuring. Then, 
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( ) ( ) ( ), , ,f f f

aggregation restructuring

n D v n D v n D v
t t t

∂ ∂ ∂
= +

∂ ∂ ∂
    (11a) 

with 

( ) ( ), ,f Df

frestructuring

n D v G n D v
t D

∂ ∂
= −

∂ ∂
f

v

)

      (11b) 

with the relaxation law: 

( ) ( )max /Df fG D D τ= −  

Kostoglou and Konstandopoulos [18] consider a 2D PBE including an aggregation act. 

The PBE is solved by means of a Monte-Carlo simulation. An asymptotical value for Df 

is reached after a time depending on the Df value of the initial aggregates. 

 

4. New formulation 

 

The aim of this paper is to establish a population balance equation by taking into 

account aggregation and restructuring. The new formalism will permit the introduction 

of various restructuring mechanisms in a simple way. The framework will be a 

bidimensional population balance. The two internal parameters will be chosen so that 

the additivity is respected along the aggregation process. We selected the matter volume 

v (or the number of primary particles) and the pore volume vp. Thus, v+vp is the 

volume of the aggregate. The pore volume is preferred to the porosity because the latter 

is not an additive property along the aggregation process. Aggregation without and with 

restructuring will be treated by means of the same formalism.  

 

4.1 aggregation without restructuring 

Aggregation process is split into two successive steps (Figure 1): 

- Collision between two aggregates leading to a new particle composed in the two 

aggregates in contact. This step can be written as: 

( ) ( ) (, , ,i i j j i j i jv vp v vp v v vp vp+ → + +      (12) 

This step appears in the population balance equation as a standard collision term. 

The kernel is the aggregation kernel ( ) (0 0
,, , , ,i i j j i j i i j jK v vp v vp K v vp v vp= + + ) . 

For instance, the corresponding expression for a Brownian aggregation is: 
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( ) ( ) ( ) ( ) ( )1/3 1/31/3 1/30 2, , ,
3i i j j i i j j i i j j
kTK v vp v vp v vp v vp v vp v vp
µ

−−⎡ ⎤ ⎡= + + + + + +⎢ ⎥ ⎢⎣ ⎦ ⎣
⎤
⎥⎦

           (13a) 

and for a shear aggregation 

( ) ( ) ( )
31/31/30 , , ,i i j j i i j jK v vp v vp v vp v vpγ

π
⎡= + + +⎢⎣

⎤
⎥⎦

    (13b) 

- Overlapping of the two initial aggregates and restructuring of the new particle. In 

the case of fractal aggregates with constant fractal dimension, the new particle will 

have a bigger volume than the sum of the initial ones. Thus, this stage corresponds 

to an expansion. This step will be modelized by using a convective or growth term:    

( )0 ,vpG n vp v
vp

∂
−

∂
        (13c) 

0
vpG  is a function of vp and probably of v. represents the expansion rate of  the two 

initial aggregates set. This convective term can be considered as a virtual restructuring.  

0
vpG

This modelling introduces no additional assumption such as fractal morphology, i.e 

relationship between pore volume and matter volume.  

 

Asymptotic behaviour 

The aggregation kernels (for instance, Brownian or shear aggregation, Eqs. (3b), (4b)) 

are homogeneous functions of the sizes of colliding particles. If the expansion rate is 

also an homogeneous function of vp and v, e.g.  or , we can 

write: 

0 m
vpG vp∝ (0 m

vpG v vp∝ + )

)y

)

( ) (0 0
, ,, ,p

x y x yK x y K xλ λ λ=  

( ) (0 0m
vp vpG x G xλ λ=  or ( ) ( )0 0, ,m

vp vpG x y G x yλ λ λ=  

It has been proved that large aggregates have a fractal-like morphology for long time: 
3/ fDt vp v→ ∞ ∝  

Thus, we observe an asymptotical behaviour, as self-similarity: 

( ) ( ) ( )3/ , , ,fDt vp v n v vp t n v t t g vtβ α
∞→ ∞ ∝ → →  

The use of these relations into the PBE [20] leads to: 

1 /fm D= − 3

3

 for Brownian aggregation      (14a) 

2 /fm D= −  for shear aggregation (f=f’)      (14b) 

 

4.2 aggregation with restructuring 
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Restructuring will be taken into account by means of the overall convective term: 
0

vp vp vpG G G= + 1

)

)

         (15) 

where  is the restructuring (contraction) rate and  is the expansion rate introduced 

by modelling of aggregation.  An approximate expression for  could be written: 

1
vpG 0

vpG

1
vpG

(1 / p
vp RG K v vp v= −          (16) 

The p (p>0) exponent depends on the contraction mechanism. The kinetic constant  

has to consider the competition between contraction and consolidation, the latter 

annoying the former. As already used for drop coalescence [21], the kinetic constant 

 could be expressed as: 

RK

RK

(,max 1 2/ 1 /R RK K τ τ= +         (17) 

1 2,τ τ  respectively represent the characteristic times for « free of sintering » contraction 

and consolidation.  

 

5. Comparison between old and new formulations  

 

Two aspects characterize the aggregation: the kinetics of the collision and the topology 

of the aggregates. The classical formulation considers them independent to each other. 

The topology of aggregates is observed (for instance, by SEM) or got by computer 

simulations. Moreover, topology is obtained after long time aggregation. On the other 

hand, the kinetic rate is measured or modelized by means of a population balance.  

The new formulation considers at the same time kinetics and topology by means of the 

expansion rate. Then, one searches the aggregation kernel ( )' , , ,i i j jK v vp v vp  and the 

expansion rate  leading to the same aggregation dynamics and topology than the 

ones obtained by the classical formulation. 

0
vpG

 

The classical formulation uses the 1D population balance equation: 

( ) ( ) ( ) ( ) ( ) ( )
0 0

1 ,
2

vn K v v v n v n v v dv n v K v v n v dv
t

∞∂
= − − −

∂ ∫ ∫ ,    (18) 

with ( ) ( )0
0, , , ,K v v K v vp v vp α=  and ( )vp g v= for  t → ∞

for instance, 
1/3 1/

1 1

Df
v vp v

v Sv
⎛ ⎞ ⎛ ⎞+

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

       (19a) 
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or 

( )
3/

1
1

Df
vv vp vp g v v

Sv
⎛ ⎞

+ = ⎜ ⎟
⎝ ⎠

       (19b) 

The new formulation uses the 2D population balance equation: 

 

( )

( ) ( ) ( )

( ) ( ) ( )

0

0 0

0 0

, ''

1 ' , , , ' , ' ,
2

' , ' , , , ' ,

vp

vpv

G v vp nn
t vp

K v vp v v vp vp n v vp n v v vp vp dvdvp

n v vp K v vp v vp n v vp dvdvp
∞ ∞

∂∂
+ =

∂ ∂

− − − −

−

∫ ∫

∫ ∫

   (20) 

with ( ) ( )0
1' , , , , , ,K v vp v vp K v vp v vp α=    

Thus, the problem to solve is the following: 

Which are the expressions of ( )0 ,vpG v vp  and , such as (18) ≡ (20) and ( )? 'K ( )vp g v=

 

The relation between the 2D and 1D population densities ( t ) is: → ∞

( ) ( ) (( )' ,n v vp n v vp g vδ= − )   

and ( ) ( ) ( )( )' ,n v v vp vp n v v vp vp g v vδ− − = − − − −  

( )n v  is the solution of Eq.(18). 

By using a moment method and by applying to Eq.(20) the operator O defined by 

, one obtains: ( )
0

pO f f vp dvp
∞

= ∫

( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1 0

0

0

' , , ,
2

' , , , 0

vp

pp v

n v
pn v g v G g v

t
g v

K v g v v v g v v g v g v v n v n v v dv

n v K v g v v g v n v dv p

−

−

∞

∂
− =

∂

⎡ ⎤− − + − −⎣ ⎦

− ≥

∫

∫

  

           (21) 

for p=0 : 
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( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )
0

0

,

,

1 ' , ,
2

' , ,

v

v

n v
t

K v g v v v g v v n v n v v d

n v K v g v v g v n v dv
∞

∂
=

∂

− − −

−

∫

∫

 

Eqs.(18) and (20) are equivalent if: 

( ) ( )( ) (' , , , ,K v g v v g v K v v= )        (22) 

By subtracting Eq.(21) (with p=0) at Eq.(21) (with p=1): 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

0

0

1 ,
2vp

v

v
n v

n v n v v
G g v K v v v g v g v g v v d⎡ ⎤−⎣ ⎦

−
= − − −∫    (23) 

Eq.(23) calls for several remarks: 

 

i. The method leading to Eq. (23) belongs to a mean field theory. 

ii. If ( ) ( ) ( ) 0g v g v g v v− − =− , then ( )0 0vpG vp =  : As expected, an aggregation 

step without porous volume change needs no . 0
vpG

iii. If g(v) obeys a power law as ( ) 3/ fDvp g v v= ∝ with an exponent 3 / fD  

bigger than 1, then ( ) ( ) ( ) 0 vg g v g v g v v− − > ∀Δ = −  and . 

Thus, aggregation proceeds with expansion or porous volume increase.  

( )0 0vpG vp >

iv. Only zero and first order moments of the 2D population density were used in 

order to establish Eq.(23) because the higher order moments ( ) are not 

undoubtedly bounded. By contrast, the first order moment obeys the 

inequality: 

2p ≥

( ) ( )
0 0 0

, ,n v vp vpdvp dv n v vp vpdvp
∞ ∞ ∞

1< <∫ ∫ ∫  ( i.e, the pore volume 

fraction is smaller than 1). 

v. The new formulation contains two successive steps (collision and 

expansion): K’ is the kinetic constant of the collision rate and is the 

expansion rate. As K, in the classical formulation, includes the two steps at 

the same time, the inequality K’>K should be verified, contrary to the 

previous result (K’=K). This possible discrepancy is due to the final 

aggregate volume (i.e., the arguments in the kernels K and K’) considered in 

each formulation. The following proof can be done: 

0
vpG

Starting from  
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( ) ( )( ) ( ) ( ) ( )( )1' , , , , ,K v g v v g v K v v F v g v v g v= = + +  

where v is the final volume. Then, 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

2

1 1

' , , , ,

, ,

K v g v v g v F v g v v g v g v v

F v g v v g v F v g v v g v g v v g

= + + + −

= + + = + + + − + Δ

⇒

( ) ( )( ) ( ) ( )( )1' , , , ,K v g v v v g v v F v g v v v g v v g− − = + − + − + Δ   (24) 

By taking a first-order Taylor series of F1 (F1 is replaced by K) and a 

symmetrisation for the volume: 

( ) ( )' , ,
2
g K KK x y K x y

x y
⎛ ⎞Δ ∂ ∂

+ +⎜ ⎟∂ ∂⎝ ⎠
 

x et y are the overall (pore and matter) volumes of colliding aggregates.  

As a consequence, if the argument values (x and y) are identical, K’>K.  

Moreover, a physical reason has to be mentioned for K’>K: as the first step 

leads to a very loose aggregate, the hydrodynamic resistance and the physical 

forces during its formation are very weak. Thus, the collision efficiency of 

the first step, and then the aggregation kernel, is higher than the one of the 

classical formulation. 

As Eq.(24) is difficult to apply, we will use the kernels (Eqs.(13a-b), i.e. 

1 1α = ) corresponding to the physical characteristics of step 1. 

The next section presents an estimate of the expansion rate  (Eq. (23)) for Brownian 

and shear aggregation. 

0
vpG

 

6. Calculation of the expansion rate  

 

6.1. Brownian aggregation 

The Brownian kernel is chosen as a constant: 
,0 ,0

0 0
B BK K α α  

The number concentration Nj for aggregates with j primary particles obeys the relation 

[22]: 

( ) ( )1 1
10 ' 1 'j j

jN N t t− −= + −  

' / ct t t=  is the dimensionless time.  and 10N ( )0 0 102 /ct K Nα=  are respectively the initial 

number concentration in primary particles and the characteristic time for Brownian 
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aggregation. But, the number concentrations for Brownian aggregation have the 

interesting property, denoted P1: 

( )10 'i j j iN N N N f t− =  P1        (25) 

With continuous variables, the population density can be written as: 

( ) ( )( ) ( ) ( )1/ 1 /10

1

' 1 'v v v vNn v t t
v

1 1− − −= +        (26) 

and 

( ) ( ) ( ) ( )1

10

' 1 'vn v n v n v v t t
N

= − +  

By using Eqs 23, 19b and property P1, one gets the expression: 

 ( ) ( ) ( )1 3/0 3/0 10
1 1

3
/

2 ' 1 ' 3
fDfDf

vp
f

DK NG v S v v v
t t D

+− −
=

+ +
     (27) 

For long time ( ), this expression can be transformed into: / 1ct t

( ) ( )
( ) ( )( )1 /01

12

9 3/
/

' 3
fDf

f f

Dd vp v
v vp v

dt SD D

α −+
= +

−
3
     (28) 

The asymptotic behaviour with the exponent 1 / 3fD−  is verified. 

The fractal dimension for Brownian aggregation without restructuring is equal to 1.8 

(S=0.54). This value is coming from computer simulations. Thus, 

( ) ( ) ( )( 0.410
1

/
' / 10.25 /

'vp

d vp v
v v

dt
G vp = = + )1vp v      (29) 

 

6.2 shear aggregation 

The general expression of the aggregation kernel is that of Veerapaneni (Eq.(6)). 

Thus, two exponents will be introduced: one f for the fractal geometry of aggregates and 

another one f’ for the kinetic constant: 

( )
3

3
1

1

f
fvvp g v v Dv

v S
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

( ) ( )3'',
ffK v v B v v= +  

with 

( )
3/ 2

3 '1
1

fv kB Svγ
π

−=  

 

* E-mail address: gruy@emse.fr  15



The population density for shear aggregation has no property such as P1. Then, the 

exact solution of 1D population balance will be replaced by an approximate function 

having the property P1’:  

( ) ( ) ( ) ( ) (, , , ,v v A vn t n v t n v t t h v=− )v−        (30) 

h is a homogeneous function. 

The Gamma function, which is widely used for approximating experimental particle 

size distributions, has such a property P1’ [23]: 

( ) 1 /, v vn v t Av eμ μ− −=          (31) 

,v σ  are the mean value and the standard deviation, while ( )2
/vμ σ= . These quantities 

can be expressed from the distribution moments Mj, that depend on the time: 

1 0

0 2
2

1

/

1

v M M

M Mv
M

σ

=

= −
 

A is a normalization constant: 

( )
0

,n v t vdv
∞

= Φ∫ ( ( )
1

/ 1A
v

μμ μ
+

⎛ ⎞⇒ = Φ Γ +⎜ ⎟
⎝ ⎠

) 

thus 

( )( ) ( ) ( ) ( ) ( ) ( )
( )

1

0

0

1 ,
2vp

v v v v
v v v v v A t

v
G g v K v g g g v d

μ−
⎡ ⎤−

⎡ ⎤ ⎢ ⎥− −
⎣ ⎦ ⎢ ⎥

⎣ ⎦
= − −∫ v    (32) 

Thus, the calculation of  necessitates the three moments M0
vpG 0, M1 and M2. In the case 

of shear aggregation without fragmentation, the moments obey: 

 ( ) ( ) ( )
3''

0 0

, ,
2

j j fj j fdM B v v v v v v n v t n v t dvdv
dt

∞ ∞
⎡ ⎤ ⎡ ⎤= + − − +⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦∫ ∫    (33) 

Following Park and Lee [24-26] and Gruy [27], the three first moments, the mean value 

and the standard deviation can be calculated thanks to the ordinary differential equation 

(ODE) system: 

( ) (3 '/ 21
21 3 '

'
fd f F

dt
)2

β β β−= −         (34a) 

(3 '/ 22 2 1
1 2

' 1 3 ' '
fd d F

dt f dt
)2 2

β β ββ β+ =
−

β       (34b) 

( ) (
2

2
9 ' 2 '2

2 2 21 3
f fF β β β −= + )         (34c) 

with 
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( )1 3 '

1 1/
f

v vβ
−

= ,
2

2 2 1
v

σβ = + ,  and ' / ct t t=
3 '

3/ 2

f

c
St
k

π
γ

=
Φ

 

by taking the initial conditions: 

1 1β =  and 2 1β ε= +  

( )2 tβ  tends asymptotically towards constant values depending on f’. The asymptotical 

values 2,aβ  are not dependent on the initial 2β  values. However, if the exponent 3f’ is 

higher than 1, gelation occurs, i.e. divergence of the ODE system (or the standard 

deviation). This asymptotical behaviour corresponds to the following values for 2β  and 

1 / 'd dtβ  : 

( )1/ 1 3 '
2, 2 f

aβ −=           (35) 

( ) ( ) ( )' 3 5 ' / 1 3 ' / 23 '/ 2
1, / ' 1 3 ' 2 3 2 f f ff

ad dt C fβ − − −−⎡= = − + ×⎣
⎤
⎦     (36) 

Let us apply these results to Eq.(32) in order to obtain : 0
vpG

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) (1 / 1 3 ' 1 / 1 3 ' 10 1 1
1' 1f f f

vp DBC t v v F f fG g v μ μ μμ μμ μ− + − − + − − ++ − +Φ Γ += )6 , '    (37a) 

with 

( ) ( )( ) ( ) ( )
3 133

1

0

1, ' 1 1 1
2

1f ff fF f f x x x x xx dxμ−⎡ ⎤+ − − − −⎡ ⎤⎣ ⎦⎣ ⎦= −∫     (37b) 

Moreover, 

( )( ) ( )0 1
1 1 1/ / ' 1 0/vp c c vpt d vp v dt tG g v dvp dt v v G− −== = '       (38) 

Thus, 

( )( ) ( ) ( )( )( ) ( ) ( ) ( )6 / 3 1 / 1 3 '0
1 1' / , ' / '

f f f
vp v E f f g v v tG g v μ μ+ − + −=      (39a) 

with 

( ) ( ) ( ) ( ) ( )1 / 1 3 ' 1 1 3 ' 3/ 2, ' 1 , 'f fE f f C S k F f fμ μ μμ μ− + − + − + −Γ +=      (39b) 

Finally, 

( ) ( ) ( )( )0
1' / , ' /

ex
vp v f f v vp vG vp H += 1        (40a) 

with 

( )
( ) ( )3 ' 1 / 3 '

3 3 ' 1 3 ' 3, '
1 3 ' 3 3 3 '

f f
f f f fH f f E
f f f f

μ
μ μ
μ μ

− +
⎛ ⎞+ − +

= ⎜ ⎟− + +⎝ ⎠
     (40b) 

and 
1 3 ' 31

3 3 '
f fex

f f
μ
μ

− +
= −

+
         (40c) 

If f’=f, the asymptotic behaviour with the exponent 2 / 3fD−  is verified. 
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The figure 2a represents the function H(f,f’) (Eq. (40b)). We note that the effect of f on 

 is weaker than the one of f’. The figure 2b represents the exponent ex of the power 

law (Eq. (40c)) versus D

0
vpG

f. 

Following Torres [28], simulations of shear aggregation lead to a fractal dimension 

(Df=1/f) equal to 1.8, while Potanin [29] suggests the value 1.98. We will take the 

intermediate value 1.9. 

From Eqs (7), (35-36), (40a-c), one deduces: 

( ) ( )( 0.970
1' / 1.5 /vp v v vp vG vp = + )1        (41) 

 

7. Discussion 

 

The new formulation has been applied in the case of Brownian aggregation for which 

experiments, calculations and computer simulations were achieved by other 

investigators. Monte Carlo Simulations (MCS) have been performed to solve the 

particle dynamics equation for coagulation of particles undergoing morphology changes 

(Eqs. 20 and 29). Here we use the algorithm suggested by Tandon and Rosner [19] 

when they studied aggregation coupled with surface area reduction. In our case, the 

sintering kinetic law was replaced by the porous volume expansion law (Eq. 29). The 

aggregation kernel has been taken as a constant. The choice of the time step in the MCS 

needs a particular consideration. As a consequence we used the method proposed by 

Smith and Matsoukas [30] in which the number of particles is kept constant. To start the 

simulations we consider a set of N (N=5000) particles, each of unit volume and porous 

volume equal to 0. During aggregation each aggregate is characterized by v and vp. One 

deduces its fractal dimension by means of Eq. 19a. 

From these simulations we show that: 

- At the beginning of aggregation small and very porous aggregates are present 

and may survive. This is due to the convective term (Eq.13c), that allows certain 

aggregates to increase their porous volume whereas the other aggregates collide 

each other. The growth of the porous volume stops when the aggregate 

disappears due to collision. Certain small aggregates, waiting for the collision, 

get a higher porosity. However, their amount is smaller than 1%. 

- All the small aggregates (i>20) have the same behaviour. Let us consider 

aggregates with a given number of primary particles (for instance i=50). They 

suddenly appear and their fractal dimension value is in the range [1.9-2.0]. Their 
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number rapidly increases, then it slowly decreases (figure 3). Whatever the time 

the fractal dimension distribution of these aggregates is narrow. The standard 

deviation of the distribution is about 0.04. During the aggregation the mean 

fractal dimension decreases. The value corresponding to the maximum number 

of aggregates (i=50) is 1.65.  

- After a long time, the small aggregates disappear. The fractal dimension 

distribution is within the range [1.6-1.8] and the mean fractal dimension tends to 

the value 1.80 (figure 4). The distribution is skewed with a tail for the smallest 

values (Df<1.7). 

These results have been compared to previous works. A controversy concerns the 

morphology of small aggregates. Adachi et al. [31] have studied the DLCA mechanism. 

They observe an increase of the fractal dimension from 1 for very small aggregates 

(i<5) to 1.75-1.80 for aggregates with i>50. Yang and Biswas [32] did the same 

observation. Lattuada et al [33] built aggregates by simulation and showed that the 

aggregates are fractal-like if i>20. Our MCS of aggregation dynamics are partially in 

agreement with the results of these investigators. We observe small aggregates with low 

Df value and a change of Df with time which is the same for the aggregates with i>20. 

However, in our modelling, the morphology is a dynamic property; the Df value of 

aggregates is close to 1.8 during their formation (see figure 3), but it becomes smaller 

along their removal due to collisions. 

All the aggregates contain a large number of primary particles after a long time. The 

fractal dimension distribution varies very slowly whereas matter volume distribution 

tends to an asymptotic shape [19]. This result was expected because of the way for 

calculating the expansion rate. 

 

8. Summary and conclusion  

 

The morphology changes are taken into account thanks to a 2D population balance, the 

internal variables of which are the volume of matter and the porous volume of the 

aggregate. The mechanism of aggregation is split up in two steps: the collision itself 

characterized by the collision kernel without collision efficiency (Eqs.(13a-b)) and the 

change of the porous volume of the aggregate (Eq.(15)). The latter contains a 

contribution due to the porous volume increase occurring for all aggregation processes 

and another one due to the restructuring itself. The bivariate population balance 
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equation is solved with the corresponding initial conditions and boundary conditions. 

The latter are: 

( ), , 0n v vp t =           (42a) 

for 
3

1
1

vvp v v
Sv

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
−          (42b) 

( ), , 0n v vp t =           (43a) 

for 

1 Cpvp v
Cp
−

=           (43b) 

Cp is the maximum compactness of the aggregate. Eqs (42b) and (43b) define on a 

(v,vp) diagram two lines which are the boundaries of the integration domain. 

As the contribution of the aggregation process to the porous volume change was 

established in this paper (Eqs. (29) and (41)) for two important aggregation 

mechanisms, the one of the restructuring has to be determined as the term . This 

task is in progress. 

1
vpG
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+ 
Step 1

Step 2 

 
Figure 1: decomposition into two steps in the new formulation of aggregation 
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Figure 2a: H(f,f’) is calculated for several f values (from 0.4 to 0.56 by step 

0.02), the lowest curve corresponds to f=0.4, the highest to f=0.56. 
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Figure 2b: exponent ex of the power law (Eq. 40c) versus Df. 
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Figure 3: mean fractal dimension and number percentage versus time (time scale 

following [19]) for i=50. 
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Figure 4: fractal dimension distribution for long time (time scale following [19]) 
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