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To be published in Physi
al Review E, 2010Hydro-thermal 
oupling in a self-a�ne rough fra
tureA. Neuville 1,2,∗ R. Toussaint 1,2, and J. S
hmittbuhl 1,21 EOST, Université de Strasbourg, Fran
e and2 Institut de Physique du Globe de Strasbourg, UMR CNRS ULP 7516,5 rue René Des
artes, 67084, Strasbourg Cedex, Fran
eThe in�uen
e of the multi-s
ale fra
ture roughness on the heat ex
hange when a 
old �uid entersa fra
tured hot solid is studied numeri
ally on the basis of the Stokes equation and in the limitof both hydro- and thermo- lubri
ations. The geometri
al 
omplexity of the fra
ture aperture ismodeled by small self-a�ne perturbations added to a uniform aperture �eld. Thermal and hydrauli
properties are 
hara
terized via the de�nition of hydrauli
 and thermal apertures both at mi
ro andma
ros
opi
 s
ales and obtained by 
omparing the �uxes to the ones of �at fra
tures. Statisti
sover a large number of fra
ture 
on�gurations provide an estimate of the average behavior andits variability. We show that the long range 
orrelations of the fra
ture roughness indu
es strong
hannelling e�e
ts that signi�
antly in�uen
e the hydrauli
 and thermal properties. An importantparameter is the aspe
t ratio (length over width) of the fra
ture: we show for example that adownstream elongated rough fra
ture is more likely to inhibit the hydrauli
 �ow and subsequentlyto enhan
e the thermal ex
hange. Fra
ture roughness might, in the opposite 
on�guration, favorstrong 
hanneling whi
h inhibits heating of the �uid. The thermal behavior is in general shown tobe mainly dependent on the hydrauli
 one, whi
h is expressed through a simple law.PACS numbers: 47.56.+r 44.05.+e 47.11.B
 44.30.+vI. INTRODUCTIONAmong situations where heat ex
hange between a pass-ing �uid and a fra
tured medium is of 
entral impor-tan
e, geothermy is an intensively developing �eld. DeepEnhan
ed Geothermal Systems (EGS) are based on theenergy extra
tion obtained when a 
old �uid is inje
tedfrom the surfa
e inside a hot fra
tured massif at depthand extra
ted after 
ir
ulation in the open fra
tures pos-sibly arti�
ially 
reated from an hydrauli
 or 
hemi
alstimulation (e.g. the EGS pilot plant in Soultz-sous-Forêts, Fran
e [1�4℄).The e�
ien
y of the heat ex
hange depends on thebalan
e between 
ondu
tive and 
onve
tive heat �uxes.The former is mainly dependent on the geometry of ea
hindividual interfa
e, i.e. fa
ing fra
ture surfa
es, but thelater is de�nitively related to the hydrauli
 propertiesof the fra
ture network whi
h results from the network
onne
tivity and the fra
ture permeability.Hydrauli
 
ondu
tivity of fra
tured ro
ks have been in-tensively studied for di�erent motivations. For instan
e,the hydrauli
 properties of the 
rystalline aquifer of Ploe-meur, Fran
e, has been studied by Le Borgne et al (2004)[5℄ to address water supply issues. Another example isthe mitigation of radionu
lide migration whi
h has beenfore
asted in the 
ase of the repository site for nu
learwastes storage in Äspö, Sweden on the basis of a dis-
rete fra
ture network [6℄. The modeling of the transportproperties of fra
ture networks is a
tually a very a
tive
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resear
h area. A 
lassi
al approa
h is to model the �owpaths via parallel intera
ting �at fra
tures [7℄. More ad-van
ed studies address the e�e
ts of the 
onne
tivity and
orrelations of the fra
tures (e.g. in Refs [8, 9℄).In many models of hydrauli
 or hydro-thermal �ow de-veloped so far, the geometry of ea
h fra
ture of the net-work is nevertheless 
onsidered as simple, e.g. as parallelplates with a simple geometry of the edge as an ellipse ora polyhedron. This is the 
ase in most fra
ture networkmodels used for geothermal [10℄ or for �uid transport ap-pli
ations [8, 9℄. The non-trivial 
hara
ter of the fra
tureaperture geometry is however very likely to in�uen
e thefra
ture �ow given their 
omplex real geometry. Mostnatural fra
ture surfa
es are indeed self-a�ne obje
ts.Surprisingly, the 
omplexity of the multi s
ale propertiesof the fra
tures has some remarkable simpli
ity, in thesense that their Hurst exponent is very robustly around0.8 [11℄. Ex
eptions however exist like for fra
tures insandstones where the Hurst exponent is 0.5 [12, 13℄, orin glassy 
erami
s whi
h show an exponent 
lose to 0.4[14℄.The aperture between fra
ture surfa
es is subsequentlyfar from �at in parti
ular if fa
ing fra
ture surfa
es areun
orrelated, at least at small s
ales [15, 16℄. A roughself-a�ne aperture is indeed de�ned between two un
or-related self-a�ne fra
ture surfa
es, or between two iden-ti
al self-a�ne fra
tures translated tangentially to theiraverage plane by a translation larger than the s
ale un-der study. Self-a�ne apertures have been shown to beresponsible for tortuous �ow path. The related 
han-neling of the �uid �ow was experimentally observed inrough fra
tures [17, 18℄ and modeled using lubri
ationapproximation with Reynolds equation (e.g. [13, 19�



222℄). The appli
ability of su
h an approximation hasbeen studied, e.g. in Refs [23�25℄. Extension of this sit-uation was 
onsidered for example by Plouraboué et al[26℄ where the Reynolds equation is 
oupled to the 
hem-i
al 
onve
tion-di�usion study. More advan
ed hydrauli
simulations in
luding the solving of the Navier-Stokesequation have been proposed either 
onsidering simpli-�ed geometry [23, 27℄ or more re
ently within a realisti
fra
ture geometry [28�32℄. However, these re
ent sim-ulations require heavy 
omputations (although di�erentmethods are available) and are therefore not fully 
om-patible with statisti
al approa
hes where a large numberof realizations is ne
essary.Beyond the problem of mass �ow in rough fra
tures,di�erent kinds of numeri
al simulations have alreadybeen proposed to a

ount for hydro-thermal 
oupling. Asa �rst approa
h, analyti
al solutions have been obtainedto 
ompute the heat �ux along parallel 
ir
ular 
ra
ksembedded in a 3D in�nite medium using simpli�ed heatequations [33℄. At large s
ale and for long term predi
-tions, models like that of Bataillé et al. [10℄ have beenproposed to predi
t the response of geothermal reservoirs.This type of �nite-element model in
ludes 
ondu
tion,free and for
ed 
onve
tion, but redu
es the geometry ofthe hydrauli
 network to a double permeability distribu-tion to a

ount for both matrix and fra
ture transport.A variety of more 
omplex models have also been pro-posed like the modeling of a 3D network of fra
tures orga-nized a

ording to geologi
al observations and 
ompletedwith sto
hasti
 fra
tures for underdetermined parts ofthe model [34℄, or that for Soultz-sous-Forêts, Fran
e, byRa
hez et al [35℄ or that of Kolditz and Clauser [36℄ forRosemanowes, UK.In the present study, we fo
us on the hydro-thermal
oupling at the fra
ture s
ale where the 
hanneling ef-fe
t is expe
ted to a�e
t not only the �uid transportproperties, but also the heat �ux properties, as suggestedby Kolditz and Clauser [36℄ who proposed that the dis-
repan
y between 
lassi
al heat model predi
tions andreal observations 
ould be due to �ow 
hanneling result-ing from fra
ture roughness. We aim at obtaining fromthe mi
ros
opi
 analysis of the �ow at s
ales of the fra
-ture asperities, the ma
ros
opi
 parameters (i.e. the hy-drauli
 transmissivity and the 
hara
teristi
 thermaliza-tion length) that govern the e�
ien
y of the �uid massand heat transport through the overall fra
ture. Thiswill allow to 
oarse grain the des
ription of the e�e
t ofmi
ros
opi
 asperities, i.e. the fra
ture roughness, onthe hydrauli
 and thermal behavior in large s
ale net-work models as the ones mentioned above. The ups
al-ing from the mi
ros
opi
 asperity s
ale to the fra
tures
ale is done via a systemati
 statisti
al analysis of thema
ros
opi
 �ow parameters, for a large set of sto
hasti
syntheti
 fra
ture surfa
es, des
ribed with a few key pa-rameters for su
h apertures: average aperture, standarddeviation. The ma
ros
opi
 parameters obtained afterthe ups
aling redu
e to two: the hydrauli
 transmissiv-ity, 
hara
terizing the �uid mass transport, and the other

one 
hara
terizing the e�
ien
y of the heat ex
hange be-tween the ro
k and the �uid. This ex
hange is expressedvia the 
hara
teristi
 length R in a ma
ros
opi
 law oftype
(q/ ‖q‖) · ∇2T − (T − Tr)/R = 0 (1)with T a �uid temperature, Tr the temperature in thesurrounding ro
k, q the �uid �ux integrated over thefra
ture thi
kness, and ∇2 the two dimensional gradientoperator along the fra
ture plane. The hydro-thermalmodeling is performed as in [3℄. The present study isin the framework of the lubri
ation approximation [37℄whi
h implies that the Reynolds number is small andthat the fra
ture walls are lo
ally �at enough to providea mainly in-plane velo
ity �eld, with a negligible 
om-ponent normal to the mean fra
ture plane. We proposeto extend the lubri
ation approximation to the thermal�uxes. By balan
ing heat 
ondu
tion and for
ed 
onve
-tion we obtain a tri-dimensional (3D) temperature lawwhi
h will then be redu
ed to a 2D temperature equa-tion by averaging it along the thi
kness of the fra
ture asproposed e.g. by Tur
otte and S
hubert [38℄.Se
tion II des
ribes our geometri
al model of the fra
-ture aperture based on a self-a�ne s
aling invarian
e. InSe
tion III, using lubri
ation approximations, we obtainthe bidimensional pressure and thermal equations whena 
old �uid is inje
ted through a fra
ture in a station-ary regime. As a �rst step, the temperature within thesurrounding ro
k is supposed to be hot and 
onstant (intime and spa
e), and the density of the �uid is 
onsideredas 
onstant. We show that at a 
oarse grained s
ale, thetwo dimensional (2D) equation for heat �ux is identi
alto the one for parallel plates, Eq. (1), but with a 
hara
-teristi
 thermalization length asso
iated to an aperture(named thermal aperture), di�erent from the geometri
alaperture (also often labeled as the me
hani
al aperture).Other relevant quantities are de�ned to des
ribe the hy-drauli
 and thermal behaviors at lo
al and ma
ros
opi
s
ales. The numeri
al approa
h is des
ribed in detailsin Se
tion IV. Equations are dis
retized using a �nitedi�eren
e s
heme and solved with a bi
onjugate gradientmethod. The numeri
al hydrauli
 and thermal resultsare respe
tively set out in IV and V. In ea
h of thesese
tions, we �rst des
ribe the results for a given fra
turemorphology (lo
ally and ma
ros
opi
ally), then averagedtrends of ma
ros
opi
 parameters that are observed sta-tisti
ally from large sets of syntheti
 fra
tures.II. DESCRIPTION OF THE ROUGHNESS OFTHE FRACTURE APERTUREThe roughness of a self-a�ne surfa
e is statisti
ally in-variant upon an isotropi
 s
aling within its mean plane

(x, y) while on the perpendi
ular dire
tion z, the s
alingis anisotropi
. Indeed, it is statisti
ally invariant underthe s
aling transformation x → λx, y → λy, ∆z → λζz[39�41℄, where ζ is 
alled roughness exponent or Hurst



3exponent. A self-a�ne geometri
al model has been ex-perimentally shown to be a realisti
 des
ription of nat-ural ro
k surfa
es [11, 16, 42, 43℄, with Hurst exponentequal at large s
ale to ζ ≃ 0.8 for many kinds of natu-ral fra
tures and material surfa
es [42�45℄ and ζ ≃ 0.5for sandstones [46, 47℄. It is important to note that aself-a�ne surfa
e having a roughness exponent smallerthan one is asymptoti
ally �at at large s
ales [48℄. A
-
ordingly, a self-a�ne topography 
an be seen as a per-turbation of a �at interfa
e. On the other end of thes
ales, the lo
al slope of a self-a�ne surfa
e diverges atsmall s
ales, and the maximum slope of su
h surfa
e isdetermined by the lower 
uto� of the self-a�ne behavior- 
orresponding e.g. to granular diameter when present.In prin
iple, modeling a �ow boundary 
ondition alongsu
h surfa
e requires to 
he
k that the ma
ros
opi
allyobtained result does not depend on su
h lower 
uto�.The aperture is the spa
e between the fa
ing fra
turesurfa
es. Our study is limited to the 
ase where two non
orrelated fra
ture surfa
es with the same roughness ex-ponents are fa
ing ea
h other. Subsequently the aperture
a(x, y) is also a self-a�ne fun
tion with the same Hurstexponent whi
h ful�lls the following property [39, 40℄:

λζPr(λζ∆a, [λ∆x, λ∆y]) = Pr(∆a, [∆x, ∆y]) (2)where Pr(∆a, [∆x, ∆y]) is the probability to get an aper-ture di�eren
e ∆a between two points separated by thedistan
e [∆x, ∆y], λ is an arbitrary s
aling fa
tor and ζthe roughness exponent.The self-a�ne aperture �eld is numeri
ally obtainedby �rst generating a white noise ǫ(x, y) [49℄ on a grid ofsize 2 ·nx×2 ·ny with a square mesh-size d. Then the sta-tisti
al spatial 
orrelations are introdu
ed by multiplyingthe 2D Fourier transform of the white noise ǫ̃ (kx, ky) by
‖k‖ (−1−ζ) [50℄, where k is the wave ve
tor. When de-sired, a lower 
uto� length s
ale lc 
an be introdu
ed by�ltering as: if ‖k‖ ≥ π/lc, ã (kx, ky) = 0. Finally weperform the inverse Fourier transform of ã (kx, ky) andnormalize it to get a syntheti
 aperture a(x, y) with anaverageA and a root mean square (RMS) σ. Using di�er-ent seeds of the random generator of the white noise, it ispossible to generate independent self-a�ne aperture mor-phologies showing di�erent patterns, even if they sharethe same roughness exponent 
hosen equal to ζ = 0.8,the same mean aperture A and same RMS σ. The upperlimit of σ is provided by the 
ondition of positive aper-ture, i.e. we prevent 
onta
t between the fra
ture fa
esto keep a 
onstant simple boundary geometry of the do-main where the equations are solved. In pra
ti
e a isimposed to range between 10−4 and 10, whi
h leads to
0.7 > σ/A > 10−3. The typi
al grid sizes that were usedare: 1024×1024, 1024×2048, 1024×512. The mesh size
d has been adjusted to get a su�
ient numeri
al pre
isionof the temperature solution in the 
ase of a parallel plate
on�guration where an analyti
al solution is known. Thenumeri
al stability of the solutions has also been testedagainst slight shifts of the mesh position on an over-sampled self-a�ne aperture �eld: 2·nx×2·ny = 212×212,

Figure 1: 2D sket
h of the fra
ture model with parameterde�nitions. x−axis is along the mean hydrauli
 �ow, y-axis isalong the mean fra
ture plane but perpendi
ular to the mainhydrauli
 �ow and z−axis denotes the out-of mean fra
tureplane dire
tion. z = z1 and z = z2 are the average positionsof the fa
ing fra
ture surfa
es. a(x, y) is the fra
ture aperture.
Tr is the temperature of the solid, supposed to be homoge-neous and 
onstant, T0 is the �uid temperature at the inlet.Fluid properties are: ρ, c, χ, and η respe
tively density, heat
apa
ity, thermal di�usivity and dynami
 vis
osity.and against the introdu
tion of a lower 
uto� lc of theself-a�ne perturbations varying between the mesh sizeand 10 times the mesh size: the dermined �ow and tem-perature �elds were found to be independent of su
hsmall s
ale modi�
ations.III. HYDRAULIC AND THERMAL FLOWEQUATIONSA. Hydrauli
 �owWe 
onsider the steady �ow of a Newtonian �uid atlow Reynolds number, so that the vis
ous term of theNavier-Stokes equation dominates the inertial one. TheNavier-Stokes equation is therefore redu
ed to the Stokesequation [51, 52℄:

∇P = η∆v, (3)where η is the dynami
 vis
osity, v the velo
ity of the�uid and P the pressure deviation from the hydrostati
pro�le (i.e. the hydrauli
 head whi
h is equal to thepressure 
orre
ted by the gravity e�e
t). To be in theframework of the lubri
ation approximation [37℄, besidessmall Reynolds number, we also 
onsider fra
tures with�at enough sides as mentioned above (i.e. with smalllo
al slopes). Therefore, �uid velo
ity ve
tors get negli-gible z-
omponents (normal to the mean fra
ture plane),and a

ordingly the velo
ity �eld is dominated by in-plane 
omponents. The unitary ve
tor x̂ is aligned withthe ma
ros
opi
 imposed pressure gradient (see Fig. 1);
z1(x, y) and z2(x, y) are the bottom and top fra
ture 
o-ordinates, with z2−z1 = a. Under these approximations,the pressure dependen
e is P (x, y) and the velo
ity v isoriented along the unitary ve
tor v̂ (x, y). By integrat-ing the Stokes equation with the boundary 
onditions:



4
v (z1,2) = 0, we get a lo
al paraboli
 law in z (Fig. 2)[25℄:

v(x, y, z) =
∇2P (x, y)

12η
(z − z1) (z − z2) (4)where ∇2 = x̂ ∂

∂x + ŷ ∂
∂y is the in-plane gradient operator.

Tv

v=0

T=Tr

z=a/2
z

z=−a/2

,Figure 2: (Color online) Lo
al velo
ity quadrati
 pro�le (shortdashed line) and temperature quarti
 pro�le (long dashedline) inside a fra
ture (with 
oe�
ients from Eqs. (9) and (4));arbitrary abs
issa units. Along the 
onta
t with the fra
ture,
v = 0 and T = Tr.Integrating Eq. (4) along z leads to express the hy-drauli
 �ow through the fra
ture thi
kness q as:

q = − a3

12η
∇2P. (5)Furthermore, we assume the �uid to be in
ompressible,i.e. ∇2 ·q = 0 whi
h leads to the Reynolds equation [19℄:

∇2 ·
(

a3
∇2P

)

= 0. (6)As boundary 
onditions of this equation (Fig. 3), we im-pose the pressure at the inlet and outlet of the fra
ture(if x = 0, P = P0 and if x = lx, P = PL, with P0 > PL)and 
onsider impermeable sides (no mass ex
hange withthe ro
k matrix) at y = 0 and y = ly.
Figure 3: Fra
ture model with pressure and temperatureboundary 
onditions.B. Thermal �owIn this work, we negle
t the natural 
onve
tion thathappens in fra
tured ro
ks when the �uid density is ther-mally sensitive, as studied for instan
e by Bataille et al

[10℄. Natural 
onve
tion might happen within the thi
k-ness of the fra
ture (owing to the temperature di�eren
ebetween the fra
ture boundary and the 
ore of the �owalong the gravity dire
tion) and at large s
ale when thefra
ture is non horizontal. For the sake of simpli
ity, we
onsider that the for
ed �uid �ow studied here is onlyweakly a�e
ted by density 
hanges. A quantitative 
rite-rion of this assumption is given by the 
omparison of thepressure di�eren
es ∆P for
ing the �ow and that gener-ated by the temperature 
hanges: ∆P ≫ gαT ρ∆T, with
g the gravity, αT the �uid 
oe�
ient of thermal expan-sion, ρ the �uid density, and ∆T the temperature di�er-en
es in the system. We also assume that the Prandtlnumber of the �uid is su�
iently high for the �ow to bedominated by hydrodynami
 e�e
ts rather than thermale�e
ts.Sin
e our fo
us is to understand how the ma
ros
opi
mass and heat �ows are a�e
ted by the fra
ture rough-ness in the stationary limit, we do not 
onsider time andspa
e variations of the temperature in the ro
k: the fra
-ture sides are assumed to be permanently hot at the �xedtemperature Tr. This simpli�
ation is valid if we 
onsidereither long time s
ales i.e. when the ro
k temperaturepro�les stabilizes, or time s
ales shorter than that of thehosting ro
k evolution. Taking the slow temperature evo-lution of the hosting ro
k into a

ount would require to
ombine the present study with a non-stationary 
ondu
-tive heat solver for the ro
k whi
h is beyond the s
ope ofthis manus
ript. In prin
iple, to model these intermedi-ate time s
ales, the ma
ros
opi
 parameters 
ontrollingthe heat ex
hange determined in this manus
ript 
ouldbe utilized in a hybrid model, 
oupling the heat di�usion-adve
tion in the �uid with the heat di�usion in the solid.Lo
al energy 
onservation implies that the �uid tem-perature is 
ontrolled by the balan
e between thermal
onve
tion and 
ondu
tion inside the �uid whi
h readsas (heat sour
e due to fri
tion between �uid layers beingnegle
ted)[53℄:

v · ∇T = χ∆T, (7)where χ is the thermal di�usivity of the �uid and T the�uid temperature. We extend the lubri
ation approxima-tion (
.f. I) by 
onsidering that the slopes of the fra
turemorphology are small enough to provide a 
ondu
tionat the ro
k interfa
e lo
ally oriented along ẑ. This im-plies that the out-of-plane 
ondu
tion term is dominantin front of the in-plane ones. Otherwise vz∂T/∂z 
anbe negle
ted in v · ∇T sin
e out-of-plane velo
ity vz isnegligible. A

ordingly the leading terms in Eq. (7) arethe 
ondu
tion along ẑ axis and the in-plane 
onve
tionterms, and this redu
es to:
∂2T

∂z2
=

vx

χ

∂T

∂x
+

vy

χ

∂T

∂y
, (8)For the boundary 
onditions, we assume that the �uidtemperature is equal to the ro
k temperature along thefra
ture sides: T (x, y, z1,2) = Tr and far from the fra
-



5ture inlet: T (x, y, z) −→
x→∞

Tr. The temperature of inje
-tion at the inlet is T0 so that T (0, y, z) = T0 (for any yand z). By assuming that β = qx∂T/∂x+qy∂T/∂y is onlyfun
tion of x and y, the following quarti
 expression of
T is solution of Eq. (8):

T (x, y, z) = Tr − β(x, y)

2 · a3 · χ (z − z1) (z − z2)

·
(

z −
√

5z1

)(

z −
√

5z2

) (9)For the parti
ular 
ase of symmetri
 apertures aroundan average plane, i.e. where z1 = −z2 = a/2, this redu
estoT = −3 · β
(

z4/6 − a2z2/4 + 5a4/96
)

/
(

a3 · χ
)

+ Tr.By uniqueness of the solution for given boundary 
on-ditions (the problem is well-posed), this quarti
 law isthe only solution of Eq. (7). The temperature pro�lealong z is illustrated together with the velo
ity pro�le inFig. 2).The energy 
onservation equation (Eq. (7)) is inte-grated along the z-dire
tion, through the thi
kness of thefra
ture (as done for the hydrauli
 des
ription), whi
hprovides an in-plane des
ription of the thermal balan
e.First, we estimate the adve
ted energy �ux. For this, wenote c the �uid spe
i�
 heat 
apa
ity and U0 its internalenergy density at T = T0, and write the internal energydensity U as U = U0 +ρc (T − T0). Integrating along thefra
ture thi
kness ( i.e. along the z-axis), leads to theinternal energy �ux per unit volume f (x, y) =
∫

Uvdzwhi
h 
an be expressed as:
f(x, y) =

[

U0 + ρc
(

T − T0

)]

q(x, y) (10)where T is a weighted average temperature de�ned as:
T (x, y) =

∫

a
v (x, y, z) · T (x, y, z)dz
∫

a
v (x, y, z)dz

, (11)with T (0, y) = T 0 = T0 at the inlet. The heat sour
e
oming the adve
ted energy is then given by: −∇2 · f .Using the mass 
onservation equation, ∇2 · q = 0, leadsto:
∇2.f = ρcq.∇2T . (12)The adve
ted energy �ux balan
es the 
ondu
tive �uxthrough the upper and lower fra
ture walls. To evalu-ate the thermal 
ondu
tive �ow oriented along the out-going normal to the fra
ture walls n̂, the lubri
ationapproximation (
.f. I), leads to n̂ ≃ ±ẑ. Let ϕw bethe proje
tion of the 
ondu
tive �ow along n̂, evalu-ated along the walls, at z1,2. The Fourier law provides

ϕw = −χρc∂T
∂z

∣

∣

z=z1,2
ẑ · n̂. Eqs. (9) and (4) inserted in-side Eq. (11), lead to ∂T
∂z

∣

∣

z=z1,2
=
(

T − Tr

)

70
17·a ẑ ·n̂. TheNusselt number Nu = −ϕw/ϕref = 70/17 is used to 
har-a
terize the e�
ien
y of the present heat ex
hange 
om-pared to the referen
e heat �ow ϕref = χρc
(

Tr − T
)

/a,whi
h o

urs in situations with only 
ondu
tion.

The energy net �ux:
∇2 · f + 2ϕw = 0, (13)
an �nally be expressed as:

q · ∇2T + 2
χ

a
Nu ·

(

T − Tr

)

= 0. (14)For the boundary 
onditions of the two-dimensional�eld T , we assume that the �uid is inje
ted at a 
onstanttemperature T (0, y) = T0 
older than the ro
k and we
onsider the length of the fra
ture to be long enough toget the �uid at the same temperature as the ro
k at theend of it: T (lx, y) = Tr. On the 
ontrary, temperaturesettings along the boundaries y = 0 and y = ly are with-out any in�uen
e, sin
e the hydrauli
 �ow is null there(see III A).Let the referen
e 
ase be a fra
ture modeled withtwo parallel plates separated by a 
onstant aperture
a// (i.e., no self-a�ne perturbation). In this 
ase, thegradient of pressure is 
onstant all along the fra
ture,as well as the hydrauli
 �ow whi
h is equal to q// =

−∆P a3
/// (12lxη) x̂, where the subs
ript // denotes re-sults valid for parallel plates and ∆P = PL − P0. Underthese 
onditions Eq. (14) is invariant along y and 
an bewritten as:

∂T //

∂x
+

(

T // − Tr

)

R//
= 0, (15)where the thermal length R// 
hara
terizes the distan
eat whi
h the �uid rea
hes the temperature of the sur-rounding ro
k:

R// =
a// ·

∥

∥q//

∥

∥

2 · Nu// · χ
= −∆P

lx
·

a4
//

24η · Nu// · χ
, (16)with Nu// = 70/17 ≃ 4.12. Then the analyti
al solutionof Eq. (15) for parallel plates is:

T // − Tr = (T0 − Tr) exp

(

− x

R//

)

. (17)For rough fra
tures, we aim at using Eq. (17) as a proxyof the average temperature pro�le T along the �ow andde�ning an e�e
tive ma
ros
opi
 thermal length R as:
T − Tr = (T0 − Tr) exp

(

− x

R

)

. (18)C. De�nition of mi
ros
opi
 and ma
ros
opi
aperturesDi�erent types of fra
ture apertures 
an be de�ned.The most obvious one is the geometri
al aperture but ef-fe
tive apertures like hydrauli
 or thermal aperture 
an



6also be introdu
ed. The latter are de�ned on the basisof an inversion on a spe
i�
 model like the parallel platemodel. For instan
e, the hydrauli
 aperture is dedu
edfrom the knowledge of the �uid �ow through the fra
tureand it represents the aperture of a parallel plate modelthat reprodu
es the observed �uid �ow. Equivalently athermal aperture 
an be introdu
ed as the aperture ofa parallel plate model that reprodu
es a similar thermalpro�le. A spatial s
ale has to atta
hed to de�ne the hy-drauli
 or thermal equivalent behavior in parti
ular fora multi-s
ale geometry. Sin
e we aim at understandingthe ups
aling of the fra
ture properties, we will introdu
etwo spe
i�
 s
ales: the smallest one, i.e. the grid size ofthe dis
retization and the largest one, i.e. the systemsize. The smallest will be referred as the mi
ros
opi
 orlo
al s
ale and small letters will be used for their labelingand the largest, as the ma
ros
opi
 s
ale and des
ribedwith 
apital letters.We already use the mi
ros
opi
 geometri
al or me
han-i
al aperture a and its spatial average, i.e. the ma
ro-s
opi
 geometri
al aperture: A = 〈a(x, y)〉x,y.The mi
ros
opi
 hydrauli
 aperture is de�ned as fromEq. (5) [19, 54℄:
h =



‖q‖ 12η
∣

∣

∣

∆P
lx

∣

∣

∣





1/3

. (19)It depends on the lo
al hydrauli
 �ow q, and 
an berelated to the lo
al pressure gradient ‖∇P‖ and lo
alaperture a as:
h = a ·

(

‖∇P‖
∆P
lx

)1/3

. (20)If the lo
al pressure gradient ‖∇P‖ is smaller than thema
ros
opi
 gradient ∆P/lx, then h (x, y) < a (x, y),whi
h means that lo
ally the hydrauli
 
ondu
tivity islower than expe
ted from its lo
al me
hani
al aperture.The ma
ros
opi
 hydrauli
 aperture H 
an also be de-�ned at the system s
ale from the average hydrauli
 �ow
Qx = 〈q · nx〉x,y :

H =



Qx
12η
∣

∣

∣

∆P
lx

∣

∣

∣





1/3

. (21)Ma
ros
opi
 and mi
ros
opi
 hydrauli
 aperture are re-lated, sin
e H is a
tually proportional to the 
ubi
 rootof the third order moment of h: H = 〈h(x, y)3〉1/3

x,y whi
his proportional to the �rst order moment of the hydrauli
�ux, to power 1/3. If H/A > 1, then the fra
ture is morepermeable than parallel plates separated by a(x, y) = A.The ma
ros
opi
 thermal aperture is de�ned from a1D temperature pro�le T (x) along the for
ed pressuregradient dire
tion (see Eq. (18)) where the average tem-

perature is de�ned as:
T (x) =

∫

ly
ux (x, y) · T (x, y) dy
∫

ly
ux (x, y) dy

. (22)It is an average of T along the width of the fra
-ture ly, weighted by the lo
al �uid velo
ity ux(x, y) =
qx(x, y)/a(x, y) whi
h is the ratio of the x-
omponent ofthe lo
al �ux over the lo
al fra
ture aperture. Then, by�tting the parallel plate temperature solution (Eq. (18))to the average temperature pro�le T (x), we get thema
ros
opi
 thermal length R. In pra
ti
e the �t is
omputed from a least square minimization, for ab-s
issa from x = 0 to the minimum x value so that
∣

∣

∣(T − Tr)/ (T0 − Tr)
∣

∣

∣ < 2 · 10−6. The ma
ros
opi
 ther-mal aperture Γ is then de�ned by analogy to the parallelplate solution (Eq. (16)) as:
Γ =

(

−R · 24η · Nu · χ lx
∆P

)1/4

= A · (R∗)
1/4 , (23)where R∗ = R/R// is the normalized thermal length. Ata 
oarse grained s
ale, the rough fra
ture is thermallyequivalent to parallel plates separated by the 
onstantaperture a(x, y) = Γ. Indeed, both will exhibit the samethermal length R under the same ma
ros
opi
 pressuregradient ∆P/lx.The mi
ros
opi
 thermal aperture γ 
an also be intro-du
ed after de�ning a lo
al thermal length r. Similarlyto the de�nition of a mi
ros
opi
 hydrauli
 aperture fromthe lo
al pressure gradient, or lo
al �ux, rather than thema
ros
opi
 pressure di�eren
e, or ma
ros
opi
 �ux, weestimate the lo
al thermal length from a lo
al tempera-ture gradient rather than a large s
ale pressure di�eren
e.Eq. (14) 
an be rewritten as:

q · ∇2

(

ln
[

T
∗

])

+
‖q‖
r

= 0 (24)with
r =

a · ‖q‖
2 · Nu · χ, (25)whi
h is an estimate of the gradient along ŝ the lo
al hy-drauli
 �ow dire
tion. Finally, the lo
al thermal aperture

γ 
an be de�ned by (
onsistently with Eq. (16)):
γ =

(

−r · 24η · Nu · χ lx
∆P

)1/4 (26)A link between ma
ros
opi
 and mi
ros
opi
 thermalapertures 
an also be shown as follows: at �rst order, 
on-sidering that the average of ‖q‖ is very 
lose to the aver-age of qx then the lo
al length of referen
e would be equalto r̃ = −
(

∂ ln
(

T
∗

)

/∂x
)

−1. On the other hand, inte-grating equation (18) between 0 and signi�
ant length
L, results in R = −

[[

ln
(

T
∗

(L)
)

− ln
(

T
∗

(0)
)]

/L
]

−1,



7whi
h shows the link between ma
ros
opi
 and mi
ro-s
opi
 thermal apertures: R = L
(

∫ L

0 (−1/r̃)dx
)

−1, i.e.
R =

〈

r−1
〉

−1 ∝
〈

(a ‖q‖)−1
〉

−1, a

ording to Eq. (25).For parallel plates, all mi
ros
opi
 apertures are equaland also equal to the ma
ros
opi
 ones: h = a = γ =
H = Γ = A. For rough fra
tures, this is de�nitivelynot the 
ase sin
e the lo
al apertures vary spatially in-side the fra
ture. We will see in the next se
tion how allthese apertures are in�uen
ed by the roughness ampli-tude of the fra
ture aperture, for whi
h we will empha-size on two main parameters: the normalized root meansquare deviation σ/A of the geometri
al aperture and theaspe
t ratio of the fra
ture J = lx/ly, i.e. the ratio ofthe downstream length of the fra
ture lx over its width
ly. D. Dimensionless quantitiesDimensionless positions, apertures, pressure, tempera-ture and hydrauli
 �ow are de�ned as follow:

x∗ =
x

d
, y∗ =

y

d

a∗ =
a

A
, H∗ =

H

A
, Γ∗ =

Γ

A

P ∗ = − (P − P0)

2d

lx
∆P

, (27)
T

∗

=
T − Tr

T0 − Tr
,

q∗ = − 12η · lx
∆P · A3

q.where d is the mesh size of the aperture grid. Other-wise, we note that in the dimensionless temperature, thedi�eren
e between the inje
tion temperature T0 and thero
k temperature Tr intervenes only as a fa
tor of pro-portionality.IV. HYDRAULIC FLOW SIMULATIONSA. Des
ription of the pressure solverThe Reynolds and temperature equations (Eqs. (6)and (14)) are numeri
ally solved by using a �nite dif-feren
e s
heme. The pressure P , the hydrauli
 �ow qand temperature T are dis
retized on a grid of nx × nypoints with a mesh size of 2d i.e. half of the aperture gridpoints. In the following, when indexes (i, j) are positiveintegers, they refer to node positions where an aperture,a pressure and a temperature are de�ned, on the 
ontraryof the non-integer node position (i±0.5 or j±0.5) whereonly an aperture is de�ned.The Reynolds equation (Eq. (6)) is dis
retized andsolved in the same way as by Méheust and S
hmittbuhl

[20℄: we use �nite di�eren
es 
entered on a square meshof latti
e step-size 2d, and the linear equation system isinverted using an iterative bi
onjugate gradient method[49℄. The 
hosen pressure drop along the fra
ture lengthis ∆P ∗ = P ∗

nx,j − P ∗

1,j = 1 − nx for 1 ≤ j ≤ ny. Thehydrauli
 �ow q∗

i,j =
(

q∗i,jx
, q∗i,jy

, 0
) is 
omputed fromthe pressure �eld, as:

q∗i,jx
= −a∗

3

i,j

2

(

P ∗

i+1,j − P ∗

i−1,j

)

q∗i,jy
= −a∗

3

i,j

2

(

P ∗

i,j+1 − P ∗

i,j−1

)For a parallel plate 
on�guration (i.e. modeling withoutself-a�ne perturbation), q∗i,jx
= 1 and q∗i,jy

= 0 every-where in the fra
ture.B. Example of a mi
ros
opi
 hydrauli
 aperture�eldAn example of a fra
ture aperture is shown in Fig. 4a.It is generated as explained in II on a 1024 × 512 grid,and has a RMS equal to σ/A = 0.25. The hydrauli
 �ow
omputed inside this morphology is shown in Fig. 4b, aswell as the mi
ros
opi
 hydrauli
 apertures (Fig. 4
). Inthis 
ase, the hydrauli
 �ow exhibits a strong 
hannelingas previously des
ribed by Méheust and S
hmittbuhl [20℄.The mi
ros
opi
 hydrauli
 apertures 
an be observed notto be simply 
orrelated to the aperture �eld.The link between mi
ros
opi
 me
hani
al apertures
a and the mi
ros
opi
 hydrauli
 apertures h, is givenin Fig. 5, where the s
ale shows the 
orresponding o
-
urren
e probability of ea
h lo
al 
on�guration. Wesee that the normalized me
hani
al and hydrauli
 aper-ture values are distributed around a 
hara
teristi
 point:
(h/A, < a > /A) = (1, 1). Nevertheless, the 
orrela-tion between both apertures is not simple. Some of thehighest density values are lo
ated below and above thestraight line whi
h represents h = a. A

ordingly, thepermeability 
an lo
ally be lower or higher than what isgiven by an average Poiseuille law. The s
attering aroundthe straight line shows that at one point, the lo
al �ow isnot determined by the lo
al me
hani
al aperture, but isin�uen
ed by all the surrounding mi
ros
opi
 me
hani
alapertures. From 
omputations with other σ, we noti
ethat the lower the roughness amplitude, the 
loser to
(1, 1) the 
loud is.C. Variability of the ma
ros
opi
 hydrauli
apertureThe dimensionless ma
ros
opi
 hydrauli
 aperture ismeasured for our fra
ture example as H/A = 0.94 (or-dinate of the 
ross in Fig. 5). H/A < 1 means that thefra
ture permeability is redu
ed 
ompared to the one ofparallel plates having the same me
hani
al aperture A,
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a.

b.

c.

q*

h/A

a/A
y/

d
y/

d
y/

d

x/d

x/d

x/d

Figure 4: (Color online) a.: Self a�ne aperture with σ/A =
0.25. b.: Dimensionless hydrauli
 �ow norm 
omputed withthe aperture of Fig. 4a., having for dimensionless hydrauli
aperture H∗ = 0.94. 
.: Mi
ros
opi
 hydrauli
 apertures,
omputed from the third root of the hydrauli
 �ow shown inFig. 4b.

Figure 5: (Color online) 2D histogram of the link betweenthe mi
ros
opi
 hydrauli
 aperture and the mi
ros
opi
 me-
hani
al aperture for the fra
ture shown in Fig. 4 (the s
aleindi
ates the probability in per
ents %); the 
ross has for 
o-ordinates (H/A, <a> /A) = (0.94, 1). The straight line is
h = a, whi
h is the equality given by a lo
al Poiseuille law.
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Figure 6: (Color online) Ma
ros
opi
 hydrauli
 aperture H/Aversus σ/A for fra
tures with aspe
t ratio lx/ly = 2; Crosses:Variation of the hydrauli
 aperture by in
reasing the rough-ness amplitude σ/A for the aperture shown in Fig. 4; Dots:
loud of 
omputed data (about 20 000 aperture realizations);Squares: Average hydrauli
 behavior with variability bars. Onaverage, H/A < 1: the permeability is smaller than expe
tedfrom the Poiseuille law in parallel plate apertures.without any self-a�ne perturbation. For the same mor-phology pattern (Fig. 4), we examine how the roughnessamplitude in�uen
es the ma
ros
opi
 hydrauli
 aper-ture by 
hanging σ/A (
.f. II). In Fig. 6 we see thatthe ma
ros
opi
 hydrauli
 aperture is 
lose to 1 when
σ/A = 0.05, whi
h 
orresponds to a quasi �at aperture.When the roughness amplitude in
reases, H de
reases,whi
h means that this morphology pattern tends to in-hibit the hydrauli
 �ow and makes the fra
ture perme-ability de
rease.For various realizations with the same σ/A value, vari-ous hydrauli
 behaviors may happen owing to the 
hannelvariability in the hydrauli
 �ow. In Fig. 6, we plot thedimensionless ma
ros
opi
 hydrauli
 apertures H/A ver-sus σ/A (for about 20 000 
omputations with 1 700 dif-ferent fra
ture aperture patterns). Here, ea
h fra
turehas the same size as the fra
ture shown in Fig. 4 where
lx/ly = 2. We 
ompute the mean hydrauli
 apertures in-side windows of size 0.025 σ/A and ea
h plotted bar rep-resents twi
e the standard deviation of H/A inside the
orresponding windows. We see that for most 
ases, thepermeability is redu
ed. For σ/A < 0.25, the hydrauli
aperture is still quite 
lose to A and the dispersivity isrelatively small even if some 
on�gurations shows a �owenhan
ement owing to the fra
ture roughness: H > A[20℄. Then, for higher RMS, the average of H/A de
reasessigni�
antly on average (up to 50%) with σ/A, but witha higher variability of the results.



9D. In�uen
e of the fra
ture aspe
t ratio on thehydrauli
 �owTo get a 
omplete des
ription, we now modify one ad-ditional parameter: the aspe
t ratio of the fra
ture, by
hanging the ratio of the fra
ture length over its width,
J = lx/ly. Figure 7 shows the same kind of average plotsof H/A as a fun
tion of σ/A but for three di�erent as-pe
t ratios: J = 2 (square symbols) whi
h is the onepresented in Fig. 6, J = 1 (triangle) and J = 0.5 (disks).Sin
e less simulations were done for J = 1 and J = 2 (seethe legend of Fig. 7), few aperture show σ/A > 0.45, andtherefore no average points is represented in these 
ases.For square systems (J = 1) and downstream elongatedfra
ture (J ≥ 1), H/A is on average smaller than one (i.e.inhibiting hydrauli
 �ow 
ompare to the one through par-allel plates separated by the same opening A), whereasfor systems wider perpendi
ularly to the pressure gradi-ent dire
tion, H/A is on average higher than one. A qual-itative explanation might be that, it is stati
ally morelikely to get a large s
ale 
onne
ting 
hannel for a wideand short fra
ture (J < 1) rather than for a thin andlong fra
ture (J > 1). In other words, qualitatively,
hannels are rather in parallel in wide fra
tures, and inseries in long ones. For square systems whi
h should beisotropi
 and providing as many perpendi
ular and par-allel 
hannels, we see that when the roughness amplitudein
reases, the hydrauli
 aperture get on average slightlysmaller than A. We 
an suspe
t that it would exist anaspe
t ratio Jinv so that the hydrauli
 aperture is on av-erage independent of the fra
ture roughness magnitude:
H/A = 1 for any σ/A. Following the model proposed be-low in IVE, we get Jinv ≃ 0.65± 0.05 . For any J value,we see that the higher the ratio σ/A, the higher the vari-ability of the behaviors is, espe
ially for square systemswhi
h exhibit both high (H > A) and low (H < A) per-meability for the same roughness magnitude.E. Model of the average ma
ros
opi
 hydrauli
apertureOne of the main questions we want to address here,is the relationship between the ma
ros
opi
 hydrauli
aperture H and the mi
ros
opi
 me
hani
al aperture�eld a(x, y). The knowledge of the me
hani
al aper-ture �eld a(x, y) provides us the following bounds for
H : 〈a−3〉−1 < H3 < 〈a3〉 � the lower 
ase 
orrespond-ing to a system of aperture �u
tuations purely aligned inseries, and the upper one to �u
tuations purely alignedin parallel [55℄. However, a (x, y) is rarely known andsubsequently 〈a−3〉−1 and 〈a3〉 are di�
ult to estimate.From Fig. 7, σ/A and J appear to be important param-eters 
ontrolling the ma
ros
opi
 hydrauli
 aperture ofthe fra
ture H . Ref [20℄ proposed a �rst model of the Hbehavior as: H/A = 1+α

(

σ
A

)κ. Here we similarly modelthe average hydrauli
 aperture 
urves 
orresponding toea
h aspe
t ratio (
ontinuous 
urves in Fig. 7) and �nd
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Fit curves 1
Fit curves 2Figure 7: (Color online) Ma
ros
opi
 hydrauli
 aperture ver-sus σ/A, for three aspe
t ratios J = lx/ly. Averages 
omputedfrom data are shown with symbols, with error bars, 
orre-sponding to plus or minus the standard deviation (see howthe average is 
omputed in IVC). J = lx/ly = 2 shows anenhan
ed �ow (same data as presented in Fig. 6); J = 1shows on average a slightly inhibited �ow, i.e. H ≤ A (
om-puted from a 
loud of about 1 300 points); for J = 0.5,on average, higher permeability is observed (
omputed froma 
loud of about 900 points). Continuous 
urves are �t-ting models (1) H/A = 1 + α

`

σ
A

´κ, with parameters (κ, α)equal to (2.05, −1.46), (1.57, −0.31), (2.69, 0.67) respe
tivelyfor J equal to 2, 1 and 0.5. Dotted 
urves are obtainedwith �tting models (2) H/A = 1 − µ [log
2
(J) + δ]

`

σ
A

´κ, with
(µ, δ, κ) = (0.98, 0.59, 2.16), for the three 
urves.
(κ, α) su

essively equal to (2.05,−1.46), (1.57,−0.31),
(2.69, 0.67) respe
tively for J equal to 2, 1, 0.5. Depend-ing on the sign of α, we get either a permeability lower orhigher than that expe
ted with �at plates. Then we �tthese three behaviors by a more general model whi
h in-
ludes the aspe
t ratio variation, with three parameters(µ, δ, κ) to be optimized: H/A = 1−µ [log2(J) + δ]

(

σ
A

)κ.With (µ, δ, κ) = (0.98, 0.59, 2.16), we get the three dot-ted lines in Fig. 7 whi
h are a

eptable �ts of the aver-age trend. However it has to be highlighted that the realhydrauli
 aperture of a spe
i�
 surfa
e is possibly verydi�erent from this average value (see size of variabilitybars in Fig. 7), espe
ially at high σ/A.Other models for numeri
al or experimental hydrauli
apertures have been proposed in the literature [19℄, as
(H/A)

3
= 1 − C1 exp (−C2A/σ) or (H/A)

3
= 1/[1 +

C3 (2A/σ)
1.5

], where C1−3 are 
onstants but the shapeof these fun
tions does not �t well our averaged points,and these �ts are not represented here.



10V. THERMAL FLOW SIMULATIONSA. Des
ription of the temperature solverThe temperature equation (Eq. (14)) is dis
retized as:
q∗i,jx

(

T
∗

i+1,j − T
∗

i−1,j

)

+ q∗i,jy

(

T
∗

i,j+1 − T
∗

i,j−1

)

+
4d

R//
·
T

∗

i,j

a∗

i,j

= 0, (28)where (i, j) ∈ [|2, nx − 1|] × [|2, ny − 1|] and R// is thethermal length expe
ted by negle
ting the roughness am-plitude (see Eq. 16). The boundary 
onditions are:
1 ≤ j ≤ ny, T

∗

1,j = 1 and T
∗

nx,j = 0

2 ≤ i ≤ nx − 1, T
∗

nx,j = 0 and T
∗

nx,j = 0The system is solved in the same way as the pressuresystem (IVA). Two limiting numeri
al fa
tors intervenefor the e�
ien
y of the dis
retization s
heme: the meshstep d has to be su�
iently small to 
apture with a suf-�
ient a

ura
y the relative variations of T − Tr overa latti
e step. In pra
ti
e, the mesh step used in thismanus
ript is 
hosen as d = R///50. We 
he
ked that di-viding this mesh size by 2 did not 
hange signi�
antly the
omputed temperature �eld. The se
ond numeri
al limitis that the system size lx has to be larger than 20 ·R// toavoid a possible numeri
al instability (mostly with theaperture grid size 1024 × 2048 whi
h is more likely toexhibit a longer thermal length, as explained in VE). Ifnot, the �uid passing the fra
ture is so slowly warmed upthat the 
ondition T
∗

nx,j = 0 at the outlet badly repre-sents the 
ondition imposed in prin
iple at in�nity in the
hannel, and this boundary 
ondition imposed at a phys-i
ally too short distan
e from the inlet 
annot be ful�lledwithout numeri
al artifa
t. To fa
e this problem in su
hrare situations, we dupli
ate the aperture grid to get alonger system length and impose the same ma
ros
opi
pressure gradient, and the ro
k temperature at the newend: T
∗

2·nx,j = 0.B. Example of a lo
al mi
ros
opi
 temperature�eldFor a nearly 
onstant aperture (σ/A = 0.05), we numer-i
ally obtain a temperature law 
lose to an exponentialdownstream pro�le (Fig. 8), as we expe
t from Eq. (17).The 2D temperature �eld shown in Fig. 9a (σ/A = 0.25)is 
omputed from the aperture and its previously 
om-puted hydrauli
 �ow �eld, shown in Fig. 4b. It 
an beobserved that the �uid is getting inhomogeneously warm,with 
hannelized features. The thermal 
hannel beginsin a zone where the hydrauli
 �ow 
oming from the inlet
onverges (Fig. 4b). The lo
al normalized thermal aper-ture γ/A (map shown in Fig. 9b) exhibits less pronoun
ed

−ln(T  )

x/d

y/
d

       *

Figure 8: (Color online)− ln
“

T
∗

”, opposite of the logarithmof the temperature �eld T
∗ 
omputed from the aperture mor-phology pattern shown in Fig. 4 with a very low roughnessamplitude: σ/A = 0.05. The hydrauli
 aperture of this fra
-ture is H/A = 0.99. The temperature �eld exhibits a nor-malized thermal length equal to R∗ = 0.97 and a thermalaperture of Γ/A = 0.99.

γ /A

       −ln(T  )*a.

b. x/d

x/d

y/
d

y/
d

       

Figure 9: (Color online)a.: − ln
“

T
∗

”, opposite of the loga-rithm of the 2D temperature �eld, 
omputed from the aper-tures in Fig. 4a (σ/A = 0.25). b.: Normalized lo
al thermalaperture γ/A asso
iated with the temperature �eld shown inFig. 9a.
hannel e�e
t than in Fig. 9a. Figure 10 is the plot of thelo
al mi
ros
opi
 thermal apertures γ/A versus the lo
alapertures a/A, using a shading showing the o

uren
edensity in the (γ/A, a/A) spa
e. The dispersivity of the
loud around the line γ = a shows that there is no sim-ple link between the lo
al aperture and the thermal one.A similar plot (Fig. 11) allows to observe the 
orrelationbetween the lo
al mi
ros
opi
 thermal apertures and thelo
al mi
ros
opi
 hydrauli
 apertures. It shows a good
orrelation of the lo
al thermal aperture and the lo
alhydrauli
 aperture (i.e. the 
loud is 
lose to the straightline γ = h). Note that it is more probable (59%) to
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Figure 10: (Color online) 2D histogram in per
ents of thefra
ture shown in Fig. 4 as a fun
tion of the lo
al thermalaperture γ and lo
al aperture a (the shading indi
ates theprobability density). The straight line is γ = a. The dis-persivity of the 
loud around the line shows that there is nosimple link between the lo
al aperture and the thermal one.have γ > h, whi
h 
orresponds to a heat ex
hange lo-
ally less e�
ient than what is expe
ted from a parallelplate model whi
h is equivalent in permeability.

Figure 11: (Color online) 2D Histogram in per
ents of thefra
ture shown in Fig. 4 as a fun
tion of the lo
al thermalaperture γ and lo
al hydrauli
 aperture h (the s
ale indi
atesthe probability in per
ents %). The straight line is γ = h;the lo
alization of the 
loud around the line shows a good
orrelation between γ and h.C. Variability of the ma
ros
opi
 thermal apertureThe average temperature T (see de�nition in Eq. (22))is a semi lo
al property whi
h shows how the thermalbehavior evolves on average along the pressure gradientdire
tion. The shape of T (x) (Fig. 12) is 
lose to an ex-ponential law, but with a thermal length R slightly dif-ferent from the fra
ture without self-a�ne perturbation

(i.e. parallel plates). This thermal length is 
omputedfrom the slope of the linear regression of ln
(

T (x)
) (seein III C). In the example displayed in Fig. 12, the ther-mal length is R∗

// = 1.09, whi
h results in an equivalentthermal aperture of Γ∗ = 1.02.

Figure 12: (Color online) Continuous 
urve: − ln
“

T
∗
”, oppo-site of the logarithm of the temperature �eld 
omputed fromthe temperature �eld T shown in Fig. 9. Dash-dotted 
urve:Linear �t of 
urve A (from x/d = 0 to x/d = 772), whi
hprovides the thermal length:− ln

“

T
∗
”

= x/1.09 + 0.6, i.e.
R∗ = 1.09. Dashed 
urve: − ln

“

T //

∗
” opposite of the loga-rithm of the temperature law for the same fra
ture modeledwithout self-a�nity perturbation (i.e. parallel plates), whi
hhas for thermal length R∗

// = 1.In �gure 13, the 
rosses illustrate the roughness ampli-tude in�uen
e on the thermal aperture for the morphol-ogy pattern shown in Fig. 4a, whose relief is ampli�ed by
hanging σ value (see in II). For this example, Γ vs σ isnot monotoni
. The dimensionless thermal length is 
loseto 1 when σ/A = 0.05, whi
h 
orresponds to a quasi �ataperture. When the roughness amplitude is big enough(σ > 0.1), Γ in
reases with σ and is higher than one,whi
h means that this morphology pattern tends to in-hibit the thermal ex
hange. In Fig. 14, the 
rosses showthe thermal aperture versus H/A using the same data asfor the plots shown by 
rosses in Figs. 13 and 6.D. Variability of the thermal behaviorStatisti
al thermal results are 
omputed for numer-ous 
ases (more than 20 000) whose ma
ros
opi
 hy-drauli
 apertures are presented in IVC for various σ/Avalues. Similarly, a normalized average ma
ros
opi
 ther-mal aperture, Γ/A, and its standard deviation is obtainedas fun
tion of σ/A. The resulting Γ/A for the aspe
t ratio
J = 2 is displayed in Fig. 13, with bars representing thedouble of the standard deviation. For the same normal-ized roughness amplitude σ/A, various thermal behaviorsmay happen, espe
ially for σ/A > 0.25, with 
hannels ap-pearing or not and dimensionless thermal lengths higheror lower than one. At �rst order, both the ma
ros
opi
thermal (Fig. 13, triangles) and hydrauli
 average aper-
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Average H/AFigure 13: (Color online) Crosses: Variation of the thermalaperture Γ/A by in
reasing the roughness amplitude σ/A forthe aperture pattern shown in Fig. 4; Dots: Cloud of 
om-puted data (about 20 000 points) for fra
tures with aspe
t ra-tio lx/ly = 2; Triangles: Average thermal behavior with vari-ability bars of the 
loud; Squares: Average hydrauli
 aperture

H/A versus σ/A, re
alled here for 
omparison.
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Figure 14: (Color online) Normalized thermal aperture Γ/Aversus H/A for fra
tures with aspe
t ratio lx/ly = 2. Crosses:Variation of the thermal aperture by in
reasing the rough-ness amplitude for the aperture pattern shown in Fig. 4aversus H/A; Dots: Cloud of 
omputed data (about 20 000points); Squares: Average thermal behavior with variabilitybars. Continuous 
urve: Γ/A = H/A, whi
h holds for parallelplates separates by a(x, y) = H .tures (Fig. 13, square symbols) are de
reasing as fun
-tions of σ. This trend is signi�
antly more pronoun
edfor H than for Γ. The thermal results are 
omparedwith systems equivalent in permeability (same normal-ized hydrauli
 aperture) in Fig. 14 whi
h represents thenormalized thermal aperture versus the hydrauli
 aper-ture with the average points 
omputed inside windows ofsize 0.05 H/A. The most striking result is that roughness

inhibits thermalization: nearly all the 
loud is above the
ontinuous 
urve Γ = H , whi
h means that the thermal-ization of the �uid (thermalization is obtained when the�uid temperature rea
hes the ro
k one) is inhibited 
om-pared to what we expe
t from the hydrauli
 behavior. Inthe same time, we note that, on average, Γ/A < 1, i.e.most of the apertures exhibit an enhan
ed thermalization
ompared to what would be expe
ted with a model of �atfra
tures separated by A, i.e. having the same geometri
(or me
hani
al) aperture.E. In�uen
e of the fra
ture aspe
t ratio on thethermal behavior
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Figure 15: (Color online) Averages of the normalized thermalaperture Γ/A and their deviation bars versus σ/A for variousaspe
t ratios J = lx/ly, as indi
ated by the labels. See howthe average is 
omputed in IVC.
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Figure 16: (Color online) Averages of the normalized thermalaperture Γ/A and their deviation bars versus H/A for variousaspe
t ratios J = lx/ly , as indi
ated by the labels (see how theaverage is 
omputed in IVC). Models lines are Γ = 0.9H +
0.2A for H < A and Γ = 3.5H−2.4A for H ≥ A; no 
ontinuity
ondition between both lines is imposed.We 
omplete our study by 
omputing the averagedthermal apertures for two other aspe
t ratios, J , by us-



13ing the hydrauli
 �ows 
omputed in IVD. The aver-aged values of the thermal apertures, with the variabil-ity bars (de�ned similarly to what is done in VD) for
J ∈ {0.5, 1, 2} are plotted in �gs. 15 and 16. When Γ/Ais plotted as a fun
tion of σ/A (Fig. 15), various ther-mal behaviors are observed, a

ording to the aspe
t ra-tio, with high variability, parti
ularly when σ/A > 0.25.On the 
ontrary to fra
tures with aspe
t ratio equal to
J = 2 (des
ribed in VD) the ones with J in {0.5, 1} aremore likely to inhibit the thermalization 
ompared to �atfra
tures with the same me
hani
al aperture (Γ/A > 1).Figure 16 shows the average of Γ/A versus H/A. Con-trarily to what 
an be observed for Γ/A vs σ/A (Fig. 15),the average 
urves Γ/A vs H/A are roughly independenton the aspe
t ratio. This shows that the hydrauli
 aper-ture is a better parameter than the roughness σ/A to as-sess the thermal properties.The thermal aperture is sys-temati
ally larger than the hydrauli
 aperture (Γ > H).It means that on
e the permeability known, e.g. bypumping tests, using a parallel plate model separated by
H for estimating the thermal behavior overestimates thee�
ien
y of the heat ex
hange: the �uid needs indeed alonger distan
e to be thermalized than expe
ted from �atfra
tures with the same permeability. On average Γ/A vs
H/A is monotoni
 (Fig. 16), i.e. this average dependen
edisplays a simpler behavior than for a parti
ular 
ase ofmorphology of varying amplitude (e.g. Fig. 14, 
rosses).Going more into details, Fig. 16 also shows that for
H/A > 1, the slope of Γ vs H is steeper than for H/A < 1;both parts of the 
urve 
an be modelled with straight line�ts (dotted and dot-dashed 
urves). This 
ould be inter-preted as follows: fra
tures with high hydrauli
 aperturesprovide high velo
ities so that �uid parti
les need to gofurther to rea
h the ro
k temperature. Fra
tures withsmall hydrauli
 apertures H/A < 1 might be dominatedby small me
hani
al apertures (fen
es) providing smallvelo
ities, whi
h leads to thermal apertures 
loser to theline Γ = H .VI. DISCUSSION AND CONCLUSIONA. Model limits and possible extensionDespite the hydrauli
 lubri
ation hypothesis whi
h im-plies notably a low Reynolds number, the �uid velo
-ity should not be too small. Indeed, the velo
ity drivesthe in-plane thermal 
onve
tion, whi
h is supposed to belarge 
ompared to the in-plane thermal 
ondu
tion. This
an be quanti�ed by the Pé
let number (ratio betweenthe 
hara
teristi
 time of di�usion and adve
tion): ourmodel is valid at low in-plane Pé
let number. Therefore,owing to in-plane 
ondu
tion, the thermal 
hanneling ef-fe
t might be redu
ed espe
ially in 
ase of high temper-ature 
ontrast along the 
hannel and very low hydrauli
�ow. This homogenization might be reinfor
ed if the �uidtemperature is still inhomogeneous but very 
lose to thero
k temperature: in this 
ase the in-plane 
ondu
tion

inside the �uid might be as high as the 
ondu
tion be-tween ro
k and �uid. Free 
onve
tion (temperature de-penden
e of ρ), whi
h is not taken into a

ount here, mayalso intervene, espe
ially for thi
k fra
tures [56℄.In pra
ti
e, some 3D e�e
ts might happen as the lubri-
ation approximation is not ne
essarily respe
ted owingto the ro
k morphology, (e.g. [23, 24℄). In natural 
ases,the roughness amplitude σ/A 
overs a large range a

rossthe natural 
ases, from small to large values a

ording tothe type of ro
k and fra
tures. For instan
e, we re
entlymeasured the roughness amplitude of natural fra
tures inbla
k marl at borehole s
ale, and we obtained values of
σ/A < 0.04 for one and σ/A = 0.3 for another one [22℄.Some other values, typi
ally σ/A > 0.4, have also beenreported for instan
e in graniti
 ro
ks [57, 58℄. If the
ases with large roughness amplitudes also 
orrespond tolarge lo
al slopes (angle between the fra
ture side andthe average plane), it is likely that the Reynolds equa-tion and 2D temperature equation does not apply so wellto these 
ases, and that the results reported here are onlyapproximate for those.When the fra
ture morphology is highly developed,due to more surfa
e ex
hange, the ro
k might lo
ally pro-vide better heat ex
hange. The assumption of averagingthermal phenomena in 2D has been studied e.g. by Volikor Sangare et al. [59, 60℄, who 
onsidered only 
ondu
-tion. The 3D solving of the full Navier-Stokes and heatadve
tion-di�usion equations is also possible, for examplewith a 
oupled latti
e-Boltzmann method [61℄. However,
onsidering the 
omplexity of fra
ture morphology fromvery small s
ales to large ones requires heavy 
omputa-tions, whi
h makes statisti
al results di�
ult to obtain.When 
onve
tion also a
ts, 3D e�e
ts lead to zones de-
oupled from the main mass and heat �ux, as the �uidmight be blo
ked into eddies (o� lubri
ation regime) pro-voked by sharp morphologies [23, 29�32℄ (like Mo�atteddies [62℄). It has indeed to be noti
ed that even whenlow pressure gradient is imposed, turbulent �ow might beobserved due to high roughness amplitude. This e�e
t is
omplementary to observations made at high Reynoldsnumber [63�66℄, when even a very low roughness ampli-tude of the wall indu
es turbulent �ow.All the results about the thermal aperture may also bein�uen
ed by the thermal boundary 
onditions. In par-ti
ular we have assumed that Tr is 
onstant. Spatial vari-ations of Tr 
an easily be taken into a

ount by 
hangingthe boundary 
onditions of the thermal equation whiletemporal variations require to model the ro
k getting
older in the surrounding (
onsequen
es of the ro
k di�u-sivity). In time, the hypothesis of 
onstant temperature
Tr holds either for very short durations when the regimeis transitory, or for longer durations, at quasi-stationaryregime, when the ro
k temperature evolves very slowlyand the �uid temperature adapts fast. This is the 
ase ifthe solid is mu
h more thermally di�usive than the �uid,whi
h is quite true in our 
ase: for instan
e, the ratioof the granite thermal di�usivity over the water one is5.9. We 
ould 
he
k the time evolution by using another



14numeri
al approa
h based on latti
e Boltzmann methods[61℄, whi
h allows to solve both the ro
k and �uid tem-perature and takes into a

ount the 
ontrast of thermaldi�usivity. For a fra
ture with an aperture of a few mil-limeters, Tr 
an be 
onsidered as 
onstant at transitoryregime for durations mu
h less than 1 minute. Converselyit also holds for longer durations after a quasi-stationaryregime is rea
hed, whi
h 
an happen after minutes oryears, a

ording to the properties of the system (e.g. dis-tan
e to the heat sour
e and inje
tion point). Time vari-ation of Tr 
an also be taken into a

ount by 
oupling ourmodel to a thermal di�usion model in the ro
k, using al-ternately both models in time. Similarly, it is possibleto 
ouple our 
ode to another one modeling the 
hangeof the geometry of the fra
ture (e.g. be
ause of stress or
hemi
al rea
tions).B. Con
lusionWe have proposed a model of thermal ex
hange be-tween a Newtonian �uid and a hot ro
k, inside a roughfra
ture under a given pressure gradient. The �ow 
on-sidered was assumed to be at low Reynolds number, inlaminar regime, so that Stokes equation and lubri
ationapproximations hold for the mass �ow equations and forthe temperature adve
tion in the heat transport equa-tion. We have then set from basi
 prin
iples the massand heat transport equations, expressed them in a 2Dform, dis
retized them by �nite di�eren
es and solved theresulting systems by bi
onjugate gradient methods. Thewhole numeri
al s
heme 
an be used with any variableaperture �eld without 
onta
t (for instan
e, obtainedfrom real ro
k surfa
es). Here, apertures have been 
ho-sen to be numeri
ally generated, in order to get statis-ti
ally signi�
ant results over more than 20 000 realiza-tions. The aperture �elds are modeled as many naturalones, namely as self-a�ne with a Hurst exponent of 0.8,with various ratio of the aperture �u
tuations over theaverage aperture, and three di�erent aspe
t ratios of thefra
ture. The hydrauli
 and thermal behavior are quan-ti�ed with both lo
al and ma
ros
opi
 apertures: h, γ,and H , Γ.The plot of H as fun
tion of σ/A exhibits some trendsa

ording to the aspe
t ratio and we have been able

to �nd model 
urves. However, around these model
urves, the hydrauli
 behavior is very variable and there-fore, knowing the roughness amplitude, σ/A, these model
urves may not be reliably 
ombined with a model of an-other phenomenon dominated by the hydrauli
 aperture,su
h as the thermal ex
hange. The ma
ros
opi
 thermalaperture Γ vs the roughness amplitude is also highly vari-able, despite trends that are visible on average a

ordingto the aspe
t ratio. The fra
ture, taking into a

ount itsroughness, is either less or more permeable than modelof �at parallel plates with the same me
hani
al aperture.At lo
al and ma
ros
opi
 s
ales, hydrauli
 aperturesare badly 
orrelated with me
hani
al apertures. On the
ontrary, hydrauli
 apertures are highly 
orrelated withthermal apertures, showing that that the thermal behav-ior is mostly determined by the hydrauli
 one for roughfra
tures. Compared to �at fra
tures with equivalent per-meability, for a rough aperture, the �uid almost system-ati
ally needs a longer distan
e to rea
h the temperaturero
k (Γ > H): the heat ex
hange is less e�
ient. Apra
ti
al impli
ation of this general result is that whenfra
ture aperture is assessed on the �eld based on hy-drauli
 transmissivity measurement, obtained e.g. bypumping tests, the e�
ien
y of the thermal ex
hange as-sessed from �at fra
ture models is systemati
ally overes-timated. Using the laws Γ = 0.9H + 0.2A if H < A and
Γ = 3.5H − 2.4A for H ≥ A (Fig. 16) should allow to
orre
t this overestimation.Another important result is that the derived tem-perature in rough 
hannels, when averaged, behaves a
-
ording to the solution of the ma
ros
opi
 equation thatwould be used for �at apertures, Eq. (14). The lo
alroughness of the fra
ture 
an therefore be 
oarse-grained.Doing so, the stru
ture of Eq. (14) is kept; it is sim-ply ne
essary to adjust both the hydrauli
 transmissivityand the thermal length (or the Nusselt number). Forinstan
e, this 
oarse-grained approa
h based on parallelplates laws with adjusted Nusselt numbers 
an be usedfor hydrauli
 and thermal models of fra
ture network.We thank E.G. Flekkøy, S. Roux, K.J. Måløy, J. An-drade Jr., H. Auradou, A. Genter and J. Sauze for fruitfuldis
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