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Abstract- Empirical Mode Decomposition (EMD) is a relatively new medhfor adaptive
multiscale signal representation. As it allows to adapyiamalyze nonlinear and
non-stationary signals, it is widely used in signal prooegsYet, as the standard EMD
method lacks a solid mathematical background, many aligeneonstructions have been
proposed to define similar decompositions in a more compsae way. This paper is in line
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. INTRODUCTION

The Empirical Mode Decomposition (EMD), introduced by Huangakt[1], is a now well-known
data-driven signal processing method. Due to its remaekafficiency, applications of the EMD cover
many signal processing areas [2], [3]. However, the metlsodaisically an iterative algorithm, called
the sifting process (SP), lacking clear mathematical fouadst Although the SP works quite well in
many practical cases, it depends on ad-hoc parameters. Tdstsgears, some authors have proposed
to replace the SP by more formal tools, like partial differ@néquations [4], [5], or by optimization
methods [6], [7]. Some of these alternative approaches smeefive interesting results, but usually do
not reproduce the main characteristics of the original EMDn¥@rsely, some other approaches build
improved versions of the SP, by changing the definition of tigaalilocal mean [8], or by refining the
interpolation technique [9].

This paper introduces a new formulation for the EMD that talchsaatage of recent advances on the
definition of the signal local mean and that does not lie on theT8P basic idea of the method is to
replace the SP by a constrained optimization procedurengudtiparticular emphasis on the initialization
issue. A comparison with other existing methods is carriedim terms of separability of the modes and

of orthogonality index.

II. EMPIRICAL MODE DECOMPOSITION
A. Presentation

Any signals can be split into an oscillating pakt and a less oscillating local mean However, such

a decomposition may not have any physical meaning. Follgwiis idea, the EMD aims at adaptively

decomposing a signal into a finite sum of modes, ..., hy and a residue as follows:
N
s = Z hi + 7.
k=1

The modegshy, called Intrinsic Mode Functions (IMF’s), are less osciltgtiwith increasingt, whereas
the residue, representing the mean trend of the signal, rotanic.

In the original method, the IMF's are defined as "symmetricaliltaging functions”. an IMF is a
function with positive maxima and negative minima, whosearpenvelope (built by interpolation of the
maxima) is symmetric with respect to its lower envelope. Thibétt transform of the IMF is then used
to define the instantaneous frequency of the signal. The pedpdsfinition of the IMF's is sound since
these are AM/FM signals with small amplitude and frequencyutation, leading to meaningful Hilbert

transform due to the Bedrosian identity [10].
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B. The Sfting Process

To extract each IMF, the EMD uses an iterative procedureatdtie sifting process (SP), which consists
in recursively subtracting the "local mean” of the signal.that context, it is defined as the average of
the upper and of the lower signal envelopes. More precig@gn a signals, the SP extracts the first

IMF h by putting h := s, and by recursively computing

Emax(h) + Emln(h) ]

hi=¢(h) =h— .

(1)

where Eyin (h) (resp. Emax(h)) is the cubic spline interpolant at the minima (resp. mayiwfah. It
is clear that the convergence of the process would imply ihathas symmetrical envelopes. However,
in a cubic spline interpolation framework, the symmetry loé envelopes requires that these are cubic
polynomials on the whole time span [11]. Consequently, §marsetry criterion is much too restrictive.
Therefore, the standard EMD only iteratgd< times, K being imposed by an ad-hoc stopping criterion.
The stopping criterion can be of Cauchy-type, like in the inagdefinition [1], or it can be related to the
symmetry of the envelopes [12]. The main drawback of the ntkthdhat, given one of these stopping

criteria and a signal, there is no theoretical proof that3Reshould stop in a finite number of stefis

C. Properties of the EMD

We saw that the EMD is a nonlinear adaptive decomposition ogetfihe two main properties of the

decomposition are as follows:

« The EMD has a multiscale nature: the local scale parametéeito the instantaneous frequency)
decreases through the sequerige, ho, ...). It is even shown in [13] that the EMD behaves on
average like a dyadic filter bank.

« The EMD is a quasi-orthogonal decomposition [1], but no prdoth@s result is available.

Although these properties are mostly empirical, they mhke&MD belonging to the class ofultiscale,

orthogonal and adaptive decompositions. In this regard, and from a practical pofntiew, any change

in the original formulation should preserve these charasties.

I11. OPTIMIZATION-BASED EMD FOR NARROW-BAND SIGNALS

In this section, we propose a new approach for the EMD basedoostrained optimization that is

mathematically sound and that preserves most of the iniegegroperties of the original one.
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A. Description

The method consists in finding a spline of order k, which is close to the local mean of the signal
s. It will be searched in the spadé’: the B-splines of ordek on a subdivisionr.

We will first build the knot sequence and an approximatiom, of the local mean, and then design
a set of constraint§’ and a functional/l which serve to compute: and the first IMFh = s — m. The

optimization problem may formally be written as:

argmin J(m)
mo= : (2)
m eIk NC.

In the following paragraphs, we describe the different stepthe method.

1) Computation of mq and the B-splines space: Let us considerd;),—;. ;, an estimate sequence of
the location of the extrema of the high frequency mode: theyraost commonly the extrema of the
signal, but can be of other types, as it will be explainedrldie build an approximatiom:, of the local

mean of the signal, we first follow the approach of [8], whicliimes the pointgs;,¢;);—1...—1 by:

1 0it1
Oir1 — 0; Jo:

[P ts(t) - sif d

. (3)
Lt |s(t) = 52t
In [8], this computation of the mean envelope replaced thigiral one in the sifting process. The

Sl
S
Il

numerical results showed better modes separation and éesdigity to noise. Let us now detail our
construction ofmg which is based on B-spline interpolation.

In order to definem, on the whole time span, supposed to [bel], we symmetrize(s;,¢1) with
respect tod;, to get (5o, t0), and we similarly define the last poift,,¢;). We then wantn, to be a
B-spline interpolating thesé + 1 points. We compute after thig a knot sequencér;);—g.... 1+« using
the classical definition [14]:

« we use multiple knots at the boundaries:=... =7, 1 =tp andrpy1 = ... = 704 = {1,

« and the following interior single knots:
Viek. . L 7i=1—F > (4)

Note that (4) implies that
Vie0...L, N'.(t;) >0,
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where N}j’T is the j** B-spline of orderk on the subdivisionr, with support [7j, Tj+x). With these
condition, the Schoenberg-Whitney theorem shows that tiseaeunique interpolation spline of ordér
at the locationg;. Note also that the subdivision is as fine as the local scaleeohigh frequency mode,
so that the error made by the spline interpolation of the Imgdency part is small.

With our formalism, the functionn takes the following form:

L
m = Y MNF, (5)
—
so that the optimization problem amounts to findoing the waigl}.

2) The constraints: In the original EMD algorithm, the IMF is defined by the symmetry of its upper
and lower envelopes and by the zero-crossing propertyhalimiaxima are positive and all the minima
are negative.

Let us assume that the extrema/ofare located afz;);—1..r. At each pointx;, we define a linear
inequality constraint associated to the symmetry of theeugmd lower envelopes dif. Indeed, let
us define)\; the point with abscissa; on the linear envelope passing througt_;, h(x;—1)) and
(xig1, h(zit1)) (see Fig. 1):
h(@it1) — h(wi—1)

)\z‘ = (JTZ — xi_l) =+ h((L‘i_l). (6)
Ti+1 — Ti—1
1 T T T

0.8f B
0.6
0.4r
0.2

€ o0
-0.2
-0.41
0.6 .
-0.8
A 15 % 25 3

Fig. 1. Definition of \;
Of course this definition is valid only foi = 2,--- ,L — 1. We also define\; = h(zz) and A\;, =

h(zr—1), which amounts to symmetrizingwith respect to its first and last extrema. Note thatlepends

linearly onh, and also onn, so that it will be denoted by;(m).
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To take into account the symmetry of the envelopes,ofve will impose
[h(zi) + Ai(m)] < &

As the threshold:; shall be dependent on the local amplitudehofit is natural to choose
gi = alh(z;) — Ai(m)],

where« is a global parameter. This relation is very similar to thaadug the stopping criterion proposed
in [12]: the aim was, in that paper, to iterate the SP until tbedition

_ Buax()(#) + B (W) (®)] _
= B (1) (1) — Euin()(0)] = (7)

was satisfied for almost all and whereFE,,«x(h) and E.,;,(h) are defined at the beginning of section

a(h)(t)

[I.B. Our approach is novel in the following two aspects: fitsie constraints have to be verified for all
x;'s but not for allt and second, the computation bfwill not be done through an iterative procedure.
Thus defined, the constraints imposed lnare not linear since, on the one hand, the locations
(xi)i=1,...,, of the extrema ofh are a priori unknown and, on the other hang, depends or.. To
cope up with these difficulties, we assume thgt= s — mg is close enough t& so that we can use
some information on the former approximation to make thestraimts linear. Moreover, we replaag

by the estimates;. More precisely, the optimization problem will be the foling:
argmin.J(m)

m= meﬂﬁ (8)

: i (m)+(s=m) (6:)]|
Viel...L, I (m0)—(s—mo) (@)] < a,

where(2?),—1..., are the extrema of — my. In that context, it is crucial that,y be a correct estimation
of the mean envelope of

Now, let us prove that the set C is non-empty. We will also shbat there exists a spling: of
I, with coefficientsM;, which satisfies\; (/) + (s — m)(6;) = 0,i=1...L. Let us introduce some
notations.

o h(0) is the vector(h(f:),...,h(0L))T.

« A is the matrix building the\;: we have(Ah(f)); = ;.

o P is the collocation matrix defined bf;; = N*_(d;). We have the relatiofiPM); = 1 (0;). We

also have\;(m) = A(s(f) — PM).

o I is the identity matrix inR-<L-,
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Now, we see thafi exists if (I, + A)(s(d) — PM) = 0. A sufficient condition onl is PM = s(0),

which rewrites
Viel...L, s(6;) = m(6;). (9)
In section 1lI-Al, we constrained the knot sequenct satisfy:
Vi€O0...L, Nf'.(t;) > 0.

This relation implies:

VieO...L, 7 <t < Titk,
In addition, we have by definition of thg (3) that
Viel...L, Ei—l <éi <EZ'.

It follows that fori € 1... L, either N* , _(6;) > 0 or N¥_(6;) > 0. By Schoenberg-Whitney theorem,
there exists at least one splineaf (in fact, many) interpolating at thé and also satisfying (9).

In the constraints built here, the envelopes are computdihégr interpolation, whereas in the original
formulation, smooth envelopes like cubic splines are ugéacould wonder, whether to use cubic splines
would improve the results. In this regard, let us first notd,thmathe original EMD, the mean envelope
is iteratively subtracted to compute the IMF, so that smaon#an envelopes are needed. As we will see
in section IV-B, our method does not need smooth envelope#, aly imposes the symmetry at some
locations. We thus expect that the error due to linear iolatpn is small compared to the parameter
a. In practice, to use cubic spline envelopes improves thelteeso little, that one shall keep the linear
definition.

3) The functional J: In the original EMD formulation, the SP had two distinct effedt constrained
the modes to have approximative symmetrical envelopesvithilad a regularization effect on the mean
envelopem.

The constraints built in section I1I-A2 deal with the first aspdhe functional will involve the second

one. It seems natural to choose the simple following term:
2
J(m) = [|m"||", (10)

where||.| is the classical? norm.
Among all possible local means designed by the constraidsyill choose the smoothest one. Let us

notice that this functional is quadratic, leading to a ueigund easily computable solution: if we denote
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by (M;) the coefficients ofn, the functional rewrites as
J(M)=MTHM,
with H being the weight matrix defined by

1
1, = [ (NE) W) @) dr

4) Estimation of the extrema 6;: First note that the constraints are meaningful only when the
number of the extrema estimaleequals that of the HF component. Then, an accurate estifiatell
the more important since we use the approximatian(depending ord) in the optimization procedure
(see formula (3)).

Note that, in the original formulation, the estimaids set to the extrema of the signal. The role of
the sifting process is then to iteratively move these poaiotgards the locations of the extrema of the
IMF. As in our optimization problem there is no iterative pedlure, our concern is to detect with a very

good accuracy all the extrema of the HF mode.

0

0

-100
08 -100

0.8 0.8

-100
-200
-200

0.6 0.6

-300 -
0.4

-300 0.6 -200

-400

0.4 0.4
-300

-500 -400

0.2 0.2 0.2
-600
=500 -400

-700

-2 -1 -2 -1 0 1 2 @y -2 -1 0 1 2 |

2
[tI-l6] a(log, ) a(log, )

0
a(log, )

(A) (B) (C)

Fig. 2. (A): Difference|t| — |0| between the number of extrema of the sigeadnd that of the HF mode;, for different
values ofa and f. The number of extrema of the HF mode is well determinedtpywhenaf < 1 (white area). (B): the same
computation using‘® instead oft: draw of |t®)| — ||. The number of extrema of the HF component is well determined when
af® < 1. (C): the same computation using’ instead oft: draw of [t*)| — |6|. The number of extrema of the HF component

is well determined whemf° < 1.

As remarked in [9], the location of the extrema of even ords=ivétives ofs are more likely to provide
a better approximation of the location of the extrema dhan that of the original signal. In [9], the case

of the estimation of the location of the extremaroby that of s(?) is investigated wheas is as follows:

P
s(t) = Z a; cos(2f;mt),

i=1
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where f; is assumed to be decreasing witht is proved there, using a maximal deviation argument that
the locations of the extrema of (t) = a; cos(2fi7t) are better estimated by the location of the extrema
of s than by that ofs. However, from a practical point of view, the maximal deigatmay not be

enough informative. To be convinced of that, let us consttlerfollowing simple two-tones signal:
s(t) = cos(2mt) +acos(2mft) 0< f<1lae€R;. (11)

If we refer to Proposition 1 of [15], whenf < 1 the extrema rate of is exactly the same as that
of the high frequency (HF) component, while wheyi> > 1 the extrema rate of is exactly the same
as that of the low frequency (LF) component. This propositiom €asily be generalized to higher order

derivatives. Indeed, let us assume th&f) admits an extremum at;:
s (10) o sin(27to) + af 2+ sin(2n ftg) = 0,
the derivative of ordek + 2 reads:
s 2 (1) o cos(2mt) + a2 cos(2nm ft)
Then, we may write
laf? 2 cos(27 fto)| < | cos(2mto)| if af* ™ <1
laf?* T2 cos(27 ft)| > | cos(2mt0)] if af*+2 > 1,

the proof being the same as Proposition 1 of [15]. To summatfizenumber of extrema af2**1) equals
the number of extrema of the HF (resp. LF) component whgtft! < 1 (resp.af?**2 > 1) because
the sign ofs(2k12) at ¢, is the same as that of the second derivative of the HF (resp. afiponent.

The separation of théa, f)-plane by the curves f?**! = 1 is illustrated on Figure 2, for different
derivation orders. We plot the difference between the nurabextrema ofs(2¥) and of the HF component
s1, for different ordersk.

It is clear that the derivation decreases the contributich®low frequency part in the signal, therefore
a better extrema estimation is obtained by using highevaléoin order. However, we are aware that in
doing so, the noise is magnified. This leads us to build a tréfdprocedure that determines a good
derivation order. This procedure consists in computing thallestk such thats(?*) has as many extrema
as the HF mode and is as follows.

Let us denote by (resp.t(?), t(¥)) the locations of the extrema af (resp.s(®, s and by|X| the
cardinal of the sef{. The procedure to compute tie estimates of the extrema of the HF mode, is the

following:
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o If |t| = [t®)], thend =1t.

« Otherwise, if[t®| = [t®| and [t@)| > |¢|, thend = (2.

« Otherwise,d = (&,

To compute the second order derivative, we use the folloidngth order formula:

s (t) ~ —s(t—26)+165(t—6)—?g§£t)+165(t+6)—s(t.:,_gg) (12)

whered is the sampling period. The fourth order derivative is ol#ditby iterating this formula. On the

boundaries, we use a shifted version of (12). Let us remarkdtmaust neither be too large, to avoid
discretisation errors, nor too small, to avoid numericabiesr caused by the roundoff unit. Note also that,
to remove from our study potential sampling artifacts, wieetthe sampling rate at least equal to five

times the Nyquist rate [16].

Fig. 3. Result of the selection method for the derivative order. Froimtdefight, we display the regions where eithe(in

black), t® (in gray) or¢*® (in white) are chosen.

The results of this procedure of automatic selection of tliewoof derivation are displayed on Figure 3
for the signal defined in (11). Each region corresponds to acpéat value ford (i.e. 0 € {t,t® t®}).
Comparing this figure with previous graphics, we can conclindé this process manages to find the
right number of extrema untitf* < 1. Then, ifaf* > 1, we note that) = t, which means that the HF
mode cannot be separated from the rest of the signal. We d¢wmve expected the method to separate
the HF mode from the rest of the signal untjf> = 1 which could be done using®). However, in the
domainaf® < 1 < af*, t = t®? and corresponds to the number of extrema of the LF component, s

that¢ is chosen.
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Finally, to build the mean envelope, the classical EMD approases cubic splines. In our case,
such a choice (i.ek = 4) would only be relevant for the extraction of the first IMF, bat complete
decomposition, it is necessary to increase the order of itepolation spline. Indeed, as the second
IMF is extracted fromm, if it were a cubic spline, the estimation of the extrema carbe done using
high order derivatives anymore. A possible solution woutdtd increase the order of the splines in the

method, taking for examplé = 6.

IV. RESULTS AND EXPERIMENTS

In the following tests, we will call our method "OS” for Optization on Splines. The method "EMD”
is the standard EMD computed with the code defined in [12]. Ireotd highlight the importance of
the choice formg on the different algorithms we also compute a modified versibthe EMD, called
"EMD-NI". The EMD-NI method is the standard EMD applied &g = s — mg, wherem, is computed
using the approximation introduced at the begining of sectll, with the improved estimation of the

extrema of the HF mode.

A. Mode Mixing

Separation power, OS, automatic selection of derivation order Separation power, Standard EMD with stopping criteria Separation power, EMD-NI
1 1

af=1

af’=1
0.8 —af’=1
—af'=1 08

1 2

0 0
a(log, ) a(log, ;)

(A) (B) ©)

Fig. 4. (A): Computation of the mode separation with the proposed optimizatigorithm ¢ = 0.02), (B): Computation
of the mode separation with the classical EMD algorithm, (C): ComputatiahefEMD on the sighak — mo wherem, is

computed using as in the optimization procedure.

We now illustrate the improvement brought about by usingotidely the order of derivative to build
mg in terms of mode separation, when the signa$ defined by (11). We shall then deduce that using
higher order derivatives enables to better separate theddfpanent from the rest of the signal with an

EMD-type algorithm. To measure this, we compute the crosseltadion between the obtained IMF and
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the desired mode as follows

_ lls1 = Al

C'1 - ’ (13)
[[s2]]

where s; = cos(2nt) and so = a cos(27 ft), which was already used in [15]. In the EMD-type method,
the stopping criterion is that introduced in [12] which issbd on two thresholda and g aimed at
guaranteeing globally small fluctuations in the mean whilén into account locally large excursions.
Considering the functior defined in (7), this amounts to iterate sifting unti(h)(¢) < o for some
prescribed fractionl — ~ of the total duration, whiles(h)(t) < § for the remaining fraction. One
typically setsa ~ 0.05, 3 = 10a and~y = 0.05. For the sake of fair comparison, the value of the
parametersy in the optimization problem (8) and in the standard EMD is sdl.02. The result of the
optimization procedure is shown on Figure 4 (A), while theasapon results are shown for the original
EMD on Figure 4 (B). To take into account, in the original EMD aitfum, that higher order derivatives
may enable better HF component separation from the resteokitinal when the number of extrema
of s is lower than that ofs;, we compute the original EMD changing the first estimation & thean
envelope ofs by the cubic spline interpolant &t;, 5;) wheret; is computed in the same way as in the
initialization of the optimization procedure. This new vers of the EMD is called EMD-NI, and the
results are depicted on Figure 4 (C).

These numerical results confirm the theoretical expectatimseparation of the mode depends on the
order 2k of the derivative used to compute the initial mean envel@pel the region where HF and LF
components are not well separated indeed correspondg?td! < 1 and toaf?**2 > 1. To consider
higher order derivatives significantly improves the modgmsation and we note that our method behaves

similarly to the improved EMD algorithm in terms of separati@-igure 4 (B) and (C)).

B. Narrow-Band Sgnal Separation

In this section, we evaluate different methods on narrondbsignal separation, that is we consider:

s(t) = - sil0),

=1
wheres; is an AM/FM sinusoidal component. We assume that the compsreaga well separated in the

frequency domain: for each all s; have distinct frequencies. Moreover, we suppose that eacipenent

satisfies the Bedrosian identity, so that we can write

si(t) = ai(t) sin(¢i(t) + ¢o),
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signal s and its components S, S, and S, Test signal s
10 . . . . . 800
3
700
600 25
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500k %
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g ?\ 15
300 \
\
1
200+
2
o’ 0 1000 05
2 . . ) .
0 0.2 0.4 0.6 0.8 1 0 . . . . )
t 0 0.2 0.4 0.6 0.8 1Amplitude
time
Fig. 5. (A): the three components, s3, s3 of the test signak, (B): the corresponding frequency representation.
Draft and solution of the method Comparison between different methods, for signal s
051
15F hy —e— EMD
h —&— EMD-NI
s o —#— MPO7
1k I os
N i ; _ -05F
05t A 3
A 4 ! N
! i <
I (. E -1f
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Fig. 6.

(A): Result of the method: we display the draft, the solutionh of the optimization procedure and the HF mode

s1 for a fraction ofs. (B): Computation of (14) when the first mode is computed from the sigh&igure 5 using different

methods.

wherea; andg; are the instantaneous amplitude and phase. A typical exasigital is shown on Figure 5

(A) along with its frequency representation. For such aaigiue to the absence of frequency interference

the signalss; can be considered as uniquely defined and the different metbloduld separate them

well. In this regard, we compare our new optimization apphoto EMD-like algorithms. We compare

January 6, 2011
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the convergence te; of the above introduced different methods computing:

—hy, 2
OglO(M% (14)
[[s1]l

h, being the pseudo-mode obtained aftesitfing iterations in EMD-like algorithms (EMD and EMD-
NI). Of course,n = 1 for the optimization process we propose, since the proeeidunot iterative. The
results of Figure 6 (B) shows the convergence of the originaDE someh, which is definitely not
s1. To make a fair comparison with our method and since it is Wwetbwn that, when the number of
extrema is not correct at the first iteration, the sifting @ssmay not converge, we also computed the
EMD starting fromhg = s — mg, mg being computed as at the end of section Ill. We again notiae th
the EMD converges towards a mode which is gatOn the contrary, our new optimization method OS

computes a first modk; closer tos;.

C. Variations on the Set of Constraints in the Optimization Method

In this section, we compare the set of constraints used iroptimization procedure to that is used
in [7]. Contrary to what is done in the current paper, the t@ists in [7] where both of equality and
inequality types. For the sake of consistency, we brieflylFduav these constraints where designed for
any signals with extrema located at;'s. We consider the signdly = s — mg, wheremy is defined as
previously, and wherét;) are this time the extrema @f,. The idea developed in [7] is then to compute
the first modeh from hg. In what follows, we denote byn;, the sought mean envelope bf

Assume thaby(t;) is @ minimum forhy and thath(¢;) is an extremum for the sequen@e)(t;—2), ho(t;),
ho(tit2)). Whenhy(t;) is an extremum for the latter sequence, the shape of the limesr envelope
is used to derive that of the upper. Indeed,flebe the abscissa of the intersection (when it exists) of
the straight linesL; : fi(t) = h”“;z:f:’_(f”)t + h”(t"*l)(t"_t"*zli__(g‘)_(f)_h°(t**2))t“ and Ly : fo(t) =
fo(tia) “holts) y 4 holtizn)(biza—t) —(holtisa) =ho(t)bss if 7. > ¢, one imposes1/2)(f1(t;) + ho(t;)) =

tito—t; tiya—t;

my(t;). Otherwise, one setél/2)(fa(t;) + ho(ti)) = mp(t;). The same kind of computation can be
carried out wherhg(t;) is an maximum forh, inverting the role of the upper and lower envelopes. This
leads to a certain set of equality constraints.

Now, when the sequendé(t;—2), ho(ti), ho(ti+2)) IS monotonic, it gives rise to inequality constraints.
Assume that, has a minimum at; (the following reasoning also holds whégp has a maximum at;).
The symmetrical poin®; of (¢;, ho(t;)) with respect to(t;, my(t;)) is (ti, 2my,(t;) — ho(t;)). Following
the classical EMD formulationp; should therefore belong to the upper envelope.(As1, ho(ti—1))
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and (t;11, ho(ti+1)) belong to the upper envelope, to preserve the monotoni€itheodata, we impose:

min(ho(ti—1), ho(ti+1)) + ho(t;)
2

max(ho(ti—1), ho(ti+1)) + ho(t;)
2

< my(t;)

mp(t;) <

These conditions, together with the cases whif&;) is a maximum, leads to a set of inequality
constraints. To compare this approach to that we have justlalged, we replace the constrairgsin
(8) by the above set of constraints, and we assumerthais a piecewise cubic polynomial on the
subdvision defined by thg, then it is entirely equivalent to the data= (my,(t;), m},(¢:))i=1,.. .- The
functional used to computey, was thenJ(m) = |m/||2. Minimizing J subject to above mentioned
equality and inequality constraints, we obtair, and then definé := hg — m,. We display the result
of this procedure, called "MPQO7”, on Figure 6 (B), where we demt the obtained modé does not

estimates; as accurately as the newly proposed method.

D. Entire decomposition and quasi-orthogonality

The decomposition by Standard EMD Method. ORT = 0.024974. The decomposition by OS Method. ORT = 0.035044.
5 5
“ ‘ ‘ el
w w
s s 7
_5 L L L L L L L L L J _5 L L L L L L L L L J
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
time time

IMF 2
IMF 2

0 01 02 03 04 05 06 07 08 09 1
time

IMF 3
IMF 3

0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
time time
(A) (B)

Fig. 7. (A): Result of the decomposition of the sigrabf Figure 5 using the standard EMD. (B): result of the OS method on
the same signal.

Another major criterion to appreciate the quality of the alaposition is the orthogonality index,
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defined by
1

0= > (hihy),

B ||5||2 1<i<j<N
wheres is the signal andh;); its IMF’s.

On Figure 7, the entire decomposition of the signal defined onr€i§ is displayed using either the
original EMD or the new version we propose. The results exhviliy similar orthogonality index).025

for the standard EMD an@.035 for our method.

V. CONCLUSION

In this paper, we have introduced a new method to computenttirsic mode functions in the empirical
mode decomposition based on an optimization procedurendsd, we avoid the classical problem
posed by the convergence of the so-called sifting processighthe basis to the original EMD. We have
shown that the proposed decomposition is adaptive, sesatia¢ modes better than the original EMD
and leads to similar orthogonality indices. An extensiorthie bidimensional case looks, at first sight,
relatively straightforward: indeed the constraints egteaadily to interpolating functions on Delaunay

triangulations, as used in [17]. This should be thereforestiigect for further development.
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