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Abstract- Empirical Mode Decomposition (EMD) is a relatively new method for adaptive

multiscale signal representation. As it allows to adaptively analyze nonlinear and

non-stationary signals, it is widely used in signal processing. Yet, as the standard EMD

method lacks a solid mathematical background, many alternative constructions have been

proposed to define similar decompositions in a more comprehensive way. This paper is in line

with this idea, as it defines a new decomposition that lies on direct constrained optimization.

We show that this new approach gives satisfactory results for narrow-band signals and

preserves the essential characteristics of the original EMD.
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I. I NTRODUCTION

The Empirical Mode Decomposition (EMD), introduced by Huang etal. [1], is a now well-known

data-driven signal processing method. Due to its remarkable efficiency, applications of the EMD cover

many signal processing areas [2], [3]. However, the method is basically an iterative algorithm, called

the sifting process (SP), lacking clear mathematical foundations. Although the SP works quite well in

many practical cases, it depends on ad-hoc parameters. Theselast years, some authors have proposed

to replace the SP by more formal tools, like partial differential equations [4], [5], or by optimization

methods [6], [7]. Some of these alternative approaches sometimes give interesting results, but usually do

not reproduce the main characteristics of the original EMD. Conversely, some other approaches build

improved versions of the SP, by changing the definition of the signal local mean [8], or by refining the

interpolation technique [9].

This paper introduces a new formulation for the EMD that takes advantage of recent advances on the

definition of the signal local mean and that does not lie on the SP. The basic idea of the method is to

replace the SP by a constrained optimization procedure putting a particular emphasis on the initialization

issue. A comparison with other existing methods is carried out in terms of separability of the modes and

of orthogonality index.

II. EMPIRICAL MODE DECOMPOSITION

A. Presentation

Any signals can be split into an oscillating parth, and a less oscillating local meanm. However, such

a decomposition may not have any physical meaning. Following this idea, the EMD aims at adaptively

decomposing a signals into a finite sum of modesh1, . . . , hN and a residuer as follows:

s =
N

∑

k=1

hk + r.

The modeshk, called Intrinsic Mode Functions (IMF’s), are less oscillating with increasingk, whereas

the residue, representing the mean trend of the signal, is monotonic.

In the original method, the IMF’s are defined as ”symmetrical oscillating functions”: an IMF is a

function with positive maxima and negative minima, whose upper envelope (built by interpolation of the

maxima) is symmetric with respect to its lower envelope. The Hilbert transform of the IMF is then used

to define the instantaneous frequency of the signal. The proposed definition of the IMF’s is sound since

these are AM/FM signals with small amplitude and frequency modulation, leading to meaningful Hilbert

transform due to the Bedrosian identity [10].
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B. The Sifting Process

To extract each IMF, the EMD uses an iterative procedure called the sifting process (SP), which consists

in recursively subtracting the ”local mean” of the signal. In that context, it is defined as the average of

the upper and of the lower signal envelopes. More precisely,given a signals, the SP extracts the first

IMF h by puttingh := s, and by recursively computing

h := φ(h) = h −
Emax(h) + Emin(h)

2
. (1)

whereEmin(h) (resp.Emax(h)) is the cubic spline interpolant at the minima (resp. maxima) of h. It

is clear that the convergence of the process would imply thath∞ has symmetrical envelopes. However,

in a cubic spline interpolation framework, the symmetry of the envelopes requires that these are cubic

polynomials on the whole time span [11]. Consequently, the symmetry criterion is much too restrictive.

Therefore, the standard EMD only iteratesφ K times,K being imposed by an ad-hoc stopping criterion.

The stopping criterion can be of Cauchy-type, like in the original definition [1], or it can be related to the

symmetry of the envelopes [12]. The main drawback of the method is that, given one of these stopping

criteria and a signal, there is no theoretical proof that theSP should stop in a finite number of stepsK.

C. Properties of the EMD

We saw that the EMD is a nonlinear adaptive decomposition method. The two main properties of the

decomposition are as follows:

• The EMD has a multiscale nature: the local scale parameter (linked to the instantaneous frequency)

decreases through the sequence(h1, h2, ...). It is even shown in [13] that the EMD behaves on

average like a dyadic filter bank.

• The EMD is a quasi-orthogonal decomposition [1], but no proof of this result is available.

Although these properties are mostly empirical, they make the EMD belonging to the class ofmultiscale,

orthogonal andadaptive decompositions. In this regard, and from a practical point of view, any change

in the original formulation should preserve these characteristics.

III. O PTIMIZATION -BASED EMD FOR NARROW-BAND SIGNALS

In this section, we propose a new approach for the EMD based on constrained optimization that is

mathematically sound and that preserves most of the interesting properties of the original one.
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A. Description

The method consists in finding a splinem of orderk, which is close to the local mean of the signal

s. It will be searched in the spaceΠk
τ : the B-splines of orderk on a subdivisionτ .

We will first build the knot sequenceτ and an approximationm0 of the local mean, and then design

a set of constraintsC and a functionalJ which serve to computem and the first IMFh = s − m. The

optimization problem may formally be written as:

m̂ =











argmin J(m)

m ∈ Πk
τ

⋂

C.

, (2)

In the following paragraphs, we describe the different steps of the method.

1) Computation of m0 and the B-splines space: Let us consider(θ̂i)i=1...L an estimate sequence of

the location of the extrema of the high frequency mode: they are most commonly the extrema of the

signal, but can be of other types, as it will be explained later. To build an approximationm0 of the local

mean of the signal, we first follow the approach of [8], which defines the points(s̄i, t̄i)i=1...L−1 by:

s̄i =
1

θ̂i+1 − θ̂i

∫ θ̂i+1

θ̂i

s(t) dt

t̄i =

∫ θ̂i+1

θ̂i

t|s(t) − s̄i|
2 dt

∫ θ̂i+1

θ̂i

|s(t) − s̄i|2 dt
. (3)

In [8], this computation of the mean envelope replaced the original one in the sifting process. The

numerical results showed better modes separation and less sensitivity to noise. Let us now detail our

construction ofm0 which is based on B-spline interpolation.

In order to definem0 on the whole time span, supposed to be[0, 1], we symmetrize(s̄1, t̄1) with

respect toθ̂1, to get (s̄0, t̄0), and we similarly define the last point(s̄L, t̄L). We then wantm0 to be a

B-spline interpolating theseL + 1 points. We compute after thēti a knot sequence(τi)i=0...L+k using

the classical definition [14]:

• we use multiple knots at the boundaries:τ0 = . . . = τk−1 = t̄0 andτL+1 = . . . = τL+k = t̄L,

• and the following interior single knots:

∀i ∈ k . . . L, τi =
1

k − 1

i−1
∑

j=i+1−k

t̄j . (4)

Note that (4) implies that

∀i ∈ 0 . . . L, Nk
i,τ (t̄i) > 0,
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where Nk
j,τ is the jth B-spline of orderk on the subdivisionτ , with support [τj , τj+k]. With these

condition, the Schoenberg-Whitney theorem shows that thereis a unique interpolation spline of orderk

at the locations̄ti. Note also that the subdivision is as fine as the local scale of the high frequency mode,

so that the error made by the spline interpolation of the low frequency part is small.

With our formalism, the functionm takes the following form:

m =
L

∑

i=0

MiN
k
i,τ , (5)

so that the optimization problem amounts to finding the weights Mi.

2) The constraints: In the original EMD algorithm, the IMFh is defined by the symmetry of its upper

and lower envelopes and by the zero-crossing property: all the maxima are positive and all the minima

are negative.

Let us assume that the extrema ofh are located at(xi)i=1...L. At each pointxi, we define a linear

inequality constraint associated to the symmetry of the upper and lower envelopes ofh. Indeed, let

us defineλi the point with abscissaxi on the linear envelope passing through(xi−1, h(xi−1)) and

(xi+1, h(xi+1)) (see Fig. 1):

λi =
h(xi+1) − h(xi−1)

xi+1 − xi−1
(xi − xi−1) + h(xi−1). (6)
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Fig. 1. Definition ofλi

Of course this definition is valid only fori = 2, · · · , L − 1. We also defineλ1 = h(x2) and λL =

h(xL−1), which amounts to symmetrizingh with respect to its first and last extrema. Note thatλi depends

linearly onh, and also onm, so that it will be denoted byλi(m).
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To take into account the symmetry of the envelopes ofh, we will impose

|h(xi) + λi(m)| ≤ εi.

As the thresholdεi shall be dependent on the local amplitude ofh, it is natural to choose

εi = α|h(xi) − λi(m)|,

whereα is a global parameter. This relation is very similar to that used in the stopping criterion proposed

in [12]: the aim was, in that paper, to iterate the SP until the condition

σ(h)(t) =
|Emax(h)(t) + Emin(h)(t)|

|Emax(h)(t) − Emin(h)(t)|
≤ α (7)

was satisfied for almost allt and whereEmax(h) and Emin(h) are defined at the beginning of section

II.B. Our approach is novel in the following two aspects: first, the constraints have to be verified for all

xi’s but not for all t and second, the computation ofh will not be done through an iterative procedure.

Thus defined, the constraints imposed onh are not linear since, on the one hand, the locations

(xi)i=1,··· ,L of the extrema ofh are a priori unknown and, on the other hand,εi depends onh. To

cope up with these difficulties, we assume thath0 = s − m0 is close enough toh so that we can use

some information on the former approximation to make the constraints linear. Moreover, we replacexi

by the estimateŝθi. More precisely, the optimization problem will be the following:

m̂ =



























argminJ(m)

m ∈ Πk
τ

∀i ∈ 1 . . . L, |λi(m)+(s−m)(θ̂i)|
|λi(m0)−(s−m0)(x0

i
)| ≤ α,

(8)

where(x0
i )i=1···L are the extrema ofs−m0. In that context, it is crucial thatm0 be a correct estimation

of the mean envelope ofs.

Now, let us prove that the set C is non-empty. We will also showthat there exists a splinẽm of

Πk
τ , with coefficientsM̃j , which satisfiesλi(m̃) + (s − m̃)(θ̂i) = 0, i = 1 . . . L. Let us introduce some

notations.

• h(θ̂) is the vector(h(θ̂1), . . . , h(θ̂L))T .

• Λ is the matrix building theλj : we have(Λh(θ̂))j = λj .

• P is the collocation matrix defined byPij = Nk
j,τ (θ̂i). We have the relation(PM̃)j = m̃(θ̂j). We

also haveλi(m̃) = Λ(s(θ̂) − PM̃).

• IL is the identity matrix inR
L×L.
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Now, we see that̃m exists if (IL + Λ)(s(θ̂)−PM̃) = 0. A sufficient condition onM̃ is PM̃ = s(θ̂),

which rewrites

∀i ∈ 1 . . . L, s(θ̂i) = m̃(θ̂i). (9)

In section III-A1, we constrained the knot sequenceτ to satisfy:

∀i ∈ 0 . . . L, Nk
i,τ (t̄i) > 0.

This relation implies:

∀i ∈ 0 . . . L, τi ≤ t̄i ≤ τi+k,

In addition, we have by definition of thēti (3) that

∀i ∈ 1 . . . L, t̄i−1 < θ̂i < t̄i.

It follows that for i ∈ 1 . . . L, eitherNk
i−1,τ (θ̂i) > 0 or Nk

i,τ (θ̂i) > 0. By Schoenberg-Whitney theorem,

there exists at least one spline ofΠk
τ (in fact, many) interpolating at thêθi and also satisfying (9).

In the constraints built here, the envelopes are computed bylinear interpolation, whereas in the original

formulation, smooth envelopes like cubic splines are used.We could wonder, whether to use cubic splines

would improve the results. In this regard, let us first note that, in the original EMD, the mean envelope

is iteratively subtracted to compute the IMF, so that smoothmean envelopes are needed. As we will see

in section IV-B, our method does not need smooth envelopes, as it only imposes the symmetry at some

locations. We thus expect that the error due to linear interpolation is small compared to the parameter

α. In practice, to use cubic spline envelopes improves the results so little, that one shall keep the linear

definition.

3) The functional J: In the original EMD formulation, the SP had two distinct effects: it constrained

the modes to have approximative symmetrical envelopes while it had a regularization effect on the mean

envelopem.

The constraints built in section III-A2 deal with the first aspect. The functional will involve the second

one. It seems natural to choose the simple following term:

J(m) =
∥

∥m′′
∥

∥

2
, (10)

where‖.‖ is the classicalL2 norm.

Among all possible local means designed by the constraints,we will choose the smoothest one. Let us

notice that this functional is quadratic, leading to a unique and easily computable solution: if we denote
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by (Mj) the coefficients ofm, the functional rewrites as

J(M) = MT HM,

with H being the weight matrix defined by

Hij =

∫ 1

0
(Nk

i,τ )
′′(t)(Nk

j,τ )
′′(t) dt.

4) Estimation of the extrema θ̂i: First note that the constraintsC are meaningful only when the

number of the extrema estimatêθ equals that of the HF component. Then, an accurate estimateθ̂ is all

the more important since we use the approximationm0 (depending on̂θ) in the optimization procedure

(see formula (3)).

Note that, in the original formulation, the estimateθ̂ is set to the extrema of the signal. The role of

the sifting process is then to iteratively move these pointstowards the locations of the extrema of the

IMF. As in our optimization problem there is no iterative procedure, our concern is to detect with a very

good accuracy all the extrema of the HF mode.
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Fig. 2. (A): Difference|t| − |θ| between the number of extrema of the signals and that of the HF modes1, for different

values ofa andf . The number of extrema of the HF mode is well determined by|t| whenaf < 1 (white area). (B): the same

computation usingt(2) instead oft: draw of |t(2)| − |θ|. The number of extrema of the HF component is well determined when

af3 < 1. (C): the same computation usingt(4) instead oft: draw of |t(4)| − |θ|. The number of extrema of the HF component

is well determined whenaf5 < 1.

As remarked in [9], the location of the extrema of even order derivatives ofs are more likely to provide

a better approximation of the location of the extrema ofh than that of the original signal. In [9], the case

of the estimation of the location of the extrema ofh by that ofs(2) is investigated whens is as follows:

s(t) =
P

∑

i=1

ai cos(2fiπt),
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wherefi is assumed to be decreasing withi. It is proved there, using a maximal deviation argument that

the locations of the extrema ofs1(t) = a1 cos(2f1πt) are better estimated by the location of the extrema

of s(2) than by that ofs. However, from a practical point of view, the maximal deviation may not be

enough informative. To be convinced of that, let us considerthe following simple two-tones signal:

s(t) = cos(2πt) + a cos(2πft) 0 < f < 1 a ∈ R+. (11)

If we refer to Proposition 1 of [15], whenaf < 1 the extrema rate ofs is exactly the same as that

of the high frequency (HF) component, while whenaf2 > 1 the extrema rate ofs is exactly the same

as that of the low frequency (LF) component. This proposition can easily be generalized to higher order

derivatives. Indeed, let us assume thats(2k) admits an extremum att0:

s(2k+1)(t0) ∝ sin(2πt0) + af2k+1 sin(2πft0) = 0,

the derivative of order2k + 2 reads:

s(2k+2)(t) ∝ cos(2πt) + af2k+2 cos(2πft)

Then, we may write

|af2k+2 cos(2πft0)| < | cos(2πt0)| if af2k+1 < 1

|af2k+2 cos(2πft0)| > | cos(2πt0)| if af2k+2 > 1,

the proof being the same as Proposition 1 of [15]. To summarize, the number of extrema ofs(2k+1) equals

the number of extrema of the HF (resp. LF) component whenaf2k+1 < 1 (resp.af2k+2 > 1) because

the sign ofs(2k+2) at t0 is the same as that of the second derivative of the HF (resp. LF) component.

The separation of the(a, f)-plane by the curvesaf2k+1 = 1 is illustrated on Figure 2, for different

derivation orders. We plot the difference between the number of extrema ofs(2k) and of the HF component

s1, for different ordersk.

It is clear that the derivation decreases the contribution of the low frequency part in the signal, therefore

a better extrema estimation is obtained by using higher derivation order. However, we are aware that in

doing so, the noise is magnified. This leads us to build a trade-off procedure that determines a good

derivation order. This procedure consists in computing the smallestk such thats(2k) has as many extrema

as the HF mode and is as follows.

Let us denote byt (resp.t(2), t(4)) the locations of the extrema ofs (resp.s(2), s(4)) and by|X| the

cardinal of the setX. The procedure to compute thêθi, estimates of the extrema of the HF mode, is the

following:
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• If |t| = |t(2)|, then θ̂ = t.

• Otherwise, if|t(2)| = |t(4)| and |t(2)| > |t|, then θ̂ = t(2).

• Otherwise,θ̂ = t(4).

To compute the second order derivative, we use the followingfourth order formula:

s′′(t) ≈ −s(t−2δ)+16s(t−δ)−30s(t)+16s(t+δ)−s(t+2δ)
12δ2

(12)

whereδ is the sampling period. The fourth order derivative is obtained by iterating this formula. On the

boundaries, we use a shifted version of (12). Let us remark that δ must neither be too large, to avoid

discretisation errors, nor too small, to avoid numerical errors caused by the roundoff unit. Note also that,

to remove from our study potential sampling artifacts, we take the sampling rate at least equal to five

times the Nyquist rate [16].
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Fig. 3. Result of the selection method for the derivative order. From left to right, we display the regions where eithert (in

black), t(2) (in gray) or t(4) (in white) are chosen.

The results of this procedure of automatic selection of the order of derivation are displayed on Figure 3

for the signal defined in (11). Each region corresponds to a particular value forθ̂ (i.e. θ̂ ∈ {t, t(2), t(4)}).

Comparing this figure with previous graphics, we can concludethat this process manages to find the

right number of extrema untilaf4 < 1. Then, if af4 > 1, we note that̂θ = t, which means that the HF

mode cannot be separated from the rest of the signal. We couldhave expected the method to separate

the HF mode from the rest of the signal untilaf5 = 1 which could be done usingt(4). However, in the

domainaf5 < 1 < af4, t = t(2) and corresponds to the number of extrema of the LF component, so

that t is chosen.
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Finally, to build the mean envelope, the classical EMD approach uses cubic splines. In our case,

such a choice (i.e.k = 4) would only be relevant for the extraction of the first IMF, butfor complete

decomposition, it is necessary to increase the order of the interpolation spline. Indeed, as the second

IMF is extracted fromm, if it were a cubic spline, the estimation of the extrema cannot be done using

high order derivatives anymore. A possible solution would be to increase the order of the splines in the

method, taking for examplek = 6.

IV. RESULTS AND EXPERIMENTS

In the following tests, we will call our method ”OS” for Optimization on Splines. The method ”EMD”

is the standard EMD computed with the code defined in [12]. In order to highlight the importance of

the choice form0 on the different algorithms we also compute a modified versionof the EMD, called

”EMD-NI”. The EMD-NI method is the standard EMD applied toh0 = s−m0, wherem0 is computed

using the approximation introduced at the begining of section III, with the improved estimation of the

extrema of the HF mode.

A. Mode Mixing
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Fig. 4. (A): Computation of the mode separation with the proposed optimization algorithm (α = 0.02), (B): Computation

of the mode separation with the classical EMD algorithm, (C): Computation ofthe EMD on the signals − m0 wherem0 is

computed using as in the optimization procedure.

We now illustrate the improvement brought about by using adaptively the order of derivative to build

m0 in terms of mode separation, when the signals is defined by (11). We shall then deduce that using

higher order derivatives enables to better separate the HF component from the rest of the signal with an

EMD-type algorithm. To measure this, we compute the cross-correlation between the obtained IMF and
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the desired mode as follows

C1 =
‖s1 − h‖

‖s2‖
, (13)

wheres1 = cos(2πt) ands2 = a cos(2πft), which was already used in [15]. In the EMD-type method,

the stopping criterion is that introduced in [12] which is based on two thresholdsα and β aimed at

guaranteeing globally small fluctuations in the mean while taking into account locally large excursions.

Considering the functionσ defined in (7), this amounts to iterate sifting untilσ(h)(t) < α for some

prescribed fraction1 − γ of the total duration, whileσ(h)(t) < β for the remaining fraction. One

typically setsα ≈ 0.05, β = 10α and γ = 0.05. For the sake of fair comparison, the value of the

parametersα in the optimization problem (8) and in the standard EMD is set to 0.02. The result of the

optimization procedure is shown on Figure 4 (A), while the separation results are shown for the original

EMD on Figure 4 (B). To take into account, in the original EMD algorithm, that higher order derivatives

may enable better HF component separation from the rest of the signal when the number of extrema

of s is lower than that ofs1, we compute the original EMD changing the first estimation of the mean

envelope ofs by the cubic spline interpolant at(t̄i, s̄i) where t̄i is computed in the same way as in the

initialization of the optimization procedure. This new version of the EMD is called EMD-NI, and the

results are depicted on Figure 4 (C).

These numerical results confirm the theoretical expectation:the separation of the mode depends on the

order2k of the derivative used to compute the initial mean envelope,and the region where HF and LF

components are not well separated indeed corresponds toaf2k+1 < 1 and toaf2k+2 > 1. To consider

higher order derivatives significantly improves the modes separation and we note that our method behaves

similarly to the improved EMD algorithm in terms of separation (Figure 4 (B) and (C)).

B. Narrow-Band Signal Separation

In this section, we evaluate different methods on narrow-band signal separation, that is we consider:

s(t) =
∑

i=1

si(t),

wheresi is an AM/FM sinusoidal component. We assume that the components are well separated in the

frequency domain: for eacht, all si have distinct frequencies. Moreover, we suppose that each component

satisfies the Bedrosian identity, so that we can write

si(t) = ai(t) sin(φi(t) + φ0),
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Fig. 5. (A): the three componentss1, s2, s3 of the test signals, (B): the corresponding frequency representation.
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Fig. 6. (A): Result of the method: we display the drafth0, the solutionh of the optimization procedure and the HF mode

s1 for a fraction ofs. (B): Computation of (14) when the first mode is computed from the signal of Figure 5 using different

methods.

whereai andφi are the instantaneous amplitude and phase. A typical example signal is shown on Figure 5

(A) along with its frequency representation. For such a signal, due to the absence of frequency interference

the signalssi can be considered as uniquely defined and the different methods should separate them

well. In this regard, we compare our new optimization approach to EMD-like algorithms. We compare
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the convergence tos1 of the above introduced different methods computing:

log10(
‖s1 − hn‖

2

‖s1‖
2 ), (14)

hn being the pseudo-mode obtained aftern sitfing iterations in EMD-like algorithms (EMD and EMD-

NI). Of course,n = 1 for the optimization process we propose, since the procedure is not iterative. The

results of Figure 6 (B) shows the convergence of the original EMD to someh, which is definitely not

s1. To make a fair comparison with our method and since it is wellknown that, when the number of

extrema is not correct at the first iteration, the sifting process may not converge, we also computed the

EMD starting fromh0 = s − m0, m0 being computed as at the end of section III. We again notice that

the EMD converges towards a mode which is nots1. On the contrary, our new optimization method OS

computes a first modeh1 closer tos1.

C. Variations on the Set of Constraints in the Optimization Method

In this section, we compare the set of constraints used in ouroptimization procedure to that is used

in [7]. Contrary to what is done in the current paper, the constraints in [7] where both of equality and

inequality types. For the sake of consistency, we briefly recall how these constraints where designed for

any signals with extrema located atti’s. We consider the signalh0 = s − m0, wherem0 is defined as

previously, and where(ti) are this time the extrema ofh0. The idea developed in [7] is then to compute

the first modeh from h0. In what follows, we denote bymh the sought mean envelope ofh.

Assume thath0(ti) is a minimum forh0 and thath0(ti) is an extremum for the sequence(h0(ti−2), h0(ti),

h0(ti+2)). Whenh0(ti) is an extremum for the latter sequence, the shape of the lowerlinear envelope

is used to derive that of the upper. Indeed, lett̃i be the abscissa of the intersection (when it exists) of

the straight linesL1 : f1(t) = h0(ti)−h0(ti−2)
ti−ti−2

t + h0(ti−1)(ti−ti−2)−(h0(ti)−h0(ti−2))ti−1

ti−ti−2
and L2 : f2(t) =

h0(ti+2)−h0(ti)
ti+2−ti

t + h0(ti+1)(ti+2−ti)−(h0(ti+2)−h0(ti))ti+1

ti+2−ti

. If t̃i > ti, one imposes(1/2)(f1(ti) + h0(ti)) =

mh(ti). Otherwise, one sets(1/2)(f2(ti) + h0(ti)) = mh(ti). The same kind of computation can be

carried out whenh0(ti) is an maximum forh0 inverting the role of the upper and lower envelopes. This

leads to a certain set of equality constraints.

Now, when the sequence(h0(ti−2), h0(ti), h0(ti+2)) is monotonic, it gives rise to inequality constraints.

Assume thath0 has a minimum atti (the following reasoning also holds whenh0 has a maximum atti).

The symmetrical pointPi of (ti, h0(ti)) with respect to(ti, mh(ti)) is (ti, 2mh(ti) − h0(ti)). Following

the classical EMD formulation,Pi should therefore belong to the upper envelope. As(ti−1, h0(ti−1))
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and (ti+1, h0(ti+1)) belong to the upper envelope, to preserve the monotonicity of the data, we impose:

min(h0(ti−1), h0(ti+1)) + h0(ti)

2
≤ mh(ti)

mh(ti) ≤
max(h0(ti−1), h0(ti+1)) + h0(ti)

2
.

These conditions, together with the cases whereh0(ti) is a maximum, leads to a set of inequality

constraints. To compare this approach to that we have just developed, we replace the constraintsC in

(8) by the above set of constraints, and we assume thatmh is a piecewise cubic polynomial on the

subdvision defined by theti, then it is entirely equivalent to the dataΛ = (mh(ti), m
′
h(ti))i=1,··· ,L. The

functional used to computemh was thenJ̃(m) = ‖m′‖2. Minimizing J̃ subject to above mentioned

equality and inequality constraints, we obtainm̂h and then defineh := h0 − m̂h. We display the result

of this procedure, called ”MP07”, on Figure 6 (B), where we see that the obtained modeh does not

estimates1 as accurately as the newly proposed method.

D. Entire decomposition and quasi-orthogonality
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Fig. 7. (A): Result of the decomposition of the signals of Figure 5 using the standard EMD. (B): result of the OS method on

the same signal.

Another major criterion to appreciate the quality of the decomposition is the orthogonality index,
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defined by

io =
1

‖s‖2

∑

1≤i<j≤N

〈hi, hj〉 ,

wheres is the signal and(hi)i its IMF’s.

On Figure 7, the entire decomposition of the signal defined on Figure 5 is displayed using either the

original EMD or the new version we propose. The results exhibitvery similar orthogonality index:0.025

for the standard EMD and0.035 for our method.

V. CONCLUSION

In this paper, we have introduced a new method to compute the intrinsic mode functions in the empirical

mode decomposition based on an optimization procedure. Doing so, we avoid the classical problem

posed by the convergence of the so-called sifting process that is the basis to the original EMD. We have

shown that the proposed decomposition is adaptive, separates the modes better than the original EMD

and leads to similar orthogonality indices. An extension tothe bidimensional case looks, at first sight,

relatively straightforward: indeed the constraints extend readily to interpolating functions on Delaunay

triangulations, as used in [17]. This should be therefore thesubject for further development.
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