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Abstract— In this paper is presented an approach for 
computing the first natural frequencies of parallel robots. 
This approach, based on the Rayleigh-Ritz 
approximation, aims at reducing the model dimension by 
decreasing the size of the matrices describing the robot 
mass and stiffness, saving computational time and 
avoiding inaccuracy due to ill-conditioning. Thus it can 
be used in the design procedure as well as in real-time 
control. Simulations are carried out on a PRRRP robot 
modelled in 3D and comparisons with FEA software are 
presented.  

Keywords: elastodynamic modelling, model dimension reduction, 
natural frequencies, parallel robots.1 

I Introduction 

Parallel robots have increasingly been used in industry in 
the last few years, mainly for pick-and-place applications 
or high-speed machining [1], [2]. This interest is due to 
their main properties, i.e. their higher rigidity and 
dynamic capacities compared with their serial 
manipulator counterparts. 

Having a good knowledge of the elastodynamic 
behaviour of a manipulator (especially its natural 
frequencies) is a crucial point. In this sense, accurate 
elastodynamic models are necessary at both the control 
stage [3]–[5] and design stage [6]–[8], in order to 
optimize the geometry, as well as the shape of the 
elements of the manipulator. This will lead to the creation 
of a mechanism in which vibrations will be minimized.  

Several models have been proposed and used in the 
literature in order to compute the natural frequencies of a 
mechanism during a preliminary design. Three main 
general methods can be distinguished: 
 Finite element analysis (FEA); the FEA method is 

proved to be the most accurate and reliable, since the 
links/joints are modeled with its true dimension and 
shape [7], [9]–[12]. Its accuracy is limited by the 
discretization step only. However, because of high 
computational expenses required for the repeated re-
meshing, this method is usually applied at the final 
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design stage for the verification and component 
dimensioning.  

 Matrix structural analysis (MSA) method is a common 
technique in mechanical engineering [13], [14]; it 
incorporates the main ideas of the FEA but operates 
with rather large flexible elements (beams, arcs, cables, 
etc.). This obviously yields reduction of the 
computational expense and, in some cases, allows 
analytical stiffness matrix to be obtained. However, 
this method can only be applied to links with simple 
shapes and requires improved skills in FEA. 

 Virtual joint methods (VJM) [8], [15], which is also 
referred to as ‘‘lumped modelling”, is based on the 
expansion of the traditional rigid model by adding 
virtual joints (localized springs), which describe the 
elastic deformations of the manipulator components 
(links, joints and actuators). Such kind of modelling is 
well adapted for links with complex shapes [16]. 
Generally, lumped modelling is simpler to use than 
MSA and provides acceptable accuracy in reduced 
computational time. It is widely used at the pre-design 
stage, especially for the analytical parametric analysis. 
However, due to the large number of virtual joints that 
have to be modelled in order to obtain good accuracy, 
such an approach is time-consuming. Moreover, for 
closed-loop mechanisms with passive joints, the way to 
assemble the matrices and to model the passive joints 
in kinematic chains is not straightforward. 
The purpose of this paper is to propose a reduced 

elastodynamic modelling approach on parallel robots for 
the computation of the natural frequencies only, based on 
VJM. By keeping the simplicity of use of the VJM, this 
modelling considerably decreases the dimension of the 
problem by inverting only 6×6 matrices. It also proposes 
a straightforward procedure for the modelling of passive 
joints on parallel robots and for the assembly of the mass 
and stiffness matrices of closed-loop structures. 

This paper will be organised as follows. Section 2 
presents the theoretical background necessary in order to 
reduce the size of the elastodynamic model for the 
computation of the natural frequencies. In section 3, a 
numerical example is proposed in order to show the 
efficiency of our method. Finally, conclusions are drawn 
in section 4. 
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II. Theoretical background 

A. Problem statement 
Let us consider a general parallel manipulator made of n 
legs, each leg being composed of m links, m passive and 
one active joints, considered as ideal, i.e. without friction 
(Fig. 1a). Using the basic idea of VJM [15], let us 
decompose the j-th link of the i-th leg (denoted as the 
link ij where j = 1, 2, …, m and i = 1, 2, …, n) into pij 
rigid elements and virtual springs (Fig. 1b). The mass and 
inertia matrix of the k-th rigid element of link ij (denoted 
as the element ijk) expressed in the local frame attached 
to this element, are denoted as mijk and Iijk, respectively. 
The displacement of its centre of mass Sijk expressed in 
the base frame, resulting from the robot deformations, is 
denoted as

1 2 6
[ , ,..., ]T

ijk ijk ijk ijkq q q0 0 0 0q , where the first 
three components of this vector correspond to the 
translational displacements along the x, y and z axes of 
the base frame, respectively, and the last three 
components to the rotational displacements along the 
same axes. It should be mentioned that in the remainder 
of the paper, the left superscript “0” will stand for the 
coordinates expressed in the global frame. If no left 
superscript is mentioned, the vector is expressed in the 
local frame attached to the link ij. 

The deformations of the k-th spring of link ij (denoted 
as the spring ijk) are denoted as 

1 2 6
[ , ,..., ]T

ijk ijk ijk ijk  θ , 
where the three first components of this vector 
correspond to the translational deformations along the x, 
y and z axes of the base frame, respectively, and the last 
three components to the rotational deformations along the 
same axes. The kinetic energy of the system is equal to: 

 
1 1 1

1 1

2 2

ijpn m
T T
ijk ijk ijk tot

i j k

T
  

  0 0 0q M q q M q     (1) 

where diag( , )ijk ijk ijkm0 0
3M I I , I3 being the identity 

matrix of dimension 3, 111 112[ , ,..., ]
nm

T T T T
nmp 0 0 0q q q q     is 

the vector regrouping all vectors ijk
0q  (i.e. the velocity of 

the centre of masses Sijk) and Mtot is the global mass 
matrix of the system. 

The potential (elastic) energy of the system is equal to: 

 
1 1 1

1

2

ijpn m
T

e ijk ijk ijk

i j k

V
  

 θ K θ  (2) 

where Kijk is the stiffness matrix of the virtual spring ijk. 
It is shown in [8], [15] that the deformations ijkθ  can 

be related to the displacements of the centres of masses 
of elements ijk and ij(k+1) by the relation:  

 2, 1, ( 1)
( 1)

ijk
ijk ijk ij k

ij k




 
       

0

0

q
θ C C

q
 (3) 

where C2,ijk and C1,ij(k+1) are two 6 by 6 matrices. 
Therefore, (2) can be rewritten as: 

2, 2,

( 1) ( 1)1, 1 1, 1, ,

1 1

2 2

TT T T
ijk ijkk k T

e ijk totT T T
ij k ij kk ki j k

V
  

      
       

            


0 0

0 0

q qC C
K q K q

q qC C
 (4) 

(a) Architectural representation 

(b) Elastic representation of one link 

Fig. 1. A general parallel manipulator. 

 

where 111 112[ , ,..., ]
nm

T T T T
nmp 0 0 0q q q q  is the vector 

regrouping all vectors ijk
0q  and Ktot is the global stiffness 

matrix of the system. 
Starting from these definitions, and considering that 

the robot is in an equilibrium position and no external 
forces are applied, the authors of [15] demonstrate that 
the system is governed by the relation: 

 tot tot M q K q 0 . (5) 

A solution ql of this equation can be found by solving 
the system: 

  2
l tot tot l  M K q 0 , with 2l lf   (6) 

where ql represents the vectors of the shape of free 
vibrations of the system for the l-th natural mode, fl and 
l are their corresponding natural frequency and 
pulsation, respectively. 

If the matrix 2
l tot tot M K  is singular (which is 

always the case when l is one of the modal pulsation of 
the robot), ql becomes non-null and is the eigenvector 
corresponding to the pulsation l. There is an infinity of 
vectors ql validating (6) (for a given l), but all are 
proportional to the others. Vector ql is not necessarily 
dependent of time, but almost represents the amplitude of 
the vibrations. Therefore, when only the l-th mode of the 
system is excited, the displacements of all springs may be 
written under the form:  

 * sin( )l l l lt  q q  (7) 
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where l is a phase difference corresponding to the mode 
l. When all modes are excited, the displacement q of all 
spring centres may be written in the form: 

 
6 6

*

1 1

sin( )
d d

l l l l

l l

t 
 

   q q q  (8) 

The most common way to find the values of the 
pulsation l is to solve the eigenvalue problem 

  2 1det 0l tot tot  I M K . (9) 

where I is an identity matrix of dimension 6 d, with d = 

,

ij

i j

n m p . 

However, solving this problem involves finding the 6 
d eigenvalues of the problem and also inverting the d 
matrices ijkM  constituting the matrix Mtot, which is 
highly time-consuming and can lead to few accurate 
results because of the problem dimension. 

In order to avoid such kind of drawbacks [16] has 
recently proposed (for elastostatic modelling only) a new 
procedure to compute the deformations of the robot when 
a force is applied at the end-effector. This procedure 
computes a stiffness (and also compliance) matrix Kr 
(and Sr, resp.) of dimension 6 that represents the 
behaviour of the robot in terms of deformations. 
Moreover, during the procedure, only inversions of 6 
dimensional matrices are involved, which considerably 
reduces computational time and avoids accuracy 
problems due to ill-conditioning of the large global 
stiffness matrix. Thus, the global 6 d dimensional 
problem defined with respect to all variables q has been 
reduced to a 6 dimensional problem defined with respect 
to platform deflections t only. As a result, the entire 
robot can locally be seen as a virtual spring of dimension 
6 that deforms when applying a wrench on the end-
effector. 

Starting from these considerations, it would be 
interesting to reduce the dimension of the problem by 
expressing Eq. (6) as a function of the reduced stiffness 
matrix Kr, of the platform deflections t and, also, as a 
function of a reduced mass matrix that will be denoted as 
Mr, which could represent the global behaviour of the 
robot in terms of natural frequencies. The remainder of 
the paper will focus on this problem. 

 
B. Rayleigh-Ritz approximation 

Another way to find the natural pulsation l of the 
mode l would be to know the exact amplitude l of the 
displacements ql for this mode. For the natural mode l, 
the potential and kinetic energies of the system are given 
by: 

 * * 21 1
sin

2 2
T T

e l tot l l tot l l lV t   q K q q K q  (10a) 

 * * 2 21 1
cos

2 2
T T

l tot l l l tot l l lT t    q M q q M q   (10b) 

From the principle of energy conservation, it follows that 

   max max 0eV T  , i.e  2 0T
l l tot tot l  q M K q  (11) 

which is an univariate equation in l. 
It is obvious that the exact knowledge of the amplitude 

ql is an impossible task without a direct measure on the 
system of all the displacements of the robot nodes. 
However, this vector may be approximated by another 
denoted as ˆ

lq  that is close to the exact amplitude ql. 
Introducing this approximated vector ˆ

lq  into (10) will 
allow us to find a corresponding value of ˆ

l  and, as a 
result, ˆ

lf  which is the approximated natural frequency of 
the system. Such kind of elastodynamic problem 
resolution is called the Rayleigh-Ritz method [17]. 

The better the approximation, the more accurate the 
value of ˆ

l . The designer’s skills in terms of 
understanding and analysis of robot physical behaviour 
here are of the utmost importance. In this sense, let us 
recall that the first natural frequencies are associated with 
the highest level of energy due to vibrations, and 
represent the highest displacements of the structure. 
Therefore, in design optimization loops, it is essential to 
maximize the value of the first frequency. 

Using the Rayleigh-Ritz approximation in order to 
compute the first natural frequencies, the stresses for 
which the maximal displacements appear have to be 
found. From our experience in elastic behaviour of 
robots, it is assumed that a good approximation of these 
maximal displacements will be the deformation of the 
robot with a load applied at the end-effector, and it can be 
shown in the following that this hypothesis is valid. 
Using this assumption, the displacements ql of all springs 
can be computed as a function of the end-effector 
displacements t, i.e. it is possible to define a matrix Jq 
such as: 

 l  qq J δt . (12) 

As a result, introducing (12) into (11) will lead to 

  2T T T
l tot tot  q q q qδt J M J J K J δt 0  (13) 

where the matrices T
totq qJ M J  and T

totq qJ K J  are now of 
dimension 6. It should be mentioned here that, in the case 
where an external load is applied at the end-effector only, 
the term T

totq qJ K J  is equal to the reduced stiffness matrix 
Kr of the robot. Therefore, (13) can be rewritten as: 

 2T
l  r rδt M K δt 0 , with T

totr q qM J M J  (14) 

In the following sections it is explained how to obtain 
expressions (12) and (14). 

 
C. Reduction of the link mass matrix 

It is possible to decompose the previously cited task 
into two sub-problems. First, the displacements of each 
spring in the beam ij can be expressed as a function of the 
displacement of its extremities. Then, one can express the 



13th World Congress in Mechanism and Machine Science, Guanajuato, México, 19-25 June, 2011                A12-358 

 4  
 

beam extremity displacements as a function of the 
platform displacements t. Using this approach will 
allow for a reduction in the size of the link mass matrices, 
and thus avoiding creating global mass matrices Mtot with 
very large dimension. 

Two main ways can be followed to reduce the size of 
the link mass matrices. The first one consists in 
discretizing the link ij into pij rigid links and springs and 
to express their displacements as a function of the beam 
extremity displacements. However, such numerical 
method must be repeated for each link and, thus, 
increases the size of the algorithm and decreases its 
efficiency. As a result, it is prefered to use the following 
procedure which allows analytical expressions to be 
obtained for the reduced link mass matrices. 

Let us consider the link ij, modelled as a beam (Fig. 
2). At this beam is attached a local frame represented by 
the vectors xij, yij and zij. Before any deformation of the 
system, the beam ij is linked (rigidly or by a passive 
joint) to beams i(j–1) and i(j+1) at points Oij and Oi(j+1), 
respectively (Fig. 2). After deformation of the robot, the 
beam extremity located at Oij is displaced from 

1 2 6

1 1 1[ , ,..., ]T
ij ij ijq q q1

ijq  and the one located at Oi(j+1) is 
displaced from 

1 2 6

2 2 2[ , ,..., ]T
ij ij ijq q q2

ijq , where the three 
first components of each vector correspond to the 
translational displacements along local xij, yij and zij axes, 
respectively, and the three last components to the 
rotational displacements along the same axes.  

The general formula for the kinetic energy of an 
elastic Bernoulli beam is equal to [14]: 

 
0

1

2

ijL

T
ij ijT dx  ij ij ijq Q q   (15) 

with diag( , , , , , )p y z
ij ij ij ij ij ijA A A I I IijQ . In this expression, 

ijq  represents the velocity of the beam cross-section 
located at position x from the local reference frame (Fig. 
2), Lij is the length of the beam ij, ij the mass density at 
cross-section x, Aij its area, p

ijI  its torsional constant and 
y

ijI , z
ijI  the quadratic momentums along yij and zij, 

respectively. 
For the l-th natural mode, and from (7), the kinetic 

energy can be rewritten as: 

 2 2

0

1
cos

2

ijL

T
ij l l l ijT t dx      ij ij ijq Q q  (16) 

qij being the amplitude of the displacement of the beam 
cross-section located at position x from the local 
reference frame (Fig. 2). 

In the Rayleigh-Ritz approximation, considering that 
the deformations due to the natural vibrations are similar 
to those obtained when an external load is applied at the 
robot end-effector only, each link of the structure will 
deform due to the stresses transmitted through the robot 
joints at points Oij. As a result, the deformations ij 
 

 
 

Fig. 2. Displacements and elastic deformations of a beam.  

  
of the beam cross-section (Fig. 2) can be approximated 
by the deformations of a tip-loaded beam, given by [14]: 

 diag( , , , , , )ij ij ij ij ij ijf g g f h h 2
ij ijδ δ  (17) 

where ( )ijx L 2
ij ijδ δ  represents the deformation of the 

beam at its tip and 
  ( ) /ij ijf x x L ,  (18a) 

 2 3( ) 0.5 (3 ) /ij ij ijg x x L x L  ,  (18b) 

 2( ) ( 0.5 ) /ij ij ijh x x L x L  . (18c) 

As a result, the global displacement qij of the beam 
cross-section at x can be expressed as a sum of two 
terms: 

( )x 
  
 

3 1
ij ij ij

3 3

I D
q q δ

0 I
 where ( )

0 0 0

0 0

0 0
x x

x

 
   
  

D  (19) 

In this sum, the left terms corresponds to the 
displacement of the undeformed beam due to the 
displacement of the node located at Oij. 

In the hypothesis that the beam cross-section is 
constant, introducing (17) and (19) into (16), and 
integrating, leads to: 

     2 21
cos

2

T T

ij l l lT t  
              

1
ij1 2

ij ij ij 2
ij

q
q δ M

δ
 (20) 

where 
 T
 
 
 
 

11 12
ij ij

ij 12 22
ij ij

M M
M

M M
 with 

2

2

0 0 0 0 0

0 0 0 0 / 2

0 0 0 / 2 0

0 0 0 0 0

0 0 / 2 0 / 3 0

0 / 2 0 0 0 / 3

ij

ij ij ij

ij ij ij
ij p

ij ij ij
ij y

ij ij ij ij ij ij ij
ij z

ij ij ij ij ij ij ij

m

m m L

m m L

I L

m L m L I L

m L m L I L






 
 
 
 

  
 
  
 

  

11
ijM

 (21a) 

/ 2 0 0 0 0 0

0 3 / 8 0 0 0 0

0 0 3 / 8 0 0 0

0 0 0 / 2 0 0

0 0 11 / 40 0 2 / 3 0

0 11 / 40 0 0 0 2 / 3

ij

ij

ij
ij p

ij ij ij
ij y

ij ij ij ij ij
ij z

ij ij ij ij ij

m

m

m

I L

m L I L

m L I L






 
 
 
 

  
 
 
 
  

12
ijM

 (21b) 

33 33 8 8
diag , , , , ,

3 140 140 3 15 15

p
ij ij ij ij ij ij y z

ij ij ij ij ij ij

m m m I L
I L I L


 

 
   

 

22
ijM  (21c) 
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It should be mentioned that, in the case where the 
section of the beam is not constant, (18) to (21) are no 
more correct. In this case, the deformation of the beam 
and its kinetic energy should be obtained numerically. 

From (17), it can be shown that: 

 
( )ijL 

   
  

32 2 1
ij ij ij

3 3

I D
δ q q

0 I
. (22) 

which leads to: 

      
       

           

1 1 1
6 6ij ij ij
21 ij2 2 2
ij 6ij ij ij

I 0q q q
E

E Iδ q q
,

( )ijL 
   

  

321
ij

3 3

I D
E

0 I
 (23) 

Introducing (23) into (20) leads to: 

 2 21
cos

2

T

T
ij l l lT t  

                  

1 1
ij ij

ij ij ij2 2
ij ij

q q
E M E

q q
 (24) 

Expressing vectors v
ijq  (v = 1, 2) in the base frame,  

(24) becomes: 

 2 21
cos

2

T

red
ij l l lT t  

                  

0 1 0 1
ij ij0

ij0 2 0 2
ij ij

q q
M

q q
 (25) 

where  0 0

Tred T
ij ij0

ij ij ij ijM R E M E R  and R0ij is the 

rotation matrix from the local frame of beam ij to the 
global frame, i.e. 

 0ij

   
   

      

0 1 1
ij ij

0 2 2
ij ij

q q
R

q q
. (26) 

To show the validity of the approach, let us compare 
the obtained equations when they are applied on a single 
beam fixed at one extremity O11, i.e. 0 1

11q 0 . For the 
numerical example, it is considered that this beam has the 
following characteristics: 
- length L = 1 m 
- hollow circular cross-section of external diameter 40 

mm and internal diameter 30 mm 
- material: steel (Young modulus E = 204 GPa, Poisson 

coefficient  = 0.3, density  = 8020 kg/m3) 
For such an element, beam theory gives the following 

expressions for the natural frequencies [17]: 
- 1st natural frequency due to transverse displacements:  

 
2

3.516
35.28 Hz

2

z

tr

EI
f

mL
   (27a) 

where m is the mass of the beam and Iz its quadratic 
momentum along z axis. 
- 1st natural frequency due to longitudinal 

displacements:  
 / (4 ) 1260.86 Hzlf E L   (27b) 

- 1st natural frequency due to torsional displacements: 

 /( ) (4 ) 781.95 Hzp y z
tof I G I I L    (27c) 

where G is the shear modulus, Iy its quadratic momentum 
along y axis and Ip its torsional constant. 

Applying the previously developed equations to this 
case by considering that the reduced mass matrix Mr = 

22
11M  is given at (21c) and the stiffness matrix Kr is 

expressed in [16] as: 

2

2

0 0 0 0 0

0 12 / 0 0 0 6 /

0 0 12 / 0 6 / 01

0 0 0 0 0

0 0 6 / 0 4 0

0 6 / 0 0 0 4

z z

y y

p

y y

z z

ES

EI L EI L

EI L EI L

GIL

EI L EI

EI L EI

 
  
 

  
 
 
 

  

rK , (28) 

it is found: 
- 1st natural frequency due to transversal displacements: 

35.78 Hz (error of 1.4%) 
- 1st natural frequency due to longitudinal 

displacements: 1390.30 Hz (error of 10.27%) 
- 1st natural frequency due to torsional displacements: 

862.23 Hz (error of 10.27%) 
As a conclusion, the proposed reduced model is 

accurate enough for the computation of the first natural 
frequency due to transversal displacements, which is also 
the first natural frequency of the beam. 

Let us now reduce the size of the total mass matrix of 
the robot. 

 
D. Reduction of the robot mass matrix 

Using the results of the previous section, the total 
kinetic energy of the system is given by: 

 

 

2 2

, ,

2 2

1
cos

2

1
cos

2

T

red
ij l l l

i j i j

T
l l l tot

T T t

t

  

  

                   

 

 
0 1 0 1

ij ij0
ij0 2 0 2

ij ij

q q
M

q q

q M q

 (29) 

with ( , ,..., )red red red
tot diag 0 0 0

11 12 nmM M M M  and 

           , , , ,..., ,
T T T T T TT     

0 1 0 2 0 1 0 2 0 1 0 2
11 11 12 12 nm nmq q q q q q q . 

It is necessary to express the relationship linking all 
vectors v0

ijq  (v = 1, 2) to the end-effector displacements 
t. From [16], this displacement is equal to: 
 i i i i θ pδt J θ J p , (30) 

where i represents the deformations of all virtual springs 
of the leg i and pi the displacements of its passive joints, 
and Ji and Jpi are Jacobian matrices relying these 
displacements to the displacement t. These matrices can 
be obtained by the differentiation of the global 
transformation matrix Ti of the chain i including rigid, 
passive and elastic coordinates [16]. The way to obtain 
these matrices is explained in more depth in the next 
section. It should be mentioned that the dimension of Jpi 
is 6 by m, m being the number of passive joints of the leg, 
with m < 6 (because one leg of a parallel robot cannot 
have more than five passive degrees of freedom (DOF)). 

From [16], it can also be shown that: 

 T
i i i i i i θ θ θ pδt J S J f J p , (31) 
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where iθS  is a block-diagonal matrix regrouping all the 
compliance matrices of each virtual springs, and fi is the 
force applied on the i that involves the displacement t. 
The expression of fi is such as 
 i if K δt  (32) 

Ki being the global stiffness matrix of the leg i. 
Introducing (32) into (31) leads to: 

  T
i i i i i i θ θ θ pI J S J K δt J p . (33) 

Therefore, the displacements pi of the robot passive 
joints due to the displacement t are equal to: 

    1T T T
i i i i i i i i i


  p p p θ θ θ tpp J J J I J S J K δt J δt . (34) 

Let us now compute the displacements 0 2
ijq  of the 

virtual spring located at the extremity of the link ij. This 
spring ij is preceded by j–1 other virtual springs and 
passive joints. The deformations of the j springs 
(including the one at the link extremity) will be denoted 
as ij, and the displacements of the j–1 passive joints pij, 
respectively. They can be related to the displacement 0 2

ijq  
by the Jacobian matrices Jij and Jpij as 

 ij ij ij ij 0 2
ij θ pq J θ J p , (35) 

These matrices may be computed in a similar way to the 
matrices Ji and Jpi, but by considering the truncated 
chain i going from the base to the virtual spring ij. The 
deformations ij involve constraints into the j virtual 
springs of the truncated chain that are denoted as ij. 
Their expressions may be found from the relationship 
[16]: 
 ij ij ijθS τ θ , (36) 

where Sij is a block-diagonal matrix regrouping all the 
compliance matrices of the j virtual springs of the 
truncated chain. Introducing (34) into (33) leads to: 

 ij ij ij ij ij 0 2
ij θ θ pq J S τ J p . (37) 

Let us consider now the entire leg i of the mechanism. 
The constraints i applied to the springs due to the force fi 
applied on the platform are given by [16], 

 
T

ij j iT
i i i iT

ir j i

  
     

    

θ
θ

θ

τ J
τ J f f

τ J
, (38) 

where Jji corresponds to the j first columns of matrix Ji. 
Introducing (38) into (37), 

T T
ij ij j i i ij ij ij ij j i i ij ij   0 2

ij θ θ θ p θ θ θ pq J S J f J p J S J K δt J p . (39) 

Moreover, the passive displacements pij are known 
from expression (32). Considering that Jjtpi represents the 
matrix composed of the j first lines of Jtpi given at (32), it 
follows that 

  T
ij ij j i i ij j ij   2q0 2

ij θ θ θ p tp ijq J S J K J J δt J δt . (40) 

Once all 0 2
ijq  are found, the vectors 0 1

ijq  can be 
computed. Indeed, displacement 0 1

ijq  is nothing none 
than displacement ( 1)

0 2
i jq  plus the small deflection of the 

passive joint located at Oij , i.e.: 

 ( 1) ijp 0 1 0 2 0
ij i j ijq q s  (41) 

where pij is the value of the displacement of the passive 
joint located at Oij and 0sij is a unit screw corresponding 
to its twist. Introducing (34) and (40) into (41): 

 * *
j i j i    2 2 1q q q0 1 0 0

ij ij ij tp ij ij tp ijq J δt s J δt J s J δt J δt  (42) 

where *
j itpJ  is the j-th line of matrix Jtpi given at (32). 

Thus, from (40) and (42), one can express vector q 
given at (29) as a function t as follows: 

           , , , ,..., ,
TT T T T T T

nm nm
    



1 2 1 2 1 2q q q q q q
11 11 12 12

q

q J J J J J J δt

J δt

 (43) 

Introducing this relation into (29) will lead to: 

  2 21
cos

2
T

l l lT t    rδt M δt  (44)  

where the expression of Mr is given at (14). 
As a result, from (14), finding the robot natural 

frequencies relies on solving the 6 dimensional 
eigenvalues problem 

  2 1det 0l
 6 r rI M K . (45) 

Let us now apply this method using an example. 

III. Case study 

In this section, the example of the planar PRRRP2 
manipulator with two parallel prismatic axes (Fig. 3) will 
be treated. Let us first compute the global 3D stiffness 
matrix Kr of the robot. 

The method presented in [16] states that each leg may 
be decomposed into a sequence of rigid links and virtual 
6-DOF springs, which includes: 
(a) a rigid link between the manipulator base and the ith 

actuating joint (part of the base platform); 
(b) a 1-DOF actuating joint allowing one translation 0i ; 
(c) a rigid foot; 
(d) a 6-DOF virtual spring describing the foot stiffness; 
(e) a 1-DOF passive R-joint at the beginning of the leg 

allowing one rotation with angle 1i ; 
(f) a rigid leg linking the foot and the end-effector; 
(g) a 6-DOF virtual spring describing the leg stiffness; 
(h) a 1-DOF passive R-joint at the end of the leg 2 (not  

for leg 1) allowing one rotation with angle 22 ; 
(i) a rigid link from the manipulator leg to the end-

effector (part of the movable platform). 
From these assumptions, the matrix regrouping the 

stiffness matrices of all segments of the leg i has the 
following form [16]: 

 Foot
elt

Leg

i
i

i




 
  
  

6 6

6 6

K 0
K

0 K
. (46) 

                                                            
2 In the paper, P stands for an actuated prismatic pair and R for a 
passive revolute joint. 



13th World Congress in Mechanism and Machine Science, Guanajuato, México, 19-25 June, 2011                A12-358 

 7  
 

For obtaining matrices ipJ  and iθJ  of (31), let us now 
consider the corresponding mathematical expression 
defining the end-effector location subject to variations of 
all the above defined coordinates of a single kinematic 
chain i may be written as follows: 

1 6

1 6

1 1 1 1
Base 10 Foot 11 11 1 11 Leg

1
12 12 Tool

( ) ( ,..., ) ( )

( ,..., )

a s r

s

   

 





T T V T V V T

V T
 (47) 

1 6

1 6

2 2 2 2
Base 20 Foot 21 21 1 21 Leg

2
22 22 2 22 Tool

( ) ( ,..., ) ( )

( ,..., ) ( )

a s r

s r

   

  





T T V T V V T

V V T
 (48) 

where the matrix function ( )a V  is an elementary 
translation along y, the matrix functions ( )rj V  (j = 1, 2) 
are elementary rotations around z, the spring matrix 

( )s V  is composed of six elementary transformations 
defined by the coordinates 

1 6
( ,..., )ij ij   of the virtual 

joints (i, j = 1, 2). Matrices Base
iT , Foot

iT  and Leg
iT  

represents the rigid displacements of the base, foot and 
leg, respectively [16] (Fig. 3). 

The matrix iθJ  may be obtained from the derivation of 
the matrix Ti with respect to the spring parameters 

vij  (v 
= 1 to 6), at the point 0

vij  , considering that 

 
0 ' ' '

' 0 ' '

' ' 0 '

0 0 0 0

v

v v

iz iy ix

i
iz ix iyL Rs

ij ij ij
iy ix izij ij

p

p

p

 
 


  

 
    
  
 
 

VT
H H . (49) 

where the first and the third multipliers are the constant 
homogenous matrices which do not include the 
displacement 

vij , and the second multiplier corresponds 
to the derivative of the elementary translation or rotation 
corresponding to 

vij . In the right-hand term, symbol “ ' ” 
denotes the first derivative of the variables with respect 
to 

vij . Therefore, ixp' , iyp'  and izp'  (resp. ix' , iy'  
and iz' ) correspond to the small translations along (resp. 
rotations about)  x, y and z axes of the extremity of the 
leg i due to the variation of the parameter  

vij . 
The Jacobians ipJ  can be computed in a similar 

manner, but the derivatives are evaluated in the 
neighborhood of the “nominal” values of the passive joint 
coordinates ij   corresponding to the rigid case (these 
values are obtained from the inverse kinematics). 

Finally, the stiffness matrix Ki of the leg i, which 
relates the deformations t to the force fi can be 
computed by direct inversion of relevant 7 by 7 (8 by 8 in 
the case of the leg 2) matrix in the left hand side of the 
following equation [16] 

 i i i
T

i i

     
     
   

θ p

p

S J f δt

J 0 p 0
,   1

elt
i T

i i i


θ θ θS J K J  (50) 

and by extracting the 6 by 6 sub-matrix with indices 
corresponding to iθS . 

After the stiffness matrices Ki for all kinematic chains 
 

 

(a) kinematic chain 

 

(b) Architectural representation  

Fig. 3. Description of the PRRRP manipulator. 
 
are computed, the stiffness of the entire manipulator can 
be found by simple addition: 

 
1

n

i

i

rK K . (51) 

Using expressions (46) to (51), all relations of sections 
II.C and II.D can be computed. Let us now compare the 
results obtained by the presented procedure with a more 
general method. 

For this simulation, each link is modelled as a beam of 
constant cross-section. The stiffness matrix expressions 
for beams are given in [16]. Then, the following 
numerical parameters are used: 
- length of segments: AB = AC = 0.5 m, a = 0.33 m, d = 

0.1 m; 
- Young modulus: Efoot = ELeg = 210 GPa; Poisson 

coefficients: foot = Leg = 0.3; 
- Each beam has the same cross-section represented by a 

circle of radius 0.05 m; 
- Material density: foot = Leg = 7800 kg/m3. 
Our model will be compared with one created using the 
FEA software Castem [19]. In the FEA model, all links 
are modelled using 3D beam finite elements (10 elements 
by beam). As for one fixed position along x axis of the 
robot, the configuration is invariant for any position 
along y axis, only the position along x axis will vary. The 
results are presented in Table 1. 

In this table, it is shown that, for our model, the value 
of the first natural frequency is obtained with at most 4% 
error. This is almost sufficient for using such algorithm in 
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design procedure. Moreover, this percentage decreases to 
0.9% for the second natural frequency. However, the 
value of the third frequency has quite a large percentage 
of uncertainty. Indeed, this is due to the fact that the 
displacements due to the two first frequencies are very 
close from the displacement of the robot when a load is 
applied at the end effector, which is not the case for the 
third frequency. 

These results confirm the validity of our hypotheses 
and of our approach. It should be also mentioned that the 
Castem software computes the results in 0.09s while our 
approach takes 0.006 s, i.e. our procedure runs 15 times 
faster (for a Pentium 2.53 GHz, 4 Gb of RAM). Even if 
both computation times are very small in this example, in 
design optimization loops, for which thousands of 
possible configurations are tested, this saving of time is 
of the utmost importance. 

IV. Conclusions 

This paper has presented an approach for computing the 
first natural frequencies of parallel robots. The approach, 
based on the Rayleigh-Ritz approximation, aims at 
reducing the model dimension by decreasing the size of 
the matrices describing the robot mass and stiffness. This 
saves computational time, avoiding inaccuracy due to ill-
conditioning and thus can be used in design procedure as 
well as in real-time control. Simulations have been 
carried out on a PRRRP robot modelled in 3D and 
comparisons have been achieved with FEA software. The 
obtained results confirm the validity of the proposed 
procedure and shows that the algorithm runs 15 times 
faster than a classical FEA method. 
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First natural frequency (Hz) Second natural frequency (Hz) Third natural frequency (Hz) Position 
along x axis FEA Our model % error FEA Our model % error FEA Our model % error 

x = 0 m 204.65 210.48 2.85 555.51 556.58 0.19 787.09 903.57 14.80 
x = 0.05 m 204.85 210.71 2.86 558.10 558.64 0.10 786.97 906.63 15.21 
x = 0.1 m 205.46 211.44 2.91 565.98 566.85 0.15 786.60 910.46 15.75 
x = 0.15 m 206.53 212.75 3.01 579.52 581.39 0.32 785.98 916.76 16.64 
x = 0.2 m 208.19 214.80 3.17 599.36 602.32 0.49 785.12 929.35 18.37 
x = 0.25 m 210.75 218.02 3.45 626.64 628.86 0.35 784.06 956.93 22.05 
x = 0.3 m 215.25 223.88 4.01 664.27 658.27 0.90 782.99 1023.64 30.73 

 

TABLE 1. Values of the three first natural frequencies of the PRRRP robot under study computed with two different 
methods: (i) using a FEA model and (ii) using the proposed method. 
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