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Hydro-thermal coupling in a self-affine rough fracture

A. Neuville 2,* R. Toussaint 2, and J. Schmittbuhl 2
1 EOST, Université de Strasbourg, France and
2 Institut de Physique du Globe de Strasbourg, UMR CNRS ULP 7516,
b rue René Descartes, 67084, Strasbourg Cedezx, France

The influence of the multi-scale fracture roughness on the heat exchange when a cold fluid enters
a fractured hot solid is studied numerically on the basis of the Stokes equation and in the limit
of both hydro- and thermo- lubrications. The geometrical complexity of the fracture aperture is
modeled by small self-affine perturbations added to a uniform aperture field. Thermal and hydraulic
properties are characterized via the definition of hydraulic and thermal apertures both at micro and
macroscopic scales and obtained by comparing the fluxes to the ones of flat fractures. Statistics
over a large number of fracture configurations provide an estimate of the average behavior and
its variability. We show that the long range correlations of the fracture roughness induces strong
channelling effects that significantly influence the hydraulic and thermal properties. An important
parameter is the aspect ratio (length over width) of the fracture: we show for example that a
downstream elongated rough fracture is more likely to inhibit the hydraulic low and subsequently
to enhance the thermal exchange. Fracture roughness might, in the opposite configuration, favor
strong channeling which inhibits heating of the fluid. The thermal behavior is in general shown to
be mainly dependent on the hydraulic one, which is expressed through a simple law.

PACS numbers: 47.56.+r 44.05.+e 47.11.Bc 44.30.+v

I. INTRODUCTION

research area. A classical approach is to model the flow

Among situations where heat exchange between a pass-
ing fluid and a fractured medium is of central impor-
tance, geothermy is an intensively developing field. Deep
Enhanced Geothermal Systems (EGS) are based on the
energy extraction obtained when a cold fluid is injected
from the surface inside a hot fractured massif at depth
and extracted after circulation in the open fractures pos-
sibly artificially created from an hydraulic or chemical
stimulation (e.g. the EGS pilot plant in Soultz-sous-
Foréts, France [1-4]).

The efficiency of the heat exchange depends on the
balance between conductive and convective heat fluxes.
The former is mainly dependent on the geometry of each
individual interface, i.e. facing fracture surfaces, but the
later is definitively related to the hydraulic properties
of the fracture network which results from the network
connectivity and the fracture permeability.

Hydraulic conductivity of fractured rocks have been in-
tensively studied for different motivations. For instance,
the hydraulic properties of the crystalline aquifer of Ploe-
meur, France, has been studied by Le Borgne et al (2004)
[5] to address water supply issues. Another example is
the mitigation of radionuclide migration which has been
forecasted in the case of the repository site for nuclear
wastes storage in Aspd, Sweden on the basis of a dis-
crete fracture network [6]. The modeling of the transport
properties of fracture networks is actually a very active
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paths via parallel interacting flat fractures [7]. More ad-
vanced studies address the effects of the connectivity and
correlations of the fractures (e.g. in Refs [8, 9]).

In many models of hydraulic or hydro-thermal flow de-
veloped so far, the geometry of each fracture of the net-
work is nevertheless considered as simple, e.g. as parallel
plates with a simple geometry of the edge as an ellipse or
a polyhedron. This is the case in most fracture network
models used for geothermal [10] or for fluid transport ap-
plications [8, 9]. The non-trivial character of the fracture
aperture geometry is however very likely to influence the
fracture flow given their complex real geometry. Most
natural fracture surfaces are indeed self-affine objects.
Surprisingly, the complexity of the multi scale properties
of the fractures has some remarkable simplicity, in the
sense that their Hurst exponent is very robustly around
0.8 [11]. Exceptions however exist like for fractures in
sandstones where the Hurst exponent is 0.5 [12, 13], or
in glassy ceramics which show an exponent close to 0.4
[14].

The aperture between fracture surfaces is subsequently
far from flat in particular if facing fracture surfaces are
uncorrelated, at least at small scales [15, 16]. A rough
self-affine aperture is indeed defined between two uncor-
related self-affine fracture surfaces, or between two iden-
tical self-affine fractures translated tangentially to their
average plane by a translation larger than the scale un-
der study. Self-affine apertures have been shown to be
responsible for tortuous flow path. The related chan-
neling of the fluid flow was experimentally observed in
rough fractures [17, 18] and modeled using lubrication
approximation with Reynolds equation (e.g. [13, 19-



22]). The applicability of such an approximation has
been studied, e.g. in Refs [23-25]. Extension of this sit-
uation was considered for example by Plouraboué et al
[26] where the Reynolds equation is coupled to the chem-
ical convection-diffusion study. More advanced hydraulic
simulations including the solving of the Navier-Stokes
equation have been proposed either considering simpli-
fied geometry [23, 27] or more recently within a realistic
fracture geometry [28-32]. However, these recent sim-
ulations require heavy computations (although different
methods are available) and are therefore not fully com-
patible with statistical approaches where a large number
of realizations is necessary.

Beyond the problem of mass flow in rough fractures,
different kinds of numerical simulations have already
been proposed to account for hydro-thermal coupling. As
a first approach, analytical solutions have been obtained
to compute the heat flux along parallel circular cracks
embedded in a 3D infinite medium using simplified heat
equations [33]. At large scale and for long term predic-
tions, models like that of Bataillé et al. [10] have been
proposed to predict the response of geothermal reservoirs.
This type of finite-element model includes conduction,
free and forced convection, but reduces the geometry of
the hydraulic network to a double permeability distribu-
tion to account for both matrix and fracture transport.
A variety of more complex models have also been pro-
posed like the modeling of a 3D network of fractures orga-
nized according to geological observations and completed
with stochastic fractures for underdetermined parts of
the model [34], or that for Soultz-sous-Foréts, France, by
Rachez et al [35] or that of Kolditz and Clauser [36] for
Rosemanowes, UK.

In the present study, we focus on the hydro-thermal
coupling at the fracture scale where the channeling ef-
fect is expected to affect not only the fluid transport
properties, but also the heat flux properties, as suggested
by Kolditz and Clauser [36] who proposed that the dis-
crepancy between classical heat model predictions and
real observations could be due to flow channeling result-
ing from fracture roughness. We aim at obtaining from
the microscopic analysis of the flow at scales of the frac-
ture asperities, the macroscopic parameters (i.e. the hy-
draulic transmissivity and the characteristic thermaliza-
tion length) that govern the efficiency of the fluid mass
and heat transport through the overall fracture. This
will allow to coarse grain the description of the effect of
microscopic asperities, i.e. the fracture roughness, on
the hydraulic and thermal behavior in large scale net-
work models as the ones mentioned above. The upscal-
ing from the microscopic asperity scale to the fracture
scale is done via a systematic statistical analysis of the
macroscopic flow parameters, for a large set of stochastic
synthetic fracture surfaces, described with a few key pa-
rameters for such apertures: average aperture, standard
deviation. The macroscopic parameters obtained after
the upscaling reduce to two: the hydraulic transmissiv-
ity, characterizing the fluid mass transport, and the other

one characterizing the efficiency of the heat exchange be-
tween the rock and the fluid. This exchange is expressed
via the characteristic length R in a macroscopic law of

type
(q/llqll) - 2T = (T = T;)/R =10 (1)

with T a fluid temperature, T} the temperature in the
surrounding rock, g the fluid flux integrated over the
fracture thickness, and V5, the two dimensional gradient
operator along the fracture plane. The hydro-thermal
modeling is performed as in [3]. The present study is
in the framework of the lubrication approximation [37]
which implies that the Reynolds number is small and
that the fracture walls are locally flat enough to provide
a mainly in-plane velocity field, with a negligible com-
ponent normal to the mean fracture plane. We propose
to extend the lubrication approximation to the thermal
fluxes. By balancing heat conduction and forced convec-
tion we obtain a tri-dimensional (3D) temperature law
which will then be reduced to a 2D temperature equa-
tion by averaging it along the thickness of the fracture as
proposed e.g. by Turcotte and Schubert [38].

Section II describes our geometrical model of the frac-
ture aperture based on a self-affine scaling invariance. In
Section III, using lubrication approximations, we obtain
the bidimensional pressure and thermal equations when
a cold fluid is injected through a fracture in a station-
ary regime. As a first step, the temperature within the
surrounding rock is supposed to be hot and constant (in
time and space), and the density of the fluid is considered
as constant. We show that at a coarse grained scale, the
two dimensional (2D) equation for heat flux is identical
to the one for parallel plates, Eq. (1), but with a charac-
teristic thermalization length associated to an aperture
(named thermal aperture), different from the geometrical
aperture (also often labeled as the mechanical aperture).
Other relevant quantities are defined to describe the hy-
draulic and thermal behaviors at local and macroscopic
scales. The numerical approach is described in details
in Section IV. Equations are discretized using a finite
difference scheme and solved with a biconjugate gradient
method. The numerical hydraulic and thermal results
are respectively set out in IV and V. In each of these
sections, we first describe the results for a given fracture
morphology (locally and macroscopically), then averaged
trends of macroscopic parameters that are observed sta-
tistically from large sets of synthetic fractures.

II. DESCRIPTION OF THE ROUGHNESS OF
THE FRACTURE APERTURE

The roughness of a self-affine surface is statistically in-
variant upon an isotropic scaling within its mean plane
(z,y) while on the perpendicular direction z, the scaling
is anisotropic. Indeed, it is statistically invariant under
the scaling transformation z — Az, y — Ay, Az — X’z
[39-41], where ( is called roughness exponent or Hurst



exponent. A self-affine geometrical model has been ex-
perimentally shown to be a realistic description of nat-
ural rock surfaces [11, 16, 42, 43|, with Hurst exponent
equal at large scale to ¢ ~ 0.8 for many kinds of natu-
ral fractures and material surfaces [42-45] and ¢ ~ 0.5
for sandstones [46, 47]. It is important to note that a
self-affine surface having a roughness exponent smaller
than one is asymptotically flat at large scales [48]. Ac-
cordingly, a self-affine topography can be seen as a per-
turbation of a flat interface. On the other end of the
scales, the local slope of a self-affine surface diverges at
small scales, and the maximum slope of such surface is
determined by the lower cutoff of the self-affine behavior
- corresponding e.g. to granular diameter when present.
In principle, modeling a flow boundary condition along
such surface requires to check that the macroscopically
obtained result does not depend on such lower cutoff.
The aperture is the space between the facing fracture
surfaces. Our study is limited to the case where two non
correlated fracture surfaces with the same roughness ex-
ponents are facing each other. Subsequently the aperture
a(x,y) is also a self-affine function with the same Hurst
exponent which fulfills the following property [39, 40]:

A Pr(X°Aa, [MAz, \Ay]) = Pr(Aa, [Az, Ay])  (2)

where Pr(Aa, [Ax, Ay]) is the probability to get an aper-
ture difference Aa between two points separated by the
distance [Axz, Ay], A is an arbitrary scaling factor and ¢
the roughness exponent.

The self-affine aperture field is numerically obtained
by first generating a white noise e(z,y) [49] on a grid of
size 2-n, x 2-n, with a square mesh-size d. Then the sta-
tistical spatial correlations are introduced by multiplying
the 2D Fourier transform of the white noise € (k;, ky) by
| &l (=1~ [50], where k is the wave vector. When de-
sired, a lower cutoff length scale [, can be introduced by
filtering as: if ||k|| > =/l., @ (ks,ky) = 0. Finally we
perform the inverse Fourier transform of a (ks, k,) and
normalize it to get a synthetic aperture a(x,y) with an
average A and a root mean square (RMS) o. Using differ-
ent seeds of the random generator of the white noise, it is
possible to generate independent self-affine aperture mor-
phologies showing different patterns, even if they share
the same roughness exponent chosen equal to { = 0.8,
the same mean aperture A and same RMS o. The upper
limit of ¢ is provided by the condition of positive aper-
ture, i.e. we prevent contact between the fracture faces
to keep a constant simple boundary geometry of the do-
main where the equations are solved. In practice a is
imposed to range between 10~* and 10, which leads to
0.7 > /A > 1073. The typical grid sizes that were used
are: 1024 x 1024, 1024 x 2048, 1024 x 512. The mesh size
d has been adjusted to get a sufficient numerical precision
of the temperature solution in the case of a parallel plate
configuration where an analytical solution is known. The
numerical stability of the solutions has also been tested
against slight shifts of the mesh position on an over-
sampled self-affine aperture field: 2-n, x2-n, = 212 x 212,

z
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Figure 1: 2D sketch of the fracture model with parameter
definitions. x—axis is along the mean hydraulic flow, y-axis is
along the mean fracture plane but perpendicular to the main
hydraulic low and z—axis denotes the out-of mean fracture
plane direction. z = z; and z = 27 are the average positions
of the facing fracture surfaces. a(z,y) is the fracture aperture.
T, is the temperature of the solid, supposed to be homoge-
neous and constant, Ty is the fluid temperature at the inlet.
Fluid properties are: p, ¢, X, and 7 respectively density, heat
capacity, thermal diffusivity and dynamic viscosity.

and against the introduction of a lower cutoff I. of the
self-affine perturbations varying between the mesh size
and 10 times the mesh size: the dermined flow and tem-
perature fields were found to be independent of such
small scale modifications.

III. HYDRAULIC AND THERMAL FLOW
EQUATIONS

A. Hydraulic flow

We consider the steady flow of a Newtonian fluid at
low Reynolds number, so that the viscous term of the
Navier-Stokes equation dominates the inertial one. The
Navier-Stokes equation is therefore reduced to the Stokes
equation [51, 52

VP = nAw, (3)

where 7 is the dynamic viscosity, v the velocity of the
fluid and P the pressure deviation from the hydrostatic
profile (i.e. the hydraulic head which is equal to the
pressure corrected by the gravity effect). To be in the
framework of the lubrication approximation [37], besides
small Reynolds number, we also consider fractures with
flat enough sides as mentioned above (i.e. with small
local slopes). Therefore, fluid velocity vectors get negli-
gible z-components (normal to the mean fracture plane),
and accordingly the velocity field is dominated by in-
plane components. The unitary vector & is aligned with
the macroscopic imposed pressure gradient (see Fig. 1);
z1(x,y) and zo(x,y) are the bottom and top fracture co-
ordinates, with zo — z; = a. Under these approximations,
the pressure dependence is P (x,y) and the velocity v is
oriented along the unitary vector @ (z,y). By integrat-
ing the Stokes equation with the boundary conditions:



v (z1,2) = 0, we get a local parabolic law in z (Fig. 2)
[25]:

_ VZP(xa y)

v(z,y,2) = 21 (z—21) (2 — 22) (4)

where Vo = 536% +g,76% is the in-plane gradient operator.

z=a/2 ey

z=—-al2 e ".“

Figure 2: (Color online) Local velocity quadratic profile (short
dashed line) and temperature quartic profile (long dashed
line) inside a fracture (with coefficients from Egs. (9) and (4));
arbitrary abscissa units. Along the contact with the fracture,
v=0and T =T,.

Integrating Eq. (4) along z leads to express the hy-
draulic flow through the fracture thickness q as:

a3
- _ Y wr 5
q 129 Va (5)

Furthermore, we assume the fluid to be incompressible,
i.e. Vo -q = 0 which leads to the Reynolds equation [19]:

WV - (a*V2P) = 0. (6)

As boundary conditions of this equation (Fig. 3), we im-
pose the pressure at the inlet and outlet of the fracture
(ifx=0,P=P and if x =1,, P = P, with Py > Pp)
and consider impermeable sides (no mass exchange with
the rock matrix) at y =0 and y = [,,.

a/2 Iy ]
—a/2 N \& 3 P=P and T =T,
\ P:P/,andT:TI_

ZEAVP=0and T =T,

Figure 3: Fracture model with pressure and temperature
boundary conditions.

B. Thermal flow

In this work, we neglect the natural convection that
happens in fractured rocks when the fluid density is ther-
mally sensitive, as studied for instance by Bataille et al

[10]. Natural convection might happen within the thick-
ness of the fracture (owing to the temperature difference
between the fracture boundary and the core of the flow
along the gravity direction) and at large scale when the
fracture is non horizontal. For the sake of simplicity, we
consider that the forced fluid flow studied here is only
weakly affected by density changes. A quantitative crite-
rion of this assumption is given by the comparison of the
pressure differences AP forcing the flow and that gener-
ated by the temperature changes: AP > garpAT, with
g the gravity, ar the fluid coefficient of thermal expan-
sion, p the fluid density, and AT the temperature differ-
ences in the system. We also assume that the Prandtl
number of the fluid is sufficiently high for the flow to be
dominated by hydrodynamic effects rather than thermal
effects.

Since our focus is to understand how the macroscopic
mass and heat flows are affected by the fracture rough-
ness in the stationary limit, we do not consider time and
space variations of the temperature in the rock: the frac-
ture sides are assumed to be permanently hot at the fixed
temperature T).. This simplification is valid if we consider
either long time scales i.e. when the rock temperature
profiles stabilizes, or time scales shorter than that of the
hosting rock evolution. Taking the slow temperature evo-
lution of the hosting rock into account would require to
combine the present study with a non-stationary conduc-
tive heat solver for the rock which is beyond the scope of
this manuscript. In principle, to model these intermedi-
ate time scales, the macroscopic parameters controlling
the heat exchange determined in this manuscript could
be utilized in a hybrid model, coupling the heat diffusion-
advection in the fluid with the heat diffusion in the solid.

Local energy conservation implies that the fluid tem-
perature is controlled by the balance between thermal
convection and conduction inside the fluid which reads
as (heat source due to friction between fluid layers being
neglected)[53]:

v VT = xAT, (7)

where x is the thermal diffusivity of the fluid and T the
fluid temperature. We extend the lubrication approxima-
tion (c.f. T) by considering that the slopes of the fracture
morphology are small enough to provide a conduction
at the rock interface locally oriented along 2. This im-
plies that the out-of-plane conduction term is dominant
in front of the in-plane ones. Otherwise v,0T/0z can
be neglected in v - VT since out-of-plane velocity v, is
negligible. Accordingly the leading terms in Eq. (7) are
the conduction along 2 axis and the in-plane convection
terms, and this reduces to:

O*T v, 0T

FT _ v 0T v 0T
022 x Oz

x 0y’

(8)

For the boundary conditions, we assume that the fluid
temperature is equal to the rock temperature along the
fracture sides: T (z,y, z1,2) = T, and far from the frac-



ture inlet: T (x,y,2) — T;. The temperature of injec-
r— 00

tion at the inlet is Ty so that T (0,y, z) = Ty (for any y
and z). By assuming that 5 = ¢,0T/0x+ ¢,0T/0y is only
function of x and y, the following quartic expression of
T is solution of Eq. (8):

Bz, y)
2. a®-x

. (z - \/521) (z — \/522) (9)

For the particular case of symmetric apertures around
an average plane, i.e. where z; = —z9 = a/2, this reduces
toT = —3-3(2*/6 —a?2?/4+5a*/96) / (a® - x) + T;.
By uniqueness of the solution for given boundary con-
ditions (the problem is well-posed), this quartic law is
the only solution of Eq. (7). The temperature profile
along z is illustrated together with the velocity profile in
Fig. 2).

The energy conservation equation (Eq. (7)) is inte-
grated along the z-direction, through the thickness of the
fracture (as done for the hydraulic description), which
provides an in-plane description of the thermal balance.
First, we estimate the advected energy flux. For this, we
note ¢ the fluid specific heat capacity and Uy its internal
energy density at T' = Ty, and write the internal energy
density U as U = U+ pc (T — Tp). Integrating along the
fracture thickness ( i.e. along the z-axis), leads to the
internal energy flux per unit volume f (z,y) = [Uwvdz
which can be expressed as:

f@,y) = [Uo + pc (T — To)] q(z,y) (10)
where T is a weighted average temperature defined as:

_ 7fav(z,y,z)~T(z,y,z)dz
T(@y) = fa v(x,y,2)dz ’

with T(0,y) = To = Tp at the inlet. The heat source
coming the advected energy is then given by: —V5 - f.
Using the mass conservation equation, V, - ¢ = 0, leads
to:

T(x,y,2) =T, — (z—21) (2 — 22)

(11)

The advected energy flux balances the conductive flux
through the upper and lower fracture walls. To evalu-
ate the thermal conductive flow oriented along the out-
going normal to the fracture walls 7, the lubrication
approximation (c.f. I), leads to n ~ +2. Let ¢, be
the projection of the conductive flow along 7, evalu-
ated along the walls, at z; 2. The Fourier law provides
O = *XPC%_ZL:ZI , Z-n. Egs. (9) and (4) inserted in-
side Eq. (11), lead to 2T | =(T-T,) {2 27n. The
Nusselt number Nu = —¢,,/¢prey = 70/17 is used to char-
acterize the efficiency of the present heat exchange com-
pared to the reference heat flow ¢,y = xpc (T, — T) Ja,
which occurs in situations with only conduction.

Z=2z1,2

The energy net flux:
Vo f+2p, =0, (13)
can finally be expressed as:
q-V2T+2§Nu- (T-T,)=0. (14)

For the boundary conditions of the two-dimensional
field T, we assume that the fluid is injected at a constant
temperature T (0,y) = Ty colder than the rock and we
consider the length of the fracture to be long enough to
get the fluid at the same temperature as the rock at the
end of it: T (I,,y) = T;. On the contrary, temperature
settings along the boundaries y = 0 and y = [, are with-
out any influence, since the hydraulic flow is null there
(see TITA).

Let the reference case be a fracture modeled with
two parallel plates separated by a constant aperture
ay (i.e., no self-affine perturbation). In this case, the
gradient of pressure is constant all along the fracture,
as well as the hydraulic flow which is equal to q, =
—AP a3/ (12l;m) &, where the subscript / denotes re-
sults valid for parallel plates and AP = Py — Py. Under
these conditions Eq. (14) is invariant along y and can be
written as:

oy ([Ty-T) _
ox R// ’

(15)

where the thermal length R/ characterizes the distance
at which the fluid reaches the temperature of the sur-
rounding rock:

oyl ar g
R//72-Nu//-xi Iy 2477-Nu//-x’ (16)

with Nuj, = 70/17 ~ 4.12. Then the analytical solution
of Eq. (15) for parallel plates is:

_ T
T,)-T.=(To — Ty)exp (——) . (17)
/ R

For rough fractures, we aim at using Eq. (17) as a proxy

of the average temperature profile T along the flow and
defining an effective macroscopic thermal length R as:

Sl

T, = (Ty - T,) exp (f%) . (18)

C. Definition of microscopic and macroscopic
apertures

Different types of fracture apertures can be defined.
The most obvious one is the geometrical aperture but ef-
fective apertures like hydraulic or thermal aperture can



also be introduced. The latter are defined on the basis
of an inversion on a specific model like the parallel plate
model. For instance, the hydraulic aperture is deduced
from the knowledge of the fluid flow through the fracture
and it represents the aperture of a parallel plate model
that reproduces the observed fluid flow. Equivalently a
thermal aperture can be introduced as the aperture of
a parallel plate model that reproduces a similar thermal
profile. A spatial scale has to attached to define the hy-
draulic or thermal equivalent behavior in particular for
a multi-scale geometry. Since we aim at understanding
the upscaling of the fracture properties, we will introduce
two specific scales: the smallest one, i.e. the grid size of
the discretization and the largest one, i.e. the system
size. The smallest will be referred as the microscopic or
local scale and small letters will be used for their labeling
and the largest, as the macroscopic scale and described
with capital letters.

We already use the microscopic geometrical or mechan-
ical aperture a and its spatial average, i.e. the macro-
scopic geometrical aperture: A = (a(x,y))s,y-

The microscopic hydraulic aperture is defined as from
Eq. (5) [19, 54]:

13
12n

h=1lqll Tapl - (19)

T

It depends on the local hydraulic flow g, and can be
related to the local pressure gradient ||V P|| and local

aperture a as:
1/3
VP
o (132) " -

e

If the local pressure gradient ||V P]| is smaller than the
macroscopic gradient AP/l,, then h(z,y) < a(x,y),
which means that locally the hydraulic conductivity is
lower than expected from its local mechanical aperture.
The macroscopic hydraulic aperture H can also be de-
fined at the system scale from the average hydraulic flow

QI = <q : nz>z,y .

1/3
12n
lz

Macroscopic and microscopic hydraulic aperture are re-
lated, since H is actually proportional to the cubic root
of the third order moment of h: H = (h(z,y)3)y", which
is proportional to the first order moment of the hydraulic
flux, to power 1/3. If H/A > 1, then the fracture is more
permeable than parallel plates separated by a(z,y) = A.

The macroscopic thermal aperture is defined from a
1D temperature profile T'(z) along the forced pressure
gradient direction (see Eq. (18)) where the average tem-

perature is defined as:

el

()

_ fly Uy (‘T’ y) (‘T’ y) dy (22)

-T
S, e (2. y) dy
It is an average of T along the width of the frac-
ture I, weighted by the local fluid velocity u,(z,y) =
¢z (x,y)/a(z,y) which is the ratio of the a-component of
the local flux over the local fracture aperture. Then, by
fitting the parallel plate temperature solution (Eq. (18))

to the average temperature profile T(z), we get the
macroscopic thermal length R. In practice the fit is
computed from a least square minimization, for ab-
scissa from z = 0 to the minimum x value so that
‘(T —1T,)/ (To —T,)| <2-107%. The macroscopic ther-
mal aperture I' is then defined by analogy to the parallel
plate solution (Eq. (16)) as:

1/4
I = (—R-2477-Nu-x%) :A.(R*)l/4, (23)

where R* = R/R is the normalized thermal length. At
a coarse grained scale, the rough fracture is thermally
equivalent to parallel plates separated by the constant
aperture a(z,y) = I'. Indeed, both will exhibit the same
thermal length R under the same macroscopic pressure
gradient AP/l,.

The microscopic thermal aperture - can also be intro-
duced after defining a local thermal length r. Similarly
to the definition of a microscopic hydraulic aperture from
the local pressure gradient, or local flux, rather than the
macroscopic pressure difference, or macroscopic flux, we
estimate the local thermal length from a local tempera-
ture gradient rather than a large scale pressure difference.
Eq. (14) can be rewritten as:

q Vs (m [T*D+@:o (24)
with

_ alal

- 2
2 Nu-y (25)

which is an estimate of the gradient along § the local hy-
draulic flow direction. Finally, the local thermal aperture
~ can be defined by (consistently with Eq. (16)):

L\
v = (T'2477'N’U,'XA—1F,> (26)

A link between macroscopic and microscopic thermal
apertures can also be shown as follows: at first order, con-
sidering that the average of ||q|| is very close to the aver-
age of ¢, then the local length of reference would be equal

. 21
to 7 = — (am (T ) /890) . On the other hand, inte-
grating equation (18) between 0 and significant length

L, results in R = — Hln (T*(L)) —In (T*(O))} /L}il,



which shows the link between macroscopic and micro-

-1
scopic thermal apertures: R = L (fOL(—l/f)dx) , i.e.

-1
R= <r‘1>_1 o <(a ||q||)71> , according to Eq. (25).
For parallel plates, all microscopic apertures are equal
and also equal to the macroscopic ones: h = a = v =
H =T = A. For rough fractures, this is definitively
not the case since the local apertures vary spatially in-
side the fracture. We will see in the next section how all
these apertures are influenced by the roughness ampli-
tude of the fracture aperture, for which we will empha-
size on two main parameters: the normalized root mean
square deviation o/A of the geometrical aperture and the
aspect ratio of the fracture J = l,/l,, i.e. the ratio of
the downstream length of the fracture I, over its width

L.

D. Dimensionless quantities

Dimensionless positions, apertures, pressure, tempera-
ture and hydraulic flow are defined as follow:

o e Y
a3 YTy

* a *7H *7F

a = Z, H 714, I —A

. (P—P) I,

P = 27

2d AP’ (27)

e T-T,
T T, T

T = “Ap. a3

where d is the mesh size of the aperture grid. Other-
wise, we note that in the dimensionless temperature, the
difference between the injection temperature Ty and the
rock temperature 7, intervenes only as a factor of pro-
portionality.

IV. HYDRAULIC FLOW SIMULATIONS
A. Description of the pressure solver

The Reynolds and temperature equations (Eqs. (6)
and (14)) are numerically solved by using a finite dif-
ference scheme. The pressure P, the hydraulic flow q
and temperature T are discretized on a grid of n, x Ny
points with a mesh size of 2d i.e. half of the aperture grid
points. In the following, when indexes (i, j) are positive
integers, they refer to node positions where an aperture,
a pressure and a temperature are defined, on the contrary
of the non-integer node position (i 40.5 or j+0.5) where
only an aperture is defined.

The Reynolds equation (Eq. (6)) is discretized and
solved in the same way as by Méheust and Schmittbuhl

[20]: we use finite differences centered on a square mesh
of lattice step-size 2d, and the linear equation system is
inverted using an iterative biconjugate gradient method
[49]. The chosen pressure drop along the fracture length

is AP* = Py =Py =1-n; for 1 < j < ny. The
hydraulic flow g7 ; = q;jz,q;jy,o) is computed from

the pressure field, as:

*

e = —5 (P — Piay)
(Pl — Pija)

For a parallel plate configuration (i.e. modeling without
self-affine perturbation), ¢;; =1 and ¢; iy = 0 every-

*

qzajy

where in the fracture.

B. Example of a microscopic hydraulic aperture

field

An example of a fracture aperture is shown in Fig. 4a.
It is generated as explained in IT on a 1024 x 512 grid,
and has a RMS equal to /4 = 0.25. The hydraulic flow
computed inside this morphology is shown in Fig. 4b, as
well as the microscopic hydraulic apertures (Fig. 4¢). In
this case, the hydraulic flow exhibits a strong channeling
as previously described by Méheust and Schmittbuhl [20].
The microscopic hydraulic apertures can be observed not,
to be simply correlated to the aperture field.

The link between microscopic mechanical apertures
a and the microscopic hydraulic apertures h, is given
in Fig. 5, where the scale shows the corresponding oc-
currence probability of each local configuration. We
see that the normalized mechanical and hydraulic aper-
ture values are distributed around a characteristic point:
(h/A, <a>/A) = (1,1). Nevertheless, the correla-
tion between both apertures is not simple. Some of the
highest density values are located below and above the
straight line which represents h = a. Accordingly, the
permeability can locally be lower or higher than what is
given by an average Poiseuille law. The scattering around
the straight line shows that at one point, the local flow is
not, determined by the local mechanical aperture, but is
influenced by all the surrounding microscopic mechanical
apertures. From computations with other o, we notice
that the lower the roughness amplitude, the closer to
(1, 1) the cloud is.

C. Variability of the macroscopic hydraulic
aperture

The dimensionless macroscopic hydraulic aperture is
measured for our fracture example as H/A = 0.94 (or-
dinate of the cross in Fig. 5). H/A < 1 means that the
fracture permeability is reduced compared to the one of
parallel plates having the same mechanical aperture A,
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Figure 4: (Color online) a.: Self affine aperture with o/A =
0.25. b.: Dimensionless hydraulic flow norm computed with
the aperture of Fig. 4a., having for dimensionless hydraulic
aperture H* = 0.94. c.: Microscopic hydraulic apertures,
computed from the third root of the hydraulic flow shown in
Fig. 4b.
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Figure 5: (Color online) 2D histogram of the link between
the microscopic hydraulic aperture and the microscopic me-
chanical aperture for the fracture shown in Fig. 4 (the scale
indicates the probability in percents %); the cross has for co-
ordinates (H/A, <a> /A) = (0.94, 1). The straight line is
h = a, which is the equality given by a local Poiseuille law.
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Figure 6: (Color online) Macroscopic hydraulic aperture H/A
versus o/A for fractures with aspect ratio I, /l, = 2; Crosses:
Variation of the hydraulic aperture by increasing the rough-
ness amplitude o/A for the aperture shown in Fig. 4; Dots:
cloud of computed data (about 20000 aperture realizations);
Squares: Average hydraulic behavior with variability bars. On
average, H/A < 1: the permeability is smaller than expected
from the Poiseuille law in parallel plate apertures.

without any self-affine perturbation. For the same mor-
phology pattern (Fig. 4), we examine how the roughness
amplitude influences the macroscopic hydraulic aper-
ture by changing o/A (c.f. II). In Fig. 6 we see that
the macroscopic hydraulic aperture is close to 1 when
o/A = 0.05, which corresponds to a quasi flat aperture.
When the roughness amplitude increases, H decreases,
which means that this morphology pattern tends to in-
hibit the hydraulic flow and makes the fracture perme-
ability decrease.

For various realizations with the same ¢/A value, vari-
ous hydraulic behaviors may happen owing to the channel
variability in the hydraulic flow. In Fig. 6, we plot the
dimensionless macroscopic hydraulic apertures H/A ver-
sus o/A (for about 20000 computations with 1700 dif-
ferent fracture aperture patterns). Here, each fracture
has the same size as the fracture shown in Fig. 4 where
lz/ly = 2. We compute the mean hydraulic apertures in-
side windows of size 0.025 0/A and each plotted bar rep-
resents twice the standard deviation of H/A inside the
corresponding windows. We see that for most cases, the
permeability is reduced. For /A < 0.25, the hydraulic
aperture is still quite close to A and the dispersivity is
relatively small even if some configurations shows a flow
enhancement owing to the fracture roughness: H > A
[20]. Then, for higher RMS, the average of H/A decreases
significantly on average (up to 50%) with /A, but with
a higher variability of the results.



D. Influence of the fracture aspect ratio on the
hydraulic flow

To get a complete description, we now modify one ad-
ditional parameter: the aspect ratio of the fracture, by
changing the ratio of the fracture length over its width,
J =1 /l,. Figure 7 shows the same kind of average plots
of H/A as a function of /A but for three different as-
pect ratios: J = 2 (square symbols) which is the one
presented in Fig. 6, J = 1 (triangle) and J = 0.5 (disks).
Since less simulations were done for J = 1 and J = 2 (see
the legend of Fig. 7), few aperture show o/A > 0.45, and
therefore no average points is represented in these cases.
For square systems (J = 1) and downstream elongated
fracture (J > 1), H/A is on average smaller than one (i.e.
inhibiting hydraulic flow compare to the one through par-
allel plates separated by the same opening A), whereas
for systems wider perpendicularly to the pressure gradi-
ent direction, H/A is on average higher than one. A qual-
itative explanation might be that, it is statically more
likely to get a large scale connecting channel for a wide
and short fracture (J < 1) rather than for a thin and
long fracture (J > 1). In other words, qualitatively,
channels are rather in parallel in wide fractures, and in
series in long ones. For square systems which should be
isotropic and providing as many perpendicular and par-
allel channels, we see that when the roughness amplitude
increases, the hydraulic aperture get on average slightly
smaller than A. We can suspect that it would exist an
aspect ratio J;,, so that the hydraulic aperture is on av-
erage independent of the fracture roughness magnitude:
H/A =1 for any o/A. Following the model proposed be-
low in IVE, we get J;n, ~ 0.65+0.05 . For any J value,
we see that the higher the ratio /A, the higher the vari-
ability of the behaviors is, especially for square systems
which exhibit both high (H > A) and low (H < A) per-
meability for the same roughness magnitude.

E. Model of the average macroscopic hydraulic
aperture

One of the main questions we want to address here,
is the relationship between the macroscopic hydraulic
aperture H and the microscopic mechanical aperture
field a(z,y). The knowledge of the mechanical aper-
ture field a(x,y) provides us the following bounds for
H: (a=3)7! < H® < (a®) — the lower case correspond-
ing to a system of aperture fluctuations purely aligned in
series, and the upper one to fluctuations purely aligned
in parallel [55]. However, a (x,y) is rarely known and
subsequently (a=3)~! and (a®) are difficult to estimate.

From Fig. 7, 0/A and J appear to be important param-
eters controlling the macroscopic hydraulic aperture of
the fracture H. Ref [20] proposed a first model of the H
behavior as: H/A =1+« (%)". Here we similarly model
the average hydraulic aperture curves corresponding to
each aspect ratio (continuous curves in Fig. 7) and find
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Figure 7: (Color online) Macroscopic hydraulic aperture ver-
sus o/A, for three aspect ratios J = [, /l,. Averages computed
from data are shown with symbols, with error bars, corre-
sponding to plus or minus the standard deviation (see how
the average is computed in IVC). J = [,/l, = 2 shows an
enhanced flow (same data as presented in Fig. 6); J = 1
shows on average a slightly inhibited flow, i.e. H < A (com-
puted from a cloud of about 1300 points); for J = 0.5,
on average, higher permeability is observed (computed from
a cloud of about 900 points). Continuous curves are fit-
ting models (1) H/A = 1+ a(%)", with parameters (x, c)
equal to (2.05, —1.46), (1.57, —0.31), (2.69, 0.67) respectively
for J equal to 2, 1 and 0.5. Dotted curves are obtained
with fitting models (2) H/A =1 — p[log,(J) + 6] (£)", with
(1,0, k) = (0.98, 0.59, 2.16), for the three curves.

(K, ) successively equal to (2.05,—1.46), (1.57,—0.31),
(2.69,0.67) respectively for J equal to 2, 1, 0.5. Depend-
ing on the sign of o, we get either a permeability lower or
higher than that expected with flat plates. Then we fit
these three behaviors by a more general model which in-
cludes the aspect ratio variation, with three parameters
(1, 6, K) to be optimized: H/A = 1—p[logy(J) + 4] (%)".
With (u,d,x) = (0.98,0.59,2.16), we get the three dot-
ted lines in Fig. 7 which are acceptable fits of the aver-
age trend. However it has to be highlighted that the real
hydraulic aperture of a specific surface is possibly very
different from this average value (see size of variability
bars in Fig. 7), especially at high o/A.

Other models for numerical or experimental hydraulic
apertures have been proposed in the literature [19], as
(H/A)> = 1 — Crexp(—CyA/o) or (H/A)® = 1/[1 +
C5 (2A4/0)"?], where Cy_5 are constants but the shape
of these functions does not fit well our averaged points,
and these fits are not represented here.



V. THERMAL FLOW SIMULATIONS
A. Description of the temperature solver

The temperature equation (Eq. (14)) is discretized as:

@ (TiJrl,j - Tiq,j) + q;'k,jy (Ti,jJrl - Tz‘,jq)
T,

Ry ai;

where (i,5) € [[2,n, — 1|] x [|2,n, — 1]] and R/ is the

thermal length expected by neglecting the roughness am-

plitude (see Eq. 16). The boundary conditions are:

1<j<ny, Ti;=1 and T, ;=0

2<i<n,—1, T, ;=0and T, ;=0

The system is solved in the same way as the pressure
system (IV A). Two limiting numerical factors intervene
for the efficiency of the discretization scheme: the mesh
step d has to be sufficiently small to capture with a suf-
ficient accuracy the relative variations of T — T} over
a lattice step. In practice, the mesh step used in this
manuscript is chosen as d = R/ /50. We checked that di-
viding this mesh size by 2 did not change significantly the
computed temperature field. The second numerical limit
is that the system size [,, has to be larger than 20- R, to
avoid a possible numerical instability (mostly with the
aperture grid size 1024 x 2048 which is more likely to
exhibit a longer thermal length, as explained in VE). If
not, the fluid passing the fracture is so slowly warmed up
that the condition T;J = 0 at the outlet badly repre-
sents the condition imposed in principle at infinity in the
channel, and this boundary condition imposed at a phys-
ically too short distance from the inlet cannot be fulfilled
without numerical artifact. To face this problem in such
rare situations, we duplicate the aperture grid to get a
longer system length and impose the same macroscopic
pressure gradient, and the rock temperature at the new
end: T;nm’j =0.

B. Example of a local microscopic temperature

field

For a nearly constant aperture (¢/A = 0.05), we numer-
ically obtain a temperature law close to an exponential
downstream profile (Fig. 8), as we expect from Eq. (17).

The 2D temperature field shown in Fig. 9a (o/A4 = 0.25)
is computed from the aperture and its previously com-
puted hydraulic flow field, shown in Fig. 4b. It can be
observed that the fluid is getting inhomogeneously warm,
with channelized features. The thermal channel begins
in a zone where the hydraulic flow coming from the inlet
converges (Fig. 4b). The local normalized thermal aper-
ture 7/A (map shown in Fig. 9b) exhibits less pronounced
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Figure 8: (Color online)— In (T*), opposite of the logarithm

of the temperature field T~ computed from the aperture mor-
phology pattern shown in Fig. 4 with a very low roughness
amplitude: o/A = 0.05. The hydraulic aperture of this frac-
ture is H/A = 0.99. The temperature field exhibits a nor-
malized thermal length equal to R* = 0.97 and a thermal
aperture of I'/A = 0.99.
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Figure 9: (Color online)a.: —In (T*>, opposite of the loga-
rithm of the 2D temperature field, computed from the aper-
tures in Fig. 4a (0/A = 0.25). b.: Normalized local thermal
aperture /A associated with the temperature field shown in
Fig. 9a.

channel effect than in Fig. 9a. Figure 10 is the plot of the
local microscopic thermal apertures v/A versus the local
apertures a/A, using a shading showing the occurence
density in the (v/A, a/A) space. The dispersivity of the
cloud around the line v = a shows that there is no sim-
ple link between the local aperture and the thermal one.
A similar plot (Fig. 11) allows to observe the correlation
between the local microscopic thermal apertures and the
local microscopic hydraulic apertures. It shows a good
correlation of the local thermal aperture and the local
hydraulic aperture (i.e. the cloud is close to the straight
line v = h). Note that it is more probable (59%) to
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Figure 10: (Color online) 2D histogram in percents of the
fracture shown in Fig. 4 as a function of the local thermal
aperture v and local aperture a (the shading indicates the
probability density). The straight line is v = a. The dis-
persivity of the cloud around the line shows that there is no
simple link between the local aperture and the thermal one.

have v > h, which corresponds to a heat exchange lo-
cally less efficient than what is expected from a parallel
plate model which is equivalent in permeability.

0.2 (%)
0.15
0.1
0.05
0
0.4 0.6 0.8 1 1.2
h/A

Figure 11: (Color online) 2D Histogram in percents of the
fracture shown in Fig. 4 as a function of the local thermal
aperture 7 and local hydraulic aperture h (the scale indicates
the probability in percents %). The straight line is v = h;
the localization of the cloud around the line shows a good
correlation between v and h.

C. Variability of the macroscopic thermal aperture

The average temperature T (see definition in Eq. (22))
is a semi local property which shows how the thermal
behavior evolves on average along the pressure gradient
direction. The shape of T'(z) (Fig. 12) is close to an ex-
ponential law, but with a thermal length R slightly dif-
ferent from the fracture without self-affine perturbation
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(i.e. parallel plates). This thermal length is computed
from the slope of the linear regression of In (T(m)) (see

in IIIC). In the example displayed in Fig. 12, the ther-
mal length is Rj/ = 1.09, which results in an equivalent
thermal aperture of I'* = 1.02.
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Figure 12: (Color online) Continuous curve: — In (?*), oppo-
site of the logarithm of the temperature field computed from
the temperature field 7" shown in Fig. 9. Dash-dotted curve:
Linear fit of curve A (from z/d = 0 to x/d = 772), which

provides the thermal length:—In (T*) = x/1.09 + 0.6, i.e.

R* = 1.09. Dashed curve: —In (%//*> opposite of the loga-
rithm of the temperature law for the same fracture modeled

without self-affinity perturbation (i.e. parallel plates), which
has for thermal length 1), = 1.

In figure 13, the crosses illustrate the roughness ampli-
tude influence on the thermal aperture for the morphol-
ogy pattern shown in Fig. 4a, whose relief is amplified by
changing o value (see in II). For this example, I vs o is
not monotonic. The dimensionless thermal length is close
to 1 when /A = 0.05, which corresponds to a quasi flat
aperture. When the roughness amplitude is big enough
(o > 0.1), T increases with o and is higher than one,
which means that this morphology pattern tends to in-
hibit the thermal exchange. In Fig. 14, the crosses show
the thermal aperture versus H/A using the same data as
for the plots shown by crosses in Figs. 13 and 6.

D. Variability of the thermal behavior

Statistical thermal results are computed for numer-
ous cases (more than 20000) whose macroscopic hy-
draulic apertures are presented in IV C for various o/A
values. Similarly, a normalized average macroscopic ther-
mal aperture, I'/A, and its standard deviation is obtained
as function of ¢/A. The resulting I'/A for the aspect ratio
J = 2 is displayed in Fig. 13, with bars representing the
double of the standard deviation. For the same normal-
ized roughness amplitude o/A, various thermal behaviors
may happen, especially for o/A > 0.25, with channels ap-
pearing or not and dimensionless thermal lengths higher
or lower than one. At first order, both the macroscopic
thermal (Fig. 13, triangles) and hydraulic average aper-
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Figure 13: (Color online) Crosses: Variation of the thermal
aperture I'/A by increasing the roughness amplitude o/A for
the aperture pattern shown in Fig. 4; Dots: Cloud of com-
puted data (about 20 000 points) for fractures with aspect ra-
tio Iz /l, = 2; Triangles: Average thermal behavior with vari-
ability bars of the cloud; Squares: Average hydraulic aperture
H/A versus o/A, recalled here for comparison.
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Figure 14: (Color online) Normalized thermal aperture I'/A
versus H/A for fractures with aspect ratio .. /l, = 2. Crosses:
Variation of the thermal aperture by increasing the rough-
ness amplitude for the aperture pattern shown in Fig. 4a
versus H/A; Dots: Cloud of computed data (about 20000
points); Squares: Average thermal behavior with variability
bars. Continuous curve: I'/A = H/A, which holds for parallel
plates separates by a(x,y) = H.

tures (Fig. 13, square symbols) are decreasing as func-
tions of o. This trend is significantly more pronounced
for H than for I'. The thermal results are compared
with systems equivalent in permeability (same normal-
ized hydraulic aperture) in Fig. 14 which represents the
normalized thermal aperture versus the hydraulic aper-
ture with the average points computed inside windows of
size 0.05 H/A. The most striking result is that roughness
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inhibits thermalization: nearly all the cloud is above the
continuous curve I' = H, which means that the thermal-
ization of the fluid (thermalization is obtained when the
fluid temperature reaches the rock one) is inhibited com-
pared to what we expect from the hydraulic behavior. In
the same time, we note that, on average, [/A < 1, i.e.
most of the apertures exhibit an enhanced thermalization
compared to what would be expected with a model of flat
fractures separated by A, i.e. having the same geometric
(or mechanical) aperture.

E. Influence of the fracture aspect ratio on the
thermal behavior

Lol [=572

15 |X/|y:l

Ll o705 *
1
B

LT

e

o THH}

0 0.2 0.4 0.6
alA

e i

Figure 15: (Color online) Averages of the normalized thermal
aperture I'/A and their deviation bars versus o/A for various
aspect ratios J = l,/ly, as indicated by the labels. See how
the average is computed in IV C.
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Figure 16: (Color online) Averages of the normalized thermal
aperture I'/A and their deviation bars versus H/A for various
aspect ratios J = [ /l,, as indicated by the labels (see how the
average is computed in IV C). Models lines are I' = 0.9H +
0.2Afor H < Aand " = 3.5H—2.4A for H > A; no continuity
condition between both lines is imposed.

We complete our study by computing the averaged
thermal apertures for two other aspect ratios, J, by us-



ing the hydraulic flows computed in IVD. The aver-
aged values of the thermal apertures, with the variabil-
ity bars (defined similarly to what is done in VD) for
J € {0.5,1,2} are plotted in figs. 15 and 16. When T/A
is plotted as a function of o/A (Fig. 15), various ther-
mal behaviors are observed, according to the aspect ra-
tio, with high variability, particularly when o/4 > 0.25.
On the contrary to fractures with aspect ratio equal to
J =2 (described in VD) the ones with J in {0.5,1} are
more likely to inhibit the thermalization compared to flat
fractures with the same mechanical aperture (I'/A > 1).

Figure 16 shows the average of I'/A versus H/A. Con-
trarily to what can be observed for T/A vs o/A (Fig. 15),
the average curves I'/A vs H/A are roughly independent
on the aspect ratio. This shows that the hydraulic aper-
ture is a better parameter than the roughness o/A to as-
sess the thermal properties. The thermal aperture is sys-
tematically larger than the hydraulic aperture (I" > H).
It means that once the permeability known, e.g. by
pumping tests, using a parallel plate model separated by
H for estimating the thermal behavior overestimates the
efficiency of the heat exchange: the fluid needs indeed a
longer distance to be thermalized than expected from flat
fractures with the same permeability. On average I'/A vs
H/A is monotonic (Fig. 16), i.e. this average dependence
displays a simpler behavior than for a particular case of
morphology of varying amplitude (e.g. Fig. 14, crosses).

Going more into details, Fig. 16 also shows that for
H/A > 1, the slope of T" vs H is steeper than for H/A < 1;
both parts of the curve can be modelled with straight line
fits (dotted and dot-dashed curves). This could be inter-
preted as follows: fractures with high hydraulic apertures
provide high velocities so that fluid particles need to go
further to reach the rock temperature. Fractures with
small hydraulic apertures H/A < 1 might be dominated
by small mechanical apertures (fences) providing small
velocities, which leads to thermal apertures closer to the
line' = H.

VI. DISCUSSION AND CONCLUSION
A. Model limits and possible extension

Despite the hydraulic lubrication hypothesis which im-
plies notably a low Reynolds number, the fluid veloc-
ity should not be too small. Indeed, the velocity drives
the in-plane thermal convection, which is supposed to be
large compared to the in-plane thermal conduction. This
can be quantified by the Péclet number (ratio between
the characteristic time of diffusion and advection): our
model is valid at low in-plane Péclet number. Therefore,
owing to in-plane conduction, the thermal channeling ef-
fect might be reduced especially in case of high temper-
ature contrast along the channel and very low hydraulic
flow. This homogenization might be reinforced if the fluid
temperature is still inhomogeneous but very close to the
rock temperature: in this case the in-plane conduction
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inside the fluid might be as high as the conduction be-
tween rock and fluid. Free convection (temperature de-
pendence of p), which is not taken into account here, may
also intervene, especially for thick fractures [56].

In practice, some 3D effects might happen as the lubri-
cation approximation is not necessarily respected owing
to the rock morphology, (e.g. [23, 24]). In natural cases,
the roughness amplitude o /A covers a large range accross
the natural cases, from small to large values according to
the type of rock and fractures. For instance, we recently
measured the roughness amplitude of natural fractures in
black marl at borehole scale, and we obtained values of
0/A < 0.04 for one and o/A = 0.3 for another one [22].
Some other values, typically o/A > 0.4, have also been
reported for instance in granitic rocks [57, 58]. If the
cases with large roughness amplitudes also correspond to
large local slopes (angle between the fracture side and
the average plane), it is likely that the Reynolds equa-
tion and 2D temperature equation does not apply so well
to these cases, and that the results reported here are only
approximate for those.

When the fracture morphology is highly developed,
due to more surface exchange, the rock might locally pro-
vide better heat exchange. The assumption of averaging
thermal phenomena in 2D has been studied e.g. by Volik
or Sangare et al. [59, 60], who considered only conduc-
tion. The 3D solving of the full Navier-Stokes and heat
advection-diffusion equations is also possible, for example
with a coupled lattice-Boltzmann method [61]. However,
considering the complexity of fracture morphology from
very small scales to large ones requires heavy computa-
tions, which makes statistical results difficult to obtain.
When convection also acts, 3D effects lead to zones de-
coupled from the main mass and heat flux, as the fluid
might be blocked into eddies (off lubrication regime) pro-
voked by sharp morphologies [23, 29-32| (like Moffatt
eddies [62]). It has indeed to be noticed that even when
low pressure gradient is imposed, turbulent flow might be
observed due to high roughness amplitude. This effect is
complementary to observations made at high Reynolds
number [63-66], when even a very low roughness ampli-
tude of the wall induces turbulent flow.

All the results about the thermal aperture may also be
influenced by the thermal boundary conditions. In par-
ticular we have assumed that T is constant. Spatial vari-
ations of 7). can easily be taken into account by changing
the boundary conditions of the thermal equation while
temporal variations require to model the rock getting
colder in the surrounding (consequences of the rock diffu-
sivity). In time, the hypothesis of constant temperature
T, holds either for very short durations when the regime
is transitory, or for longer durations, at quasi-stationary
regime, when the rock temperature evolves very slowly
and the fluid temperature adapts fast. This is the case if
the solid is much more thermally diffusive than the fluid,
which is quite true in our case: for instance, the ratio
of the granite thermal diffusivity over the water one is
5.9. We could check the time evolution by using another



numerical approach based on lattice Boltzmann methods
[61], which allows to solve both the rock and fluid tem-
perature and takes into account the contrast of thermal
diffusivity. For a fracture with an aperture of a few mil-
limeters, T, can be considered as constant at transitory
regime for durations much less than 1 minute. Conversely
it also holds for longer durations after a quasi-stationary
regime is reached, which can happen after minutes or
years, according to the properties of the system (e.g. dis-
tance to the heat source and injection point). Time vari-
ation of T, can also be taken into account by coupling our
model to a thermal diffusion model in the rock, using al-
ternately both models in time. Similarly, it is possible
to couple our code to another one modeling the change
of the geometry of the fracture (e.g. because of stress or
chemical reactions).

B. Conclusion

We have proposed a model of thermal exchange be-
tween a Newtonian fluid and a hot rock, inside a rough
fracture under a given pressure gradient. The flow con-
sidered was assumed to be at low Reynolds number, in
laminar regime, so that Stokes equation and lubrication
approximations hold for the mass flow equations and for
the temperature advection in the heat transport equa-
tion. We have then set from basic principles the mass
and heat transport equations, expressed them in a 2D
form, discretized them by finite differences and solved the
resulting systems by biconjugate gradient methods. The
whole numerical scheme can be used with any variable
aperture field without contact (for instance, obtained
from real rock surfaces). Here, apertures have been cho-
sen to be numerically generated, in order to get statis-
tically significant results over more than 20000 realiza-
tions. The aperture fields are modeled as many natural
ones, namely as self-affine with a Hurst exponent of 0.8,
with various ratio of the aperture fluctuations over the
average aperture, and three different aspect ratios of the
fracture. The hydraulic and thermal behavior are quan-
tified with both local and macroscopic apertures: h, v,
and H, T.

The plot of H as function of 0/A exhibits some trends
according to the aspect ratio and we have been able
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to find model curves. However, around these model
curves, the hydraulic behavior is very variable and there-
fore, knowing the roughness amplitude, o/A, these model
curves may not be reliably combined with a model of an-
other phenomenon dominated by the hydraulic aperture,
such as the thermal exchange. The macroscopic thermal
aperture I vs the roughness amplitude is also highly vari-
able, despite trends that are visible on average according
to the aspect ratio. The fracture, taking into account its
roughness, is either less or more permeable than model
of flat parallel plates with the same mechanical aperture.

At local and macroscopic scales, hydraulic apertures
are badly correlated with mechanical apertures. On the
contrary, hydraulic apertures are highly correlated with
thermal apertures, showing that that the thermal behav-
ior is mostly determined by the hydraulic one for rough
fractures. Compared to flat fractures with equivalent per-
meability, for a rough aperture, the fluid almost system-
atically needs a longer distance to reach the temperature
rock (I' > H): the heat exchange is less efficient. A
practical implication of this general result is that when
fracture aperture is assessed on the field based on hy-
draulic transmissivity measurement, obtained e.g. by
pumping tests, the efficiency of the thermal exchange as-
sessed from flat fracture models is systematically overes-
timated. Using the laws I' = 0.9H + 0.2A if H < A and
I' = 35H — 24A for H > A (Fig. 16) should allow to
correct this overestimation.

Another important result is that the derived tem-
perature in rough channels, when averaged, behaves ac-
cording to the solution of the macroscopic equation that
would be used for flat apertures, Eq. (14). The local
roughness of the fracture can therefore be coarse-grained.
Doing so, the structure of Eq. (14) is kept; it is sim-
ply necessary to adjust both the hydraulic transmissivity
and the thermal length (or the Nusselt number). For
instance, this coarse-grained approach based on parallel
plates laws with adjusted Nusselt numbers can be used
for hydraulic and thermal models of fracture network.
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