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To be published in Physial Review E, 2010Hydro-thermal oupling in a self-a�ne rough fratureA. Neuville 1,2,∗ R. Toussaint 1,2, and J. Shmittbuhl 1,21 EOST, Université de Strasbourg, Frane and2 Institut de Physique du Globe de Strasbourg, UMR CNRS ULP 7516,5 rue René Desartes, 67084, Strasbourg Cedex, FraneThe in�uene of the multi-sale frature roughness on the heat exhange when a old �uid entersa fratured hot solid is studied numerially on the basis of the Stokes equation and in the limitof both hydro- and thermo- lubriations. The geometrial omplexity of the frature aperture ismodeled by small self-a�ne perturbations added to a uniform aperture �eld. Thermal and hydrauliproperties are haraterized via the de�nition of hydrauli and thermal apertures both at miro andmarosopi sales and obtained by omparing the �uxes to the ones of �at fratures. Statistisover a large number of frature on�gurations provide an estimate of the average behavior andits variability. We show that the long range orrelations of the frature roughness indues stronghannelling e�ets that signi�antly in�uene the hydrauli and thermal properties. An importantparameter is the aspet ratio (length over width) of the frature: we show for example that adownstream elongated rough frature is more likely to inhibit the hydrauli �ow and subsequentlyto enhane the thermal exhange. Frature roughness might, in the opposite on�guration, favorstrong hanneling whih inhibits heating of the �uid. The thermal behavior is in general shown tobe mainly dependent on the hydrauli one, whih is expressed through a simple law.PACS numbers: 47.56.+r 44.05.+e 47.11.B 44.30.+vI. INTRODUCTIONAmong situations where heat exhange between a pass-ing �uid and a fratured medium is of entral impor-tane, geothermy is an intensively developing �eld. DeepEnhaned Geothermal Systems (EGS) are based on theenergy extration obtained when a old �uid is injetedfrom the surfae inside a hot fratured massif at depthand extrated after irulation in the open fratures pos-sibly arti�ially reated from an hydrauli or hemialstimulation (e.g. the EGS pilot plant in Soultz-sous-Forêts, Frane [1�4℄).The e�ieny of the heat exhange depends on thebalane between ondutive and onvetive heat �uxes.The former is mainly dependent on the geometry of eahindividual interfae, i.e. faing frature surfaes, but thelater is de�nitively related to the hydrauli propertiesof the frature network whih results from the networkonnetivity and the frature permeability.Hydrauli ondutivity of fratured roks have been in-tensively studied for di�erent motivations. For instane,the hydrauli properties of the rystalline aquifer of Ploe-meur, Frane, has been studied by Le Borgne et al (2004)[5℄ to address water supply issues. Another example isthe mitigation of radionulide migration whih has beenforeasted in the ase of the repository site for nulearwastes storage in Äspö, Sweden on the basis of a dis-rete frature network [6℄. The modeling of the transportproperties of frature networks is atually a very ative
∗Eletroni address: amelie.neuville�unistra.fr

researh area. A lassial approah is to model the �owpaths via parallel interating �at fratures [7℄. More ad-vaned studies address the e�ets of the onnetivity andorrelations of the fratures (e.g. in Refs [8, 9℄).In many models of hydrauli or hydro-thermal �ow de-veloped so far, the geometry of eah frature of the net-work is nevertheless onsidered as simple, e.g. as parallelplates with a simple geometry of the edge as an ellipse ora polyhedron. This is the ase in most frature networkmodels used for geothermal [10℄ or for �uid transport ap-pliations [8, 9℄. The non-trivial harater of the fratureaperture geometry is however very likely to in�uene thefrature �ow given their omplex real geometry. Mostnatural frature surfaes are indeed self-a�ne objets.Surprisingly, the omplexity of the multi sale propertiesof the fratures has some remarkable simpliity, in thesense that their Hurst exponent is very robustly around0.8 [11℄. Exeptions however exist like for fratures insandstones where the Hurst exponent is 0.5 [12, 13℄, orin glassy eramis whih show an exponent lose to 0.4[14℄.The aperture between frature surfaes is subsequentlyfar from �at in partiular if faing frature surfaes areunorrelated, at least at small sales [15, 16℄. A roughself-a�ne aperture is indeed de�ned between two unor-related self-a�ne frature surfaes, or between two iden-tial self-a�ne fratures translated tangentially to theiraverage plane by a translation larger than the sale un-der study. Self-a�ne apertures have been shown to beresponsible for tortuous �ow path. The related han-neling of the �uid �ow was experimentally observed inrough fratures [17, 18℄ and modeled using lubriationapproximation with Reynolds equation (e.g. [13, 19�



222℄). The appliability of suh an approximation hasbeen studied, e.g. in Refs [23�25℄. Extension of this sit-uation was onsidered for example by Plouraboué et al[26℄ where the Reynolds equation is oupled to the hem-ial onvetion-di�usion study. More advaned hydraulisimulations inluding the solving of the Navier-Stokesequation have been proposed either onsidering simpli-�ed geometry [23, 27℄ or more reently within a realistifrature geometry [28�32℄. However, these reent sim-ulations require heavy omputations (although di�erentmethods are available) and are therefore not fully om-patible with statistial approahes where a large numberof realizations is neessary.Beyond the problem of mass �ow in rough fratures,di�erent kinds of numerial simulations have alreadybeen proposed to aount for hydro-thermal oupling. Asa �rst approah, analytial solutions have been obtainedto ompute the heat �ux along parallel irular raksembedded in a 3D in�nite medium using simpli�ed heatequations [33℄. At large sale and for long term predi-tions, models like that of Bataillé et al. [10℄ have beenproposed to predit the response of geothermal reservoirs.This type of �nite-element model inludes ondution,free and fored onvetion, but redues the geometry ofthe hydrauli network to a double permeability distribu-tion to aount for both matrix and frature transport.A variety of more omplex models have also been pro-posed like the modeling of a 3D network of fratures orga-nized aording to geologial observations and ompletedwith stohasti fratures for underdetermined parts ofthe model [34℄, or that for Soultz-sous-Forêts, Frane, byRahez et al [35℄ or that of Kolditz and Clauser [36℄ forRosemanowes, UK.In the present study, we fous on the hydro-thermaloupling at the frature sale where the hanneling ef-fet is expeted to a�et not only the �uid transportproperties, but also the heat �ux properties, as suggestedby Kolditz and Clauser [36℄ who proposed that the dis-repany between lassial heat model preditions andreal observations ould be due to �ow hanneling result-ing from frature roughness. We aim at obtaining fromthe mirosopi analysis of the �ow at sales of the fra-ture asperities, the marosopi parameters (i.e. the hy-drauli transmissivity and the harateristi thermaliza-tion length) that govern the e�ieny of the �uid massand heat transport through the overall frature. Thiswill allow to oarse grain the desription of the e�et ofmirosopi asperities, i.e. the frature roughness, onthe hydrauli and thermal behavior in large sale net-work models as the ones mentioned above. The upsal-ing from the mirosopi asperity sale to the fraturesale is done via a systemati statistial analysis of themarosopi �ow parameters, for a large set of stohastisyntheti frature surfaes, desribed with a few key pa-rameters for suh apertures: average aperture, standarddeviation. The marosopi parameters obtained afterthe upsaling redue to two: the hydrauli transmissiv-ity, haraterizing the �uid mass transport, and the other

one haraterizing the e�ieny of the heat exhange be-tween the rok and the �uid. This exhange is expressedvia the harateristi length R in a marosopi law oftype
(q/ ‖q‖) · ∇2T − (T − Tr)/R = 0 (1)with T a �uid temperature, Tr the temperature in thesurrounding rok, q the �uid �ux integrated over thefrature thikness, and ∇2 the two dimensional gradientoperator along the frature plane. The hydro-thermalmodeling is performed as in [3℄. The present study isin the framework of the lubriation approximation [37℄whih implies that the Reynolds number is small andthat the frature walls are loally �at enough to providea mainly in-plane veloity �eld, with a negligible om-ponent normal to the mean frature plane. We proposeto extend the lubriation approximation to the thermal�uxes. By balaning heat ondution and fored onve-tion we obtain a tri-dimensional (3D) temperature lawwhih will then be redued to a 2D temperature equa-tion by averaging it along the thikness of the frature asproposed e.g. by Turotte and Shubert [38℄.Setion II desribes our geometrial model of the fra-ture aperture based on a self-a�ne saling invariane. InSetion III, using lubriation approximations, we obtainthe bidimensional pressure and thermal equations whena old �uid is injeted through a frature in a station-ary regime. As a �rst step, the temperature within thesurrounding rok is supposed to be hot and onstant (intime and spae), and the density of the �uid is onsideredas onstant. We show that at a oarse grained sale, thetwo dimensional (2D) equation for heat �ux is identialto the one for parallel plates, Eq. (1), but with a hara-teristi thermalization length assoiated to an aperture(named thermal aperture), di�erent from the geometrialaperture (also often labeled as the mehanial aperture).Other relevant quantities are de�ned to desribe the hy-drauli and thermal behaviors at loal and marosopisales. The numerial approah is desribed in detailsin Setion IV. Equations are disretized using a �nitedi�erene sheme and solved with a bionjugate gradientmethod. The numerial hydrauli and thermal resultsare respetively set out in IV and V. In eah of thesesetions, we �rst desribe the results for a given fraturemorphology (loally and marosopially), then averagedtrends of marosopi parameters that are observed sta-tistially from large sets of syntheti fratures.II. DESCRIPTION OF THE ROUGHNESS OFTHE FRACTURE APERTUREThe roughness of a self-a�ne surfae is statistially in-variant upon an isotropi saling within its mean plane

(x, y) while on the perpendiular diretion z, the salingis anisotropi. Indeed, it is statistially invariant underthe saling transformation x → λx, y → λy, ∆z → λζz[39�41℄, where ζ is alled roughness exponent or Hurst



3exponent. A self-a�ne geometrial model has been ex-perimentally shown to be a realisti desription of nat-ural rok surfaes [11, 16, 42, 43℄, with Hurst exponentequal at large sale to ζ ≃ 0.8 for many kinds of natu-ral fratures and material surfaes [42�45℄ and ζ ≃ 0.5for sandstones [46, 47℄. It is important to note that aself-a�ne surfae having a roughness exponent smallerthan one is asymptotially �at at large sales [48℄. A-ordingly, a self-a�ne topography an be seen as a per-turbation of a �at interfae. On the other end of thesales, the loal slope of a self-a�ne surfae diverges atsmall sales, and the maximum slope of suh surfae isdetermined by the lower uto� of the self-a�ne behavior- orresponding e.g. to granular diameter when present.In priniple, modeling a �ow boundary ondition alongsuh surfae requires to hek that the marosopiallyobtained result does not depend on suh lower uto�.The aperture is the spae between the faing fraturesurfaes. Our study is limited to the ase where two nonorrelated frature surfaes with the same roughness ex-ponents are faing eah other. Subsequently the aperture
a(x, y) is also a self-a�ne funtion with the same Hurstexponent whih ful�lls the following property [39, 40℄:

λζPr(λζ∆a, [λ∆x, λ∆y]) = Pr(∆a, [∆x, ∆y]) (2)where Pr(∆a, [∆x, ∆y]) is the probability to get an aper-ture di�erene ∆a between two points separated by thedistane [∆x, ∆y], λ is an arbitrary saling fator and ζthe roughness exponent.The self-a�ne aperture �eld is numerially obtainedby �rst generating a white noise ǫ(x, y) [49℄ on a grid ofsize 2 ·nx×2 ·ny with a square mesh-size d. Then the sta-tistial spatial orrelations are introdued by multiplyingthe 2D Fourier transform of the white noise ǫ̃ (kx, ky) by
‖k‖ (−1−ζ) [50℄, where k is the wave vetor. When de-sired, a lower uto� length sale lc an be introdued by�ltering as: if ‖k‖ ≥ π/lc, ã (kx, ky) = 0. Finally weperform the inverse Fourier transform of ã (kx, ky) andnormalize it to get a syntheti aperture a(x, y) with anaverageA and a root mean square (RMS) σ. Using di�er-ent seeds of the random generator of the white noise, it ispossible to generate independent self-a�ne aperture mor-phologies showing di�erent patterns, even if they sharethe same roughness exponent hosen equal to ζ = 0.8,the same mean aperture A and same RMS σ. The upperlimit of σ is provided by the ondition of positive aper-ture, i.e. we prevent ontat between the frature faesto keep a onstant simple boundary geometry of the do-main where the equations are solved. In pratie a isimposed to range between 10−4 and 10, whih leads to
0.7 > σ/A > 10−3. The typial grid sizes that were usedare: 1024×1024, 1024×2048, 1024×512. The mesh size
d has been adjusted to get a su�ient numerial preisionof the temperature solution in the ase of a parallel plateon�guration where an analytial solution is known. Thenumerial stability of the solutions has also been testedagainst slight shifts of the mesh position on an over-sampled self-a�ne aperture �eld: 2·nx×2·ny = 212×212,

Figure 1: 2D sketh of the frature model with parameterde�nitions. x−axis is along the mean hydrauli �ow, y-axis isalong the mean frature plane but perpendiular to the mainhydrauli �ow and z−axis denotes the out-of mean fratureplane diretion. z = z1 and z = z2 are the average positionsof the faing frature surfaes. a(x, y) is the frature aperture.
Tr is the temperature of the solid, supposed to be homoge-neous and onstant, T0 is the �uid temperature at the inlet.Fluid properties are: ρ, c, χ, and η respetively density, heatapaity, thermal di�usivity and dynami visosity.and against the introdution of a lower uto� lc of theself-a�ne perturbations varying between the mesh sizeand 10 times the mesh size: the dermined �ow and tem-perature �elds were found to be independent of suhsmall sale modi�ations.III. HYDRAULIC AND THERMAL FLOWEQUATIONSA. Hydrauli �owWe onsider the steady �ow of a Newtonian �uid atlow Reynolds number, so that the visous term of theNavier-Stokes equation dominates the inertial one. TheNavier-Stokes equation is therefore redued to the Stokesequation [51, 52℄:

∇P = η∆v, (3)where η is the dynami visosity, v the veloity of the�uid and P the pressure deviation from the hydrostatipro�le (i.e. the hydrauli head whih is equal to thepressure orreted by the gravity e�et). To be in theframework of the lubriation approximation [37℄, besidessmall Reynolds number, we also onsider fratures with�at enough sides as mentioned above (i.e. with smallloal slopes). Therefore, �uid veloity vetors get negli-gible z-omponents (normal to the mean frature plane),and aordingly the veloity �eld is dominated by in-plane omponents. The unitary vetor x̂ is aligned withthe marosopi imposed pressure gradient (see Fig. 1);
z1(x, y) and z2(x, y) are the bottom and top frature o-ordinates, with z2−z1 = a. Under these approximations,the pressure dependene is P (x, y) and the veloity v isoriented along the unitary vetor v̂ (x, y). By integrat-ing the Stokes equation with the boundary onditions:
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v (z1,2) = 0, we get a loal paraboli law in z (Fig. 2)[25℄:

v(x, y, z) =
∇2P (x, y)

12η
(z − z1) (z − z2) (4)where ∇2 = x̂ ∂

∂x + ŷ ∂
∂y is the in-plane gradient operator.

Tv

v=0

T=Tr

z=a/2
z

z=−a/2

,Figure 2: (Color online) Loal veloity quadrati pro�le (shortdashed line) and temperature quarti pro�le (long dashedline) inside a frature (with oe�ients from Eqs. (9) and (4));arbitrary absissa units. Along the ontat with the frature,
v = 0 and T = Tr.Integrating Eq. (4) along z leads to express the hy-drauli �ow through the frature thikness q as:

q = − a3

12η
∇2P. (5)Furthermore, we assume the �uid to be inompressible,i.e. ∇2 ·q = 0 whih leads to the Reynolds equation [19℄:

∇2 ·
(

a3
∇2P

)

= 0. (6)As boundary onditions of this equation (Fig. 3), we im-pose the pressure at the inlet and outlet of the frature(if x = 0, P = P0 and if x = lx, P = PL, with P0 > PL)and onsider impermeable sides (no mass exhange withthe rok matrix) at y = 0 and y = ly.
Figure 3: Frature model with pressure and temperatureboundary onditions.B. Thermal �owIn this work, we neglet the natural onvetion thathappens in fratured roks when the �uid density is ther-mally sensitive, as studied for instane by Bataille et al

[10℄. Natural onvetion might happen within the thik-ness of the frature (owing to the temperature di�erenebetween the frature boundary and the ore of the �owalong the gravity diretion) and at large sale when thefrature is non horizontal. For the sake of simpliity, weonsider that the fored �uid �ow studied here is onlyweakly a�eted by density hanges. A quantitative rite-rion of this assumption is given by the omparison of thepressure di�erenes ∆P foring the �ow and that gener-ated by the temperature hanges: ∆P ≫ gαT ρ∆T, with
g the gravity, αT the �uid oe�ient of thermal expan-sion, ρ the �uid density, and ∆T the temperature di�er-enes in the system. We also assume that the Prandtlnumber of the �uid is su�iently high for the �ow to bedominated by hydrodynami e�ets rather than thermale�ets.Sine our fous is to understand how the marosopimass and heat �ows are a�eted by the frature rough-ness in the stationary limit, we do not onsider time andspae variations of the temperature in the rok: the fra-ture sides are assumed to be permanently hot at the �xedtemperature Tr. This simpli�ation is valid if we onsidereither long time sales i.e. when the rok temperaturepro�les stabilizes, or time sales shorter than that of thehosting rok evolution. Taking the slow temperature evo-lution of the hosting rok into aount would require toombine the present study with a non-stationary ondu-tive heat solver for the rok whih is beyond the sope ofthis manusript. In priniple, to model these intermedi-ate time sales, the marosopi parameters ontrollingthe heat exhange determined in this manusript ouldbe utilized in a hybrid model, oupling the heat di�usion-advetion in the �uid with the heat di�usion in the solid.Loal energy onservation implies that the �uid tem-perature is ontrolled by the balane between thermalonvetion and ondution inside the �uid whih readsas (heat soure due to frition between �uid layers beingnegleted)[53℄:

v · ∇T = χ∆T, (7)where χ is the thermal di�usivity of the �uid and T the�uid temperature. We extend the lubriation approxima-tion (.f. I) by onsidering that the slopes of the fraturemorphology are small enough to provide a ondutionat the rok interfae loally oriented along ẑ. This im-plies that the out-of-plane ondution term is dominantin front of the in-plane ones. Otherwise vz∂T/∂z anbe negleted in v · ∇T sine out-of-plane veloity vz isnegligible. Aordingly the leading terms in Eq. (7) arethe ondution along ẑ axis and the in-plane onvetionterms, and this redues to:
∂2T

∂z2
=

vx

χ

∂T

∂x
+

vy

χ

∂T

∂y
, (8)For the boundary onditions, we assume that the �uidtemperature is equal to the rok temperature along thefrature sides: T (x, y, z1,2) = Tr and far from the fra-



5ture inlet: T (x, y, z) −→
x→∞

Tr. The temperature of inje-tion at the inlet is T0 so that T (0, y, z) = T0 (for any yand z). By assuming that β = qx∂T/∂x+qy∂T/∂y is onlyfuntion of x and y, the following quarti expression of
T is solution of Eq. (8):

T (x, y, z) = Tr − β(x, y)

2 · a3 · χ (z − z1) (z − z2)

·
(

z −
√

5z1

)(

z −
√

5z2

) (9)For the partiular ase of symmetri apertures aroundan average plane, i.e. where z1 = −z2 = a/2, this reduestoT = −3 · β
(

z4/6 − a2z2/4 + 5a4/96
)

/
(

a3 · χ
)

+ Tr.By uniqueness of the solution for given boundary on-ditions (the problem is well-posed), this quarti law isthe only solution of Eq. (7). The temperature pro�lealong z is illustrated together with the veloity pro�le inFig. 2).The energy onservation equation (Eq. (7)) is inte-grated along the z-diretion, through the thikness of thefrature (as done for the hydrauli desription), whihprovides an in-plane desription of the thermal balane.First, we estimate the adveted energy �ux. For this, wenote c the �uid spei� heat apaity and U0 its internalenergy density at T = T0, and write the internal energydensity U as U = U0 +ρc (T − T0). Integrating along thefrature thikness ( i.e. along the z-axis), leads to theinternal energy �ux per unit volume f (x, y) =
∫

Uvdzwhih an be expressed as:
f(x, y) =

[

U0 + ρc
(

T − T0

)]

q(x, y) (10)where T is a weighted average temperature de�ned as:
T (x, y) =

∫

a
v (x, y, z) · T (x, y, z)dz
∫

a
v (x, y, z)dz

, (11)with T (0, y) = T 0 = T0 at the inlet. The heat soureoming the adveted energy is then given by: −∇2 · f .Using the mass onservation equation, ∇2 · q = 0, leadsto:
∇2.f = ρcq.∇2T . (12)The adveted energy �ux balanes the ondutive �uxthrough the upper and lower frature walls. To evalu-ate the thermal ondutive �ow oriented along the out-going normal to the frature walls n̂, the lubriationapproximation (.f. I), leads to n̂ ≃ ±ẑ. Let ϕw bethe projetion of the ondutive �ow along n̂, evalu-ated along the walls, at z1,2. The Fourier law provides

ϕw = −χρc∂T
∂z

∣

∣

z=z1,2
ẑ · n̂. Eqs. (9) and (4) inserted in-side Eq. (11), lead to ∂T
∂z

∣

∣

z=z1,2
=
(

T − Tr

)

70
17·a ẑ ·n̂. TheNusselt number Nu = −ϕw/ϕref = 70/17 is used to har-aterize the e�ieny of the present heat exhange om-pared to the referene heat �ow ϕref = χρc
(

Tr − T
)

/a,whih ours in situations with only ondution.

The energy net �ux:
∇2 · f + 2ϕw = 0, (13)an �nally be expressed as:

q · ∇2T + 2
χ

a
Nu ·

(

T − Tr

)

= 0. (14)For the boundary onditions of the two-dimensional�eld T , we assume that the �uid is injeted at a onstanttemperature T (0, y) = T0 older than the rok and weonsider the length of the frature to be long enough toget the �uid at the same temperature as the rok at theend of it: T (lx, y) = Tr. On the ontrary, temperaturesettings along the boundaries y = 0 and y = ly are with-out any in�uene, sine the hydrauli �ow is null there(see III A).Let the referene ase be a frature modeled withtwo parallel plates separated by a onstant aperture
a// (i.e., no self-a�ne perturbation). In this ase, thegradient of pressure is onstant all along the frature,as well as the hydrauli �ow whih is equal to q// =

−∆P a3
/// (12lxη) x̂, where the subsript // denotes re-sults valid for parallel plates and ∆P = PL − P0. Underthese onditions Eq. (14) is invariant along y and an bewritten as:

∂T //

∂x
+

(

T // − Tr

)

R//
= 0, (15)where the thermal length R// haraterizes the distaneat whih the �uid reahes the temperature of the sur-rounding rok:

R// =
a// ·

∥

∥q//

∥

∥

2 · Nu// · χ
= −∆P

lx
·

a4
//

24η · Nu// · χ
, (16)with Nu// = 70/17 ≃ 4.12. Then the analytial solutionof Eq. (15) for parallel plates is:

T // − Tr = (T0 − Tr) exp

(

− x

R//

)

. (17)For rough fratures, we aim at using Eq. (17) as a proxyof the average temperature pro�le T along the �ow andde�ning an e�etive marosopi thermal length R as:
T − Tr = (T0 − Tr) exp

(

− x

R

)

. (18)C. De�nition of mirosopi and marosopiaperturesDi�erent types of frature apertures an be de�ned.The most obvious one is the geometrial aperture but ef-fetive apertures like hydrauli or thermal aperture an



6also be introdued. The latter are de�ned on the basisof an inversion on a spei� model like the parallel platemodel. For instane, the hydrauli aperture is deduedfrom the knowledge of the �uid �ow through the fratureand it represents the aperture of a parallel plate modelthat reprodues the observed �uid �ow. Equivalently athermal aperture an be introdued as the aperture ofa parallel plate model that reprodues a similar thermalpro�le. A spatial sale has to attahed to de�ne the hy-drauli or thermal equivalent behavior in partiular fora multi-sale geometry. Sine we aim at understandingthe upsaling of the frature properties, we will introduetwo spei� sales: the smallest one, i.e. the grid size ofthe disretization and the largest one, i.e. the systemsize. The smallest will be referred as the mirosopi orloal sale and small letters will be used for their labelingand the largest, as the marosopi sale and desribedwith apital letters.We already use the mirosopi geometrial or mehan-ial aperture a and its spatial average, i.e. the maro-sopi geometrial aperture: A = 〈a(x, y)〉x,y.The mirosopi hydrauli aperture is de�ned as fromEq. (5) [19, 54℄:
h =



‖q‖ 12η
∣

∣

∣

∆P
lx

∣

∣

∣





1/3

. (19)It depends on the loal hydrauli �ow q, and an berelated to the loal pressure gradient ‖∇P‖ and loalaperture a as:
h = a ·

(

‖∇P‖
∆P
lx

)1/3

. (20)If the loal pressure gradient ‖∇P‖ is smaller than themarosopi gradient ∆P/lx, then h (x, y) < a (x, y),whih means that loally the hydrauli ondutivity islower than expeted from its loal mehanial aperture.The marosopi hydrauli aperture H an also be de-�ned at the system sale from the average hydrauli �ow
Qx = 〈q · nx〉x,y :

H =



Qx
12η
∣

∣

∣

∆P
lx

∣

∣

∣





1/3

. (21)Marosopi and mirosopi hydrauli aperture are re-lated, sine H is atually proportional to the ubi rootof the third order moment of h: H = 〈h(x, y)3〉1/3

x,y whihis proportional to the �rst order moment of the hydrauli�ux, to power 1/3. If H/A > 1, then the frature is morepermeable than parallel plates separated by a(x, y) = A.The marosopi thermal aperture is de�ned from a1D temperature pro�le T (x) along the fored pressuregradient diretion (see Eq. (18)) where the average tem-

perature is de�ned as:
T (x) =

∫

ly
ux (x, y) · T (x, y) dy
∫

ly
ux (x, y) dy

. (22)It is an average of T along the width of the fra-ture ly, weighted by the loal �uid veloity ux(x, y) =
qx(x, y)/a(x, y) whih is the ratio of the x-omponent ofthe loal �ux over the loal frature aperture. Then, by�tting the parallel plate temperature solution (Eq. (18))to the average temperature pro�le T (x), we get themarosopi thermal length R. In pratie the �t isomputed from a least square minimization, for ab-sissa from x = 0 to the minimum x value so that
∣

∣

∣(T − Tr)/ (T0 − Tr)
∣

∣

∣ < 2 · 10−6. The marosopi ther-mal aperture Γ is then de�ned by analogy to the parallelplate solution (Eq. (16)) as:
Γ =

(

−R · 24η · Nu · χ lx
∆P

)1/4

= A · (R∗)
1/4 , (23)where R∗ = R/R// is the normalized thermal length. Ata oarse grained sale, the rough frature is thermallyequivalent to parallel plates separated by the onstantaperture a(x, y) = Γ. Indeed, both will exhibit the samethermal length R under the same marosopi pressuregradient ∆P/lx.The mirosopi thermal aperture γ an also be intro-dued after de�ning a loal thermal length r. Similarlyto the de�nition of a mirosopi hydrauli aperture fromthe loal pressure gradient, or loal �ux, rather than themarosopi pressure di�erene, or marosopi �ux, weestimate the loal thermal length from a loal tempera-ture gradient rather than a large sale pressure di�erene.Eq. (14) an be rewritten as:

q · ∇2

(

ln
[

T
∗

])

+
‖q‖
r

= 0 (24)with
r =

a · ‖q‖
2 · Nu · χ, (25)whih is an estimate of the gradient along ŝ the loal hy-drauli �ow diretion. Finally, the loal thermal aperture

γ an be de�ned by (onsistently with Eq. (16)):
γ =

(

−r · 24η · Nu · χ lx
∆P

)1/4 (26)A link between marosopi and mirosopi thermalapertures an also be shown as follows: at �rst order, on-sidering that the average of ‖q‖ is very lose to the aver-age of qx then the loal length of referene would be equalto r̃ = −
(

∂ ln
(

T
∗

)

/∂x
)

−1. On the other hand, inte-grating equation (18) between 0 and signi�ant length
L, results in R = −

[[

ln
(

T
∗

(L)
)

− ln
(

T
∗

(0)
)]

/L
]

−1,



7whih shows the link between marosopi and miro-sopi thermal apertures: R = L
(

∫ L

0 (−1/r̃)dx
)

−1, i.e.
R =

〈

r−1
〉

−1 ∝
〈

(a ‖q‖)−1
〉

−1, aording to Eq. (25).For parallel plates, all mirosopi apertures are equaland also equal to the marosopi ones: h = a = γ =
H = Γ = A. For rough fratures, this is de�nitivelynot the ase sine the loal apertures vary spatially in-side the frature. We will see in the next setion how allthese apertures are in�uened by the roughness ampli-tude of the frature aperture, for whih we will empha-size on two main parameters: the normalized root meansquare deviation σ/A of the geometrial aperture and theaspet ratio of the frature J = lx/ly, i.e. the ratio ofthe downstream length of the frature lx over its width
ly. D. Dimensionless quantitiesDimensionless positions, apertures, pressure, tempera-ture and hydrauli �ow are de�ned as follow:

x∗ =
x

d
, y∗ =

y

d

a∗ =
a

A
, H∗ =

H

A
, Γ∗ =

Γ

A

P ∗ = − (P − P0)

2d

lx
∆P

, (27)
T

∗

=
T − Tr

T0 − Tr
,

q∗ = − 12η · lx
∆P · A3

q.where d is the mesh size of the aperture grid. Other-wise, we note that in the dimensionless temperature, thedi�erene between the injetion temperature T0 and therok temperature Tr intervenes only as a fator of pro-portionality.IV. HYDRAULIC FLOW SIMULATIONSA. Desription of the pressure solverThe Reynolds and temperature equations (Eqs. (6)and (14)) are numerially solved by using a �nite dif-ferene sheme. The pressure P , the hydrauli �ow qand temperature T are disretized on a grid of nx × nypoints with a mesh size of 2d i.e. half of the aperture gridpoints. In the following, when indexes (i, j) are positiveintegers, they refer to node positions where an aperture,a pressure and a temperature are de�ned, on the ontraryof the non-integer node position (i±0.5 or j±0.5) whereonly an aperture is de�ned.The Reynolds equation (Eq. (6)) is disretized andsolved in the same way as by Méheust and Shmittbuhl

[20℄: we use �nite di�erenes entered on a square meshof lattie step-size 2d, and the linear equation system isinverted using an iterative bionjugate gradient method[49℄. The hosen pressure drop along the frature lengthis ∆P ∗ = P ∗

nx,j − P ∗

1,j = 1 − nx for 1 ≤ j ≤ ny. Thehydrauli �ow q∗

i,j =
(

q∗i,jx
, q∗i,jy

, 0
) is omputed fromthe pressure �eld, as:

q∗i,jx
= −a∗

3

i,j

2

(

P ∗

i+1,j − P ∗

i−1,j

)

q∗i,jy
= −a∗

3

i,j

2

(

P ∗

i,j+1 − P ∗

i,j−1

)For a parallel plate on�guration (i.e. modeling withoutself-a�ne perturbation), q∗i,jx
= 1 and q∗i,jy

= 0 every-where in the frature.B. Example of a mirosopi hydrauli aperture�eldAn example of a frature aperture is shown in Fig. 4a.It is generated as explained in II on a 1024 × 512 grid,and has a RMS equal to σ/A = 0.25. The hydrauli �owomputed inside this morphology is shown in Fig. 4b, aswell as the mirosopi hydrauli apertures (Fig. 4). Inthis ase, the hydrauli �ow exhibits a strong hannelingas previously desribed by Méheust and Shmittbuhl [20℄.The mirosopi hydrauli apertures an be observed notto be simply orrelated to the aperture �eld.The link between mirosopi mehanial apertures
a and the mirosopi hydrauli apertures h, is givenin Fig. 5, where the sale shows the orresponding o-urrene probability of eah loal on�guration. Wesee that the normalized mehanial and hydrauli aper-ture values are distributed around a harateristi point:
(h/A, < a > /A) = (1, 1). Nevertheless, the orrela-tion between both apertures is not simple. Some of thehighest density values are loated below and above thestraight line whih represents h = a. Aordingly, thepermeability an loally be lower or higher than what isgiven by an average Poiseuille law. The sattering aroundthe straight line shows that at one point, the loal �ow isnot determined by the loal mehanial aperture, but isin�uened by all the surrounding mirosopi mehanialapertures. From omputations with other σ, we notiethat the lower the roughness amplitude, the loser to
(1, 1) the loud is.C. Variability of the marosopi hydrauliapertureThe dimensionless marosopi hydrauli aperture ismeasured for our frature example as H/A = 0.94 (or-dinate of the ross in Fig. 5). H/A < 1 means that thefrature permeability is redued ompared to the one ofparallel plates having the same mehanial aperture A,



8
a.

b.

c.

q*
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x/d

x/d

x/d

Figure 4: (Color online) a.: Self a�ne aperture with σ/A =
0.25. b.: Dimensionless hydrauli �ow norm omputed withthe aperture of Fig. 4a., having for dimensionless hydrauliaperture H∗ = 0.94. .: Mirosopi hydrauli apertures,omputed from the third root of the hydrauli �ow shown inFig. 4b.

Figure 5: (Color online) 2D histogram of the link betweenthe mirosopi hydrauli aperture and the mirosopi me-hanial aperture for the frature shown in Fig. 4 (the saleindiates the probability in perents %); the ross has for o-ordinates (H/A, <a> /A) = (0.94, 1). The straight line is
h = a, whih is the equality given by a loal Poiseuille law.

0 0.2 0.4 0.6

0.4

0.5

0.6

0.7

0.8

0.9

1

σ/A

H
/A

 

 

Example
Dataset
Average

Figure 6: (Color online) Marosopi hydrauli aperture H/Aversus σ/A for fratures with aspet ratio lx/ly = 2; Crosses:Variation of the hydrauli aperture by inreasing the rough-ness amplitude σ/A for the aperture shown in Fig. 4; Dots:loud of omputed data (about 20 000 aperture realizations);Squares: Average hydrauli behavior with variability bars. Onaverage, H/A < 1: the permeability is smaller than expetedfrom the Poiseuille law in parallel plate apertures.without any self-a�ne perturbation. For the same mor-phology pattern (Fig. 4), we examine how the roughnessamplitude in�uenes the marosopi hydrauli aper-ture by hanging σ/A (.f. II). In Fig. 6 we see thatthe marosopi hydrauli aperture is lose to 1 when
σ/A = 0.05, whih orresponds to a quasi �at aperture.When the roughness amplitude inreases, H dereases,whih means that this morphology pattern tends to in-hibit the hydrauli �ow and makes the frature perme-ability derease.For various realizations with the same σ/A value, vari-ous hydrauli behaviors may happen owing to the hannelvariability in the hydrauli �ow. In Fig. 6, we plot thedimensionless marosopi hydrauli apertures H/A ver-sus σ/A (for about 20 000 omputations with 1 700 dif-ferent frature aperture patterns). Here, eah fraturehas the same size as the frature shown in Fig. 4 where
lx/ly = 2. We ompute the mean hydrauli apertures in-side windows of size 0.025 σ/A and eah plotted bar rep-resents twie the standard deviation of H/A inside theorresponding windows. We see that for most ases, thepermeability is redued. For σ/A < 0.25, the hydrauliaperture is still quite lose to A and the dispersivity isrelatively small even if some on�gurations shows a �owenhanement owing to the frature roughness: H > A[20℄. Then, for higher RMS, the average of H/A dereasessigni�antly on average (up to 50%) with σ/A, but witha higher variability of the results.



9D. In�uene of the frature aspet ratio on thehydrauli �owTo get a omplete desription, we now modify one ad-ditional parameter: the aspet ratio of the frature, byhanging the ratio of the frature length over its width,
J = lx/ly. Figure 7 shows the same kind of average plotsof H/A as a funtion of σ/A but for three di�erent as-pet ratios: J = 2 (square symbols) whih is the onepresented in Fig. 6, J = 1 (triangle) and J = 0.5 (disks).Sine less simulations were done for J = 1 and J = 2 (seethe legend of Fig. 7), few aperture show σ/A > 0.45, andtherefore no average points is represented in these ases.For square systems (J = 1) and downstream elongatedfrature (J ≥ 1), H/A is on average smaller than one (i.e.inhibiting hydrauli �ow ompare to the one through par-allel plates separated by the same opening A), whereasfor systems wider perpendiularly to the pressure gradi-ent diretion, H/A is on average higher than one. A qual-itative explanation might be that, it is statially morelikely to get a large sale onneting hannel for a wideand short frature (J < 1) rather than for a thin andlong frature (J > 1). In other words, qualitatively,hannels are rather in parallel in wide fratures, and inseries in long ones. For square systems whih should beisotropi and providing as many perpendiular and par-allel hannels, we see that when the roughness amplitudeinreases, the hydrauli aperture get on average slightlysmaller than A. We an suspet that it would exist anaspet ratio Jinv so that the hydrauli aperture is on av-erage independent of the frature roughness magnitude:
H/A = 1 for any σ/A. Following the model proposed be-low in IVE, we get Jinv ≃ 0.65± 0.05 . For any J value,we see that the higher the ratio σ/A, the higher the vari-ability of the behaviors is, espeially for square systemswhih exhibit both high (H > A) and low (H < A) per-meability for the same roughness magnitude.E. Model of the average marosopi hydrauliapertureOne of the main questions we want to address here,is the relationship between the marosopi hydrauliaperture H and the mirosopi mehanial aperture�eld a(x, y). The knowledge of the mehanial aper-ture �eld a(x, y) provides us the following bounds for
H : 〈a−3〉−1 < H3 < 〈a3〉 � the lower ase orrespond-ing to a system of aperture �utuations purely aligned inseries, and the upper one to �utuations purely alignedin parallel [55℄. However, a (x, y) is rarely known andsubsequently 〈a−3〉−1 and 〈a3〉 are di�ult to estimate.From Fig. 7, σ/A and J appear to be important param-eters ontrolling the marosopi hydrauli aperture ofthe frature H . Ref [20℄ proposed a �rst model of the Hbehavior as: H/A = 1+α

(

σ
A

)κ. Here we similarly modelthe average hydrauli aperture urves orresponding toeah aspet ratio (ontinuous urves in Fig. 7) and �nd
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Fit curves 1
Fit curves 2Figure 7: (Color online) Marosopi hydrauli aperture ver-sus σ/A, for three aspet ratios J = lx/ly. Averages omputedfrom data are shown with symbols, with error bars, orre-sponding to plus or minus the standard deviation (see howthe average is omputed in IVC). J = lx/ly = 2 shows anenhaned �ow (same data as presented in Fig. 6); J = 1shows on average a slightly inhibited �ow, i.e. H ≤ A (om-puted from a loud of about 1 300 points); for J = 0.5,on average, higher permeability is observed (omputed froma loud of about 900 points). Continuous urves are �t-ting models (1) H/A = 1 + α

`

σ
A

´κ, with parameters (κ, α)equal to (2.05, −1.46), (1.57, −0.31), (2.69, 0.67) respetivelyfor J equal to 2, 1 and 0.5. Dotted urves are obtainedwith �tting models (2) H/A = 1 − µ [log
2
(J) + δ]

`

σ
A

´κ, with
(µ, δ, κ) = (0.98, 0.59, 2.16), for the three urves.
(κ, α) suessively equal to (2.05,−1.46), (1.57,−0.31),
(2.69, 0.67) respetively for J equal to 2, 1, 0.5. Depend-ing on the sign of α, we get either a permeability lower orhigher than that expeted with �at plates. Then we �tthese three behaviors by a more general model whih in-ludes the aspet ratio variation, with three parameters(µ, δ, κ) to be optimized: H/A = 1−µ [log2(J) + δ]

(

σ
A

)κ.With (µ, δ, κ) = (0.98, 0.59, 2.16), we get the three dot-ted lines in Fig. 7 whih are aeptable �ts of the aver-age trend. However it has to be highlighted that the realhydrauli aperture of a spei� surfae is possibly verydi�erent from this average value (see size of variabilitybars in Fig. 7), espeially at high σ/A.Other models for numerial or experimental hydrauliapertures have been proposed in the literature [19℄, as
(H/A)

3
= 1 − C1 exp (−C2A/σ) or (H/A)

3
= 1/[1 +

C3 (2A/σ)
1.5

], where C1−3 are onstants but the shapeof these funtions does not �t well our averaged points,and these �ts are not represented here.



10V. THERMAL FLOW SIMULATIONSA. Desription of the temperature solverThe temperature equation (Eq. (14)) is disretized as:
q∗i,jx

(

T
∗

i+1,j − T
∗

i−1,j

)

+ q∗i,jy

(

T
∗

i,j+1 − T
∗

i,j−1

)

+
4d

R//
·
T

∗

i,j

a∗

i,j

= 0, (28)where (i, j) ∈ [|2, nx − 1|] × [|2, ny − 1|] and R// is thethermal length expeted by negleting the roughness am-plitude (see Eq. 16). The boundary onditions are:
1 ≤ j ≤ ny, T

∗

1,j = 1 and T
∗

nx,j = 0

2 ≤ i ≤ nx − 1, T
∗

nx,j = 0 and T
∗

nx,j = 0The system is solved in the same way as the pressuresystem (IVA). Two limiting numerial fators intervenefor the e�ieny of the disretization sheme: the meshstep d has to be su�iently small to apture with a suf-�ient auray the relative variations of T − Tr overa lattie step. In pratie, the mesh step used in thismanusript is hosen as d = R///50. We heked that di-viding this mesh size by 2 did not hange signi�antly theomputed temperature �eld. The seond numerial limitis that the system size lx has to be larger than 20 ·R// toavoid a possible numerial instability (mostly with theaperture grid size 1024 × 2048 whih is more likely toexhibit a longer thermal length, as explained in VE). Ifnot, the �uid passing the frature is so slowly warmed upthat the ondition T
∗

nx,j = 0 at the outlet badly repre-sents the ondition imposed in priniple at in�nity in thehannel, and this boundary ondition imposed at a phys-ially too short distane from the inlet annot be ful�lledwithout numerial artifat. To fae this problem in suhrare situations, we dupliate the aperture grid to get alonger system length and impose the same marosopipressure gradient, and the rok temperature at the newend: T
∗

2·nx,j = 0.B. Example of a loal mirosopi temperature�eldFor a nearly onstant aperture (σ/A = 0.05), we numer-ially obtain a temperature law lose to an exponentialdownstream pro�le (Fig. 8), as we expet from Eq. (17).The 2D temperature �eld shown in Fig. 9a (σ/A = 0.25)is omputed from the aperture and its previously om-puted hydrauli �ow �eld, shown in Fig. 4b. It an beobserved that the �uid is getting inhomogeneously warm,with hannelized features. The thermal hannel beginsin a zone where the hydrauli �ow oming from the inletonverges (Fig. 4b). The loal normalized thermal aper-ture γ/A (map shown in Fig. 9b) exhibits less pronouned

−ln(T  )

x/d

y/
d

       *

Figure 8: (Color online)− ln
“

T
∗

”, opposite of the logarithmof the temperature �eld T
∗ omputed from the aperture mor-phology pattern shown in Fig. 4 with a very low roughnessamplitude: σ/A = 0.05. The hydrauli aperture of this fra-ture is H/A = 0.99. The temperature �eld exhibits a nor-malized thermal length equal to R∗ = 0.97 and a thermalaperture of Γ/A = 0.99.
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Figure 9: (Color online)a.: − ln
“

T
∗

”, opposite of the loga-rithm of the 2D temperature �eld, omputed from the aper-tures in Fig. 4a (σ/A = 0.25). b.: Normalized loal thermalaperture γ/A assoiated with the temperature �eld shown inFig. 9a.hannel e�et than in Fig. 9a. Figure 10 is the plot of theloal mirosopi thermal apertures γ/A versus the loalapertures a/A, using a shading showing the ourenedensity in the (γ/A, a/A) spae. The dispersivity of theloud around the line γ = a shows that there is no sim-ple link between the loal aperture and the thermal one.A similar plot (Fig. 11) allows to observe the orrelationbetween the loal mirosopi thermal apertures and theloal mirosopi hydrauli apertures. It shows a goodorrelation of the loal thermal aperture and the loalhydrauli aperture (i.e. the loud is lose to the straightline γ = h). Note that it is more probable (59%) to
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Figure 10: (Color online) 2D histogram in perents of thefrature shown in Fig. 4 as a funtion of the loal thermalaperture γ and loal aperture a (the shading indiates theprobability density). The straight line is γ = a. The dis-persivity of the loud around the line shows that there is nosimple link between the loal aperture and the thermal one.have γ > h, whih orresponds to a heat exhange lo-ally less e�ient than what is expeted from a parallelplate model whih is equivalent in permeability.

Figure 11: (Color online) 2D Histogram in perents of thefrature shown in Fig. 4 as a funtion of the loal thermalaperture γ and loal hydrauli aperture h (the sale indiatesthe probability in perents %). The straight line is γ = h;the loalization of the loud around the line shows a goodorrelation between γ and h.C. Variability of the marosopi thermal apertureThe average temperature T (see de�nition in Eq. (22))is a semi loal property whih shows how the thermalbehavior evolves on average along the pressure gradientdiretion. The shape of T (x) (Fig. 12) is lose to an ex-ponential law, but with a thermal length R slightly dif-ferent from the frature without self-a�ne perturbation

(i.e. parallel plates). This thermal length is omputedfrom the slope of the linear regression of ln
(

T (x)
) (seein III C). In the example displayed in Fig. 12, the ther-mal length is R∗

// = 1.09, whih results in an equivalentthermal aperture of Γ∗ = 1.02.

Figure 12: (Color online) Continuous urve: − ln
“

T
∗
”, oppo-site of the logarithm of the temperature �eld omputed fromthe temperature �eld T shown in Fig. 9. Dash-dotted urve:Linear �t of urve A (from x/d = 0 to x/d = 772), whihprovides the thermal length:− ln

“

T
∗
”

= x/1.09 + 0.6, i.e.
R∗ = 1.09. Dashed urve: − ln

“

T //

∗
” opposite of the loga-rithm of the temperature law for the same frature modeledwithout self-a�nity perturbation (i.e. parallel plates), whihhas for thermal length R∗

// = 1.In �gure 13, the rosses illustrate the roughness ampli-tude in�uene on the thermal aperture for the morphol-ogy pattern shown in Fig. 4a, whose relief is ampli�ed byhanging σ value (see in II). For this example, Γ vs σ isnot monotoni. The dimensionless thermal length is loseto 1 when σ/A = 0.05, whih orresponds to a quasi �ataperture. When the roughness amplitude is big enough(σ > 0.1), Γ inreases with σ and is higher than one,whih means that this morphology pattern tends to in-hibit the thermal exhange. In Fig. 14, the rosses showthe thermal aperture versus H/A using the same data asfor the plots shown by rosses in Figs. 13 and 6.D. Variability of the thermal behaviorStatistial thermal results are omputed for numer-ous ases (more than 20 000) whose marosopi hy-drauli apertures are presented in IVC for various σ/Avalues. Similarly, a normalized average marosopi ther-mal aperture, Γ/A, and its standard deviation is obtainedas funtion of σ/A. The resulting Γ/A for the aspet ratio
J = 2 is displayed in Fig. 13, with bars representing thedouble of the standard deviation. For the same normal-ized roughness amplitude σ/A, various thermal behaviorsmay happen, espeially for σ/A > 0.25, with hannels ap-pearing or not and dimensionless thermal lengths higheror lower than one. At �rst order, both the marosopithermal (Fig. 13, triangles) and hydrauli average aper-
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Average H/AFigure 13: (Color online) Crosses: Variation of the thermalaperture Γ/A by inreasing the roughness amplitude σ/A forthe aperture pattern shown in Fig. 4; Dots: Cloud of om-puted data (about 20 000 points) for fratures with aspet ra-tio lx/ly = 2; Triangles: Average thermal behavior with vari-ability bars of the loud; Squares: Average hydrauli aperture

H/A versus σ/A, realled here for omparison.
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Figure 14: (Color online) Normalized thermal aperture Γ/Aversus H/A for fratures with aspet ratio lx/ly = 2. Crosses:Variation of the thermal aperture by inreasing the rough-ness amplitude for the aperture pattern shown in Fig. 4aversus H/A; Dots: Cloud of omputed data (about 20 000points); Squares: Average thermal behavior with variabilitybars. Continuous urve: Γ/A = H/A, whih holds for parallelplates separates by a(x, y) = H .tures (Fig. 13, square symbols) are dereasing as fun-tions of σ. This trend is signi�antly more pronounedfor H than for Γ. The thermal results are omparedwith systems equivalent in permeability (same normal-ized hydrauli aperture) in Fig. 14 whih represents thenormalized thermal aperture versus the hydrauli aper-ture with the average points omputed inside windows ofsize 0.05 H/A. The most striking result is that roughness

inhibits thermalization: nearly all the loud is above theontinuous urve Γ = H , whih means that the thermal-ization of the �uid (thermalization is obtained when the�uid temperature reahes the rok one) is inhibited om-pared to what we expet from the hydrauli behavior. Inthe same time, we note that, on average, Γ/A < 1, i.e.most of the apertures exhibit an enhaned thermalizationompared to what would be expeted with a model of �atfratures separated by A, i.e. having the same geometri(or mehanial) aperture.E. In�uene of the frature aspet ratio on thethermal behavior
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Figure 15: (Color online) Averages of the normalized thermalaperture Γ/A and their deviation bars versus σ/A for variousaspet ratios J = lx/ly, as indiated by the labels. See howthe average is omputed in IVC.
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Figure 16: (Color online) Averages of the normalized thermalaperture Γ/A and their deviation bars versus H/A for variousaspet ratios J = lx/ly , as indiated by the labels (see how theaverage is omputed in IVC). Models lines are Γ = 0.9H +
0.2A for H < A and Γ = 3.5H−2.4A for H ≥ A; no ontinuityondition between both lines is imposed.We omplete our study by omputing the averagedthermal apertures for two other aspet ratios, J , by us-



13ing the hydrauli �ows omputed in IVD. The aver-aged values of the thermal apertures, with the variabil-ity bars (de�ned similarly to what is done in VD) for
J ∈ {0.5, 1, 2} are plotted in �gs. 15 and 16. When Γ/Ais plotted as a funtion of σ/A (Fig. 15), various ther-mal behaviors are observed, aording to the aspet ra-tio, with high variability, partiularly when σ/A > 0.25.On the ontrary to fratures with aspet ratio equal to
J = 2 (desribed in VD) the ones with J in {0.5, 1} aremore likely to inhibit the thermalization ompared to �atfratures with the same mehanial aperture (Γ/A > 1).Figure 16 shows the average of Γ/A versus H/A. Con-trarily to what an be observed for Γ/A vs σ/A (Fig. 15),the average urves Γ/A vs H/A are roughly independenton the aspet ratio. This shows that the hydrauli aper-ture is a better parameter than the roughness σ/A to as-sess the thermal properties.The thermal aperture is sys-tematially larger than the hydrauli aperture (Γ > H).It means that one the permeability known, e.g. bypumping tests, using a parallel plate model separated by
H for estimating the thermal behavior overestimates thee�ieny of the heat exhange: the �uid needs indeed alonger distane to be thermalized than expeted from �atfratures with the same permeability. On average Γ/A vs
H/A is monotoni (Fig. 16), i.e. this average dependenedisplays a simpler behavior than for a partiular ase ofmorphology of varying amplitude (e.g. Fig. 14, rosses).Going more into details, Fig. 16 also shows that for
H/A > 1, the slope of Γ vs H is steeper than for H/A < 1;both parts of the urve an be modelled with straight line�ts (dotted and dot-dashed urves). This ould be inter-preted as follows: fratures with high hydrauli aperturesprovide high veloities so that �uid partiles need to gofurther to reah the rok temperature. Fratures withsmall hydrauli apertures H/A < 1 might be dominatedby small mehanial apertures (fenes) providing smallveloities, whih leads to thermal apertures loser to theline Γ = H .VI. DISCUSSION AND CONCLUSIONA. Model limits and possible extensionDespite the hydrauli lubriation hypothesis whih im-plies notably a low Reynolds number, the �uid velo-ity should not be too small. Indeed, the veloity drivesthe in-plane thermal onvetion, whih is supposed to belarge ompared to the in-plane thermal ondution. Thisan be quanti�ed by the Pélet number (ratio betweenthe harateristi time of di�usion and advetion): ourmodel is valid at low in-plane Pélet number. Therefore,owing to in-plane ondution, the thermal hanneling ef-fet might be redued espeially in ase of high temper-ature ontrast along the hannel and very low hydrauli�ow. This homogenization might be reinfored if the �uidtemperature is still inhomogeneous but very lose to therok temperature: in this ase the in-plane ondution

inside the �uid might be as high as the ondution be-tween rok and �uid. Free onvetion (temperature de-pendene of ρ), whih is not taken into aount here, mayalso intervene, espeially for thik fratures [56℄.In pratie, some 3D e�ets might happen as the lubri-ation approximation is not neessarily respeted owingto the rok morphology, (e.g. [23, 24℄). In natural ases,the roughness amplitude σ/A overs a large range arossthe natural ases, from small to large values aording tothe type of rok and fratures. For instane, we reentlymeasured the roughness amplitude of natural fratures inblak marl at borehole sale, and we obtained values of
σ/A < 0.04 for one and σ/A = 0.3 for another one [22℄.Some other values, typially σ/A > 0.4, have also beenreported for instane in graniti roks [57, 58℄. If theases with large roughness amplitudes also orrespond tolarge loal slopes (angle between the frature side andthe average plane), it is likely that the Reynolds equa-tion and 2D temperature equation does not apply so wellto these ases, and that the results reported here are onlyapproximate for those.When the frature morphology is highly developed,due to more surfae exhange, the rok might loally pro-vide better heat exhange. The assumption of averagingthermal phenomena in 2D has been studied e.g. by Volikor Sangare et al. [59, 60℄, who onsidered only ondu-tion. The 3D solving of the full Navier-Stokes and heatadvetion-di�usion equations is also possible, for examplewith a oupled lattie-Boltzmann method [61℄. However,onsidering the omplexity of frature morphology fromvery small sales to large ones requires heavy omputa-tions, whih makes statistial results di�ult to obtain.When onvetion also ats, 3D e�ets lead to zones de-oupled from the main mass and heat �ux, as the �uidmight be bloked into eddies (o� lubriation regime) pro-voked by sharp morphologies [23, 29�32℄ (like Mo�atteddies [62℄). It has indeed to be notied that even whenlow pressure gradient is imposed, turbulent �ow might beobserved due to high roughness amplitude. This e�et isomplementary to observations made at high Reynoldsnumber [63�66℄, when even a very low roughness ampli-tude of the wall indues turbulent �ow.All the results about the thermal aperture may also bein�uened by the thermal boundary onditions. In par-tiular we have assumed that Tr is onstant. Spatial vari-ations of Tr an easily be taken into aount by hangingthe boundary onditions of the thermal equation whiletemporal variations require to model the rok gettingolder in the surrounding (onsequenes of the rok di�u-sivity). In time, the hypothesis of onstant temperature
Tr holds either for very short durations when the regimeis transitory, or for longer durations, at quasi-stationaryregime, when the rok temperature evolves very slowlyand the �uid temperature adapts fast. This is the ase ifthe solid is muh more thermally di�usive than the �uid,whih is quite true in our ase: for instane, the ratioof the granite thermal di�usivity over the water one is5.9. We ould hek the time evolution by using another



14numerial approah based on lattie Boltzmann methods[61℄, whih allows to solve both the rok and �uid tem-perature and takes into aount the ontrast of thermaldi�usivity. For a frature with an aperture of a few mil-limeters, Tr an be onsidered as onstant at transitoryregime for durations muh less than 1 minute. Converselyit also holds for longer durations after a quasi-stationaryregime is reahed, whih an happen after minutes oryears, aording to the properties of the system (e.g. dis-tane to the heat soure and injetion point). Time vari-ation of Tr an also be taken into aount by oupling ourmodel to a thermal di�usion model in the rok, using al-ternately both models in time. Similarly, it is possibleto ouple our ode to another one modeling the hangeof the geometry of the frature (e.g. beause of stress orhemial reations).B. ConlusionWe have proposed a model of thermal exhange be-tween a Newtonian �uid and a hot rok, inside a roughfrature under a given pressure gradient. The �ow on-sidered was assumed to be at low Reynolds number, inlaminar regime, so that Stokes equation and lubriationapproximations hold for the mass �ow equations and forthe temperature advetion in the heat transport equa-tion. We have then set from basi priniples the massand heat transport equations, expressed them in a 2Dform, disretized them by �nite di�erenes and solved theresulting systems by bionjugate gradient methods. Thewhole numerial sheme an be used with any variableaperture �eld without ontat (for instane, obtainedfrom real rok surfaes). Here, apertures have been ho-sen to be numerially generated, in order to get statis-tially signi�ant results over more than 20 000 realiza-tions. The aperture �elds are modeled as many naturalones, namely as self-a�ne with a Hurst exponent of 0.8,with various ratio of the aperture �utuations over theaverage aperture, and three di�erent aspet ratios of thefrature. The hydrauli and thermal behavior are quan-ti�ed with both loal and marosopi apertures: h, γ,and H , Γ.The plot of H as funtion of σ/A exhibits some trendsaording to the aspet ratio and we have been able

to �nd model urves. However, around these modelurves, the hydrauli behavior is very variable and there-fore, knowing the roughness amplitude, σ/A, these modelurves may not be reliably ombined with a model of an-other phenomenon dominated by the hydrauli aperture,suh as the thermal exhange. The marosopi thermalaperture Γ vs the roughness amplitude is also highly vari-able, despite trends that are visible on average aordingto the aspet ratio. The frature, taking into aount itsroughness, is either less or more permeable than modelof �at parallel plates with the same mehanial aperture.At loal and marosopi sales, hydrauli aperturesare badly orrelated with mehanial apertures. On theontrary, hydrauli apertures are highly orrelated withthermal apertures, showing that that the thermal behav-ior is mostly determined by the hydrauli one for roughfratures. Compared to �at fratures with equivalent per-meability, for a rough aperture, the �uid almost system-atially needs a longer distane to reah the temperaturerok (Γ > H): the heat exhange is less e�ient. Apratial impliation of this general result is that whenfrature aperture is assessed on the �eld based on hy-drauli transmissivity measurement, obtained e.g. bypumping tests, the e�ieny of the thermal exhange as-sessed from �at frature models is systematially overes-timated. Using the laws Γ = 0.9H + 0.2A if H < A and
Γ = 3.5H − 2.4A for H ≥ A (Fig. 16) should allow toorret this overestimation.Another important result is that the derived tem-perature in rough hannels, when averaged, behaves a-ording to the solution of the marosopi equation thatwould be used for �at apertures, Eq. (14). The loalroughness of the frature an therefore be oarse-grained.Doing so, the struture of Eq. (14) is kept; it is sim-ply neessary to adjust both the hydrauli transmissivityand the thermal length (or the Nusselt number). Forinstane, this oarse-grained approah based on parallelplates laws with adjusted Nusselt numbers an be usedfor hydrauli and thermal models of frature network.We thank E.G. Flekkøy, S. Roux, K.J. Måløy, J. An-drade Jr., H. Auradou, A. Genter and J. Sauze for fruitfuldisussions. We thank the european EHDRA program,as well as the ANR ECOU-PREF and the REALISE pro-grams for their �nanial support.[1℄ A. Gérard, A. Genter, T. Kohl, P. Lutz, P. Rose, andF. Rummel, Geothermis 35(5-6), 473 (2006).[2℄ A. Neuville, R. Toussaint, and J. Shmittbuhl, in Pro-eedings of the EHDRA sienti� onferene (2006).[3℄ A. Neuville, R. Toussaint, and J. Shmittbuhl,C. R. Geosi. 347(7�8), 616 (2010).[4℄ J. Sausse, C. Dezayes, A. Genter, and A. Bisset, in Pro-eedings of the 33rd workshop on Geothermal ReservoirEngineering, (Stanford University, California 2008).[5℄ T. Le Borgne, O. Bour, J. Dreuzy, P. Davy, and
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