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Abstract—  Most of three-degree-of-freedom (3-DoF) 
planar parallel manipulators encountered today have a 
common disadvantage that is their low rotational 
capability. However, for many industrial applications, by 
example in automated assembly systems, cutting 
machines, simulators, or micro-motion manipulators, a 
high rotation capability is needed. To overcome such a 
difficulty, this paper focuses its attention on the proposal 
of a new 3-DoF planar parallel manipulator capable of 
high rotational capability. Firstly, structure and mobility 
of the suggested manipulator are discussed. Then the 
forward and inverse kinematic problems are analyzed, as 
well as it is disclosed its singular configurations. The 
shaking force and shaking moment balancing are also 
considered. The proposed design concept is illustrated by 
a driven demonstrator which is a first model of the 
suggested manipulator.  

Keywords: design, modeling, singularity, 3-DoF planar parallel 
manipulator, unlimited rotation capability.1 

I  Introduction 

In the search for a suitable means for simulating flight 
conditions for the safe training of helicopter pilots, the 
design of parallel mechanisms has been proposed having 
all the freedom of motion and capable of being controlled 
in all of them simultaneously. A typical 6-DoF parallel 
mechanism consists of a moving platform connected to a 
fixed base by six serial chains called legs or limbs.  Due 
to its parallel structure these manipulators offer the 
advantages of low inertia, considerable stiffness, large 
payload to manipulator weight ratio and higher operating 
speeds. The advantages however come at the expense of 
a reduced workspace, difficult mechanical design and 
more complex kinematics and control algorithms. They 
have been utilized for many practical applications and 
many researchers have paid attention to the design of 
these structures. Therefore, a large number of papers 
place emphasis on the study of 6-DoF parallel 
manipulators [1], [2].    
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Fig. 1. Kinematic chain of the suggested manipulator. 

However, in most of applications, parallel 
manipulators with less than six degrees of freedom are 
more useful. These structures can be presented by the 
following principal groups: (i) 2-DoF translational 
manipulators [3]–[6]; (ii) planar 3-DoF parallel 
manipulators [7], [8]; (iii) spherical 3-DoF parallel 
manipulators [9]–[13]; (iv) 3-DOF translational parallel 
manipulators [14]–[22]; (v) 3-DOF parallel manipulators 
with combined translational and rotational motions [23]–
[26]; (vi) 4-DOF parallel manipulators for Schoenflies 
motion [27]–[36]; (vii) 5-DOF parallel manipulators 
[37]–[39]. 

Recent reports indicates that the technology of parallel 
manipulators has not yet made a substantial impacts for 
the raison that the complicated nonlinearity of parallel 
manipulators in design and control is not completely 
accepted by end users [40], [41]. Thus, many basic 
problems are still opened in order to obtain an efficient 
exploitation of these structures. One of the drawbacks of 
the developed parallel structures is also the limited 
rotation capability. This problem has been studied in 
[42]–[44] for spatial parallel manipulators but it is not 
considered for planar parallel manipulators.  

The aim of this paper is to propose a new planar 3-
DOF manipulator with unlimited rotation capability. 
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II Description of the suggested manipulator  

Let us consider the architecture of the suggested 
manipulator (Fig. 1). It is composed of three legs. Each 
leg is composed of two rigid links OiAi and AiBi (i = 1, .., 
3). The links OiAi are connected to the base via actuated 
revolute joints located at axes Oi and they are defined by 
the coordinates qi. The platform of the manipulator is 
connected with the links AiBi via revolute joints. The 
difference between the traditional planar 3-RRR 
manipulator and the suggested architecture is the position 
coincidence of the axes B1 and B2. In this case, we obtain 
a structure in which the position ),( yx  of the centre C of 

the platform is controlled by a 5R planar manipulator 
(O1A1CA2O2) and its orientation () by a four-bar linkage 
(O3A3B3C). Thus, in the presented structure the linear 
displacements and the orientation are decoupled:  the 
actuators 1 and 2 control the position of the end-effector, 
and actuator 3 its orientation.  

As it is shown in Fig.1 the axis x0 is along of the 
vector O1O2. The lengths of the elements OiAi are 
denoted as L1i. The lengths of the elements AiBi are 
denoted as L2i. The dimension of the platform CB3 is 
denoted as R. The positions of the base axes Oi along x0 
and y0 axes are denoted as (xOi, yOi), with xO1 = yO1 = yO2 
= 0. 

Let us consider the geometric models of the 
manipulator. From the previous description, one can find 
the loop-closure equations: 
 
 i i i i i i   OC OO O A A B B C  (1) 

 
from which it comes 
 

 1 2

1 2

cos cos

sin sin
Oi i i i i BiC

Oi i i i i BiC

x L q L xx

y L q L yy




    
         

 (2) 

 
where [xCBi, yCBi]

T represents the expression of vector CBi 
in the base frame. For i = 1 or 2, [xBiC, yBiC]T = 0, and 
[xCB3, yCB3]

T = R [cos , sin ]T. 
Rearranging (2) and squaring both sides, we obtain the 

following system: 
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   2 2 2
2 2 12 2 12 2 22cos sin 0Og x x L q y L q L        (3b) 
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more generically it can be written  
 

 
 

2

1

2 2
1 2

cos

... sin 0

i CBi Oi i i

CBi Oi i i i

g x x x L q

y y y L q L

   

     
 (4) 

III Inverse kinematics  

Developing (4) and factorizing with respect to cosine and 
sine qi, it comes 
 
 cos sin 0i i i i ia q b q c    (5) 

where 
 

  12i BiC Oi ia x x x L      (6a) 

  12i BiC Oi ib y y y L      (6b) 

   2 2 2 2
1 2i BiC Oi BiC Oi i ic x x x y y y L L         (6c) 

 
Using the following relationships  
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(5) becomes 
 

   2 2 0i i i i i i ic a t b t c a      (8) 

 
Thus, the solutions ti of this polynomial can be found 

as 
 

 
2 2 2

i i i i
i

i i
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t

c a
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
 (9) 

 
Therefore, for one given position of the end-effector, 

the inverse geometric model can be found as: 
 

 
2 2 2

12 tan i i i i
i

i i

b b c a
q

c a

     
 
 

 (10) 

 
in which the sign ± stands for the two possible working 
modes of the leg i. 

IV Forward kinematics  

Due to the decoupling properties of the robot, the forward 
geometric model of this robot can be solved in two steps: 
1. find the expression of x and y as a function of q1 and 

q2, using (3a) and (3b); 
2. find the expression of  as a function of q1, q2 and q3 

using (3c). 
Developing (3a) and 3b and factorizing with respect to 

x and y, it comes 
 

 2 2
1 1 1 0x d x y e y f      (11a) 

 2 2
2 2 2 0x d x y e y f      (11b) 

where 
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  12 cosi Oi i id x L q    (12a) 

 12 sini i ie L q   (12b) 

 2 2
1 2i i if L L   (12c) 

 
From (11a) and (11b), one can obtain the following 

relation  
 
 2 1 2 1( ) ( )d d x e e y     (13) 

 
Introducing it into (11a) leads to, for 2 1 0d d  : 

 

 2
1 1 1 0u y v y w    (14) 

 
where 
 

 2 2
1 2 1 2 1( ) ( )u d d e e     (15a) 

  1 2 1 2 1 1 2( )v d d d e d e    (15b) 

 2
1 2 1 1( )w d d f   (15c) 

Solving (14) leads to 
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1 1 1 1

1

4

2
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y

u
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  (16) 

 
in which the sign ± stands for two possible assembly 
modes of the system composed of legs 1 and 2. 
Introducing (16) into (13) allows finding the position of 
the end-effector. 

Then, introducing (13) and (16) into (3c) and 
developing leads to 

 
 2 2 2cos sin 0u v w     (17) 

where 
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Using the following relationships  
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(17) becomes 

   2
2 2 2 2 22 0w u t v t w u      (20) 

 
Thus, the solutions of this polynomial can be found as 

 

 
2 2 2

2 2 2 2
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t
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 (21) 

 
Therefore, for one given position of the end-effector, 

the inverse geometric model can be found as: 
 

 
2 2 2

2 2 2 21

2 2
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w u
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in which the sign ± stands for the two possible assembly 
modes of the platform. 

V Singularity analysis 

Differentiating (3a) to (3c) with respect to time leads to 
the following relation: 
 
 At + Bq 0  (23) 

 

where [ , , ]Tx y t    is the platform twist, 1 2 3[ , , ]Tq q qq     

the vector of the articular velocities, and A and B two 
matrices of which expressions are 
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with 
 

 [cos ,sin ]T T
i i i r  (25a) 

  3 3sinm R     (25b) 

  1 2 sinii i ib L L q   (25c) 

 
where ri is the direction of the wrench applied by the leg i 
on the platform, and mi its moment. 

As a result: 
1. the Type 1 singularities appear when bii = 0, for i = 1, 

2 or 3; such relation appear when the segments OiAi 
and AiCi are located on the same line (Fig. 2) 

2. a first case of Type 2 singularities appear when m3 = 0; 
such relation appear when the segments CB3 and A3B3 
are located on the same line (Fig. 3a) 

3. a second case of Type 2 singularities appear when r1 is 
collinear to r2; such relation appear when the segments 
A1B1 and A2B2 are located on the same line (Fig. 3b) 
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Fig. 2. Example of Type 1 singularities. 

 

(a) first case 

(b) second case 

Fig. 3. Examples of Type 2 singularities. 

 
It known that in the case of high-speed motions, the 

shaking force and shaking moment bring about variable 
dynamic loads on the frame and, as result, vibrations. 

One of the effective means for reduction of these 
vibrations is the mass balancing of moving links of 
manipulators. Therefore in the next section the shaking 
force and shaking moment balancing of the suggested 
manipulator is considered 

VI Balancing  

Let us start by shaking force balancing of the suggested 
manipulator.    

A. Shaking force balancing 

In order to achieve the dynamic balancing of the 
suggested manipulator, we first have to ensure that it is 
force balanced. For this purpose, the masse of the 
platform could be substituted by two equivalent point 
masses located at the axes B3 and C: 
 

 3

3

1 1

0pl pl

B pl

B S CS C

m m
L L m

     
            

   (26) 

 

where mB3 is the point mass located on the joint axis B3; 
mC is the point mass located on the joint axis C; mpl is the 
mass of the moving platform; LB3Spl is the distance of 
joint centre B3 from the centre of mass Spl of the platform; 
LCSpl is the distance of axe C from the centre of mass Spl 
of the platform. This allows for the transformation of the 
manipulator balancing problem into a problem of 
balancing legs carrying concentrated masses. 

The centre of mass of each leg relative to its base Oi 
(Fig. 1) can be found by the expressions [45]:    
 
    Si i Si i Si Bi Bi i i Bix m x m x m x m m m         (27) 

    Si i Si i Si Bi Bi i i Biy m y m y m y m m m        (28) 

where  
 cosSi i ix R q   (29) 
 

 sinSi i iy R q    (30) 
 

 1 cos ' cosSi i i i ix L q R       (31) 
 

 1 sin ' sinSi i i i iy L q R       (32) 
 

 iiiiBi LqLx coscos 21    (33) 
 

 iiiiBi LqLy sinsin 21     (34) 

 
mi and im  are the masses of links OiAi and AiBi; mB1 = 

mB2 = 0.5 mC; Ri  is the distance of the centre of mass iS  

of the link OiAi from the joint centre Oi; R’i  is the 
distance of the centre of mass iS   of the link AiBi from the 

joint centre Ai.  
Thus, for the position of centre of mass to remain 

constant it is sufficient that the coefficients of the 
variables iq  and i  be equal to zero, i.e.  
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Fig. 4. Shaking moment balancing of fully force-balanced manipulator 
by an inertia flywheel. 

 
 

 2' 0
ii i B im R m L     (35) 

 

 1( ) 0
ii i i B im R m m L     (36) 

 
The conditions (35) and (36) can be satisfied by 

adding two counterweights on each leg, which produce 
negative values of radii R and R . After such a 
redistribution of masses, the centre of mass of the 
manipulator remains motionless for any motion of links 
and hence, the manipulator transmits no inertia loads to 
its base (Fig. 4). 
 
B. Shaking moment balancing 

Now that the inertia force balancing is achieved, we have 
to consider the cancellation of the shaking moment. For 
the suggested manipulator, the shaking moment 
balancing is constructively more efficient by inertia 
flywheel [45]. Fig. 4 shows the fully force-balanced 
manipulator and balancing inertia flywheel, which is 
mounted on the base of the manipulator.  

To balance this shaking moment, the inertia flywheel 
with an axial moment of inertia denoted as I can be used. 
The angular acceleration of this inertia flywheel driven 
by a complementary actuator 4 is the following: 
 

                 /shq M I                         (37) 

 

It should be mentioned that the axial inertia moment of 
the flywheel must be selected in such a manner that its 
rotation with prescribed acceleration will be feasible. 

Therefore, the reaction of the balancing inertia 
flywheel on the frame cancels the shaking moment due to 
the parallel manipulator. In other words, the actuator, 

which moves the balancing inertia flywheel with a 
prescribed angular acceleration q  has a reaction on the 

frame which is similar but opposite to the  shaking 
moment of the parallel manipulator. Thus, full shaking 
moment is annulled. The angular velocity )(tq  and 

angular displacements q(t) can be determined by simple 
integration of the obtained values of  tq . 

In order to numerically verify the shaking force and 
shaking moment balancing of the manipulator an 
ADAMS model was developed and dynamic simulations 
were carried out.  

For the simulations, the geometric parameters used are 
of the model are those of the demonstrator that is given in 
section VII. With regard to mass and inertia parameters 
the following values have been used: 
- m1 = m2 = 0,497 kg, m3 = 0,565 kg, m’1 = m’2 = 0,483 

kg, m’3 = 0,620 kg, mpl = 0,210 kg; 
- I1 = I2 = 1,43.10-3 kg.m², I3 = 2,08.10-3 kg.m², I’1 = I’2 

= 1,32.10-3 kg.m², I’3 = 2,73.10-3 kg.m², Ipl = 0,26.10-3 
kg.m²; 

- Ri = 0.5 L1i, R’i = 0.5 L2i, LB3Spl = LCSpl = 0.5 R; 
In order to cancel the shaking force the counterweights 

should be added. Their parameters are given by: 
- LOiCpi = 0.5 L1i, LAiCp(i+3) = 0.5 L2i; 
- mCp1 = mCp2 = 3.06 kg, mCp3 = 3.68 kg, mCp4 = mCp5 = 

0.694 kg, mCp6 = 0.830 kg; 
where LOiCpi corresponds to the distance between point Oi 
and the counterweights positioned at Cpi and LAiCp(i+3) to 
the distance between point Ai and the counterweights 
positioned at Cp(i+3) (Fig. 4); mCpi is the mass of the 
counterweight located at Cpi. 

In Fig. 5 are presented the shaking force and shaking 
moment before (full black line) and after (dotted black 
line) balancing. It is observed that, after mass balancing, 
the shaking force is cancelled while the shaking moment 
increases. In order to balance the shaking moment, an 
optimal trajectory planning is introduced into the control 
of the inertia flywheel using eq. (37). Taking into account 
that the axial moment of inertia of the flywheel is equal 
to 0.02 kg.m², its optimal displacement is presented at 
Fig. 6. After the use of this optimal planning, the shaking 
moment is also cancelled (Fig. 7c, grey full line). 

VII Demonstrator  

In order to better illustrate the proposed concept, a driven 
demonstrator has been built. The parameters of the 
manipulator are the following: L11 = L12 = 155 mm, L21 = 
L22 = 150 mm, L13 = 180 mm, L23 = 200 mm, R = 50 mm, 
O1 = (0, 0)mm, O2 = (180, 0)mm and O3 = (80, 420)mm.  

Fig. 7 shows the motions generated by this driven 
demonstrator which is a first model of the suggested 
manipulator. Its theoretical workspace is presented at Fig. 
8. It can be computed geometrically as the intersections 
of six portions of circles described by [2]: 
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(a) 

 

(b) 

 

(c) 

Fig. 5. Shaking force before (full black line) and after (dotted black 
line) mass redistribution and shaking moment before (black lines) 

and after (grey line) balancing by the inertia flywheel. 

 
- two circles C1 and C4 centred in O1, of respective radii 

equal to L11 + L21 and L11 – L21; these circles represent 
the extreme displacements of the robot leg 1;  

- two circles C2 and C5 centred in O2, of respective radii 
equal to L12 + L22 and L12 – L22; these circles represent 
the extreme displacements of the robot leg 2;  

 
 

Fig. 6. Definition of the optimal angular displacement for the inertia 
flywheel. 

 

 
 

Fig. 7. Motion generation via a driven demonstrator built in the South-
West State University of Kursk. 

 
 

- two circles C3 and C6, centred in O3, of radius equal to 
L13 + L23 – R and L13 – L23 + R; these circle represents 
the extreme displacements of the robot end-effector 
linked to leg 3 for any platform orientation; 
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Fig. 8. Maximal reachable workspace of the robot (to scale). 

 
As 5R robots have the ability to cross the Type 1 

singular configurations [46], it can be shown that any of 
the workspace points can be attained without crossing of 
the Type 2 singular configurations presented at Fig. 3b, 
that are due to the 5R positioning architecture. It should 
also be mentioned that the Type 2 singularities presented 
at Fig. 3a, that appear for some specific platform 
orientations, can be crossed using optimal motion 
generation [47]. 

Taking into account these considerations, it is possible 
to define the maximal regular workspaces of the robot, 
for any platform orientation [48], [49]. It is proposed here 
to characterize the size of two different maximal regular 
workspaces: a circle and a square. Using some CAD 
software [50], it can be shown that, for this driven 
demonstrator: 
- the maximal inscribed circle is centred in (90, 64.5) 

mm and has a radius of 105.75 mm 
- the maximal inscribed square is centred in (90, 85) 

mm and has a edge length of 170 mm. 
Finally, it should be noted that for dynamic tests a 

prototype will be developed with prescribed mass/inertia 
parameters and optimized control system.  

VIII Conclusion 

In this paper, the development of a new 3-DoF planar 
parallel manipulator with unlimited rotation capability 
was addressed. The advantage of the proposed design 
concept is the high rotational capability, which can be 
useful for many industrial applications: in automated 
assembly systems, cutting machines, simulators, micro-
motion manipulators. This is a first publication, in which 
structural and kinematic properties were disclosed, as 
well as the shaking force and moment balancing. The 
linear displacements and orientation of the platform is 

illustrated via a driven demonstrator, which is a first 
driven model of the manipulator. 

Dynamic simulations, optimization and tests, that can 
perform this design concept will be a next step of this 
project. 
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