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Abstract. We give evidence of the direct integration and automated
checking of implicit induction-based proofs inside certified reasoning en-
vironments, as that provided by the Coq proof assistant. This is the first
step of a long term project focused on 1) mechanically certifying im-
plicit induction proofs generated by automated provers like Spike, and
2) narrowing the gap between automated and interactive proof tech-
niques inside proof assistants such that multiple induction steps can be
executed completely automatically and mutual induction can be treated
more conveniently. Contrary to the current approaches of reconstructing
implicit induction proofs into scripts based on explicit induction tactics
that integrate the usual proof assistants, our checking methodology is
simpler and fits better for automation. The underlying implicit induc-
tion principles are separated and validated independently from the proof
scripts that consist in a bunch of one-to-one translations of implicit in-
duction proof steps. The translated steps can be checked independently,
too, so the validation process fits well for parallelisation and for the man-
agement of large proof scripts. Moreover, our approach is more general;
any kind of implicit induction proof can be considered because the limi-
tations imposed by the proof reconstruction techniques no longer exist.
An implementation that integrates automatic translators for generating
fully checkable Coq scripts from Spike proofs is reported.

1 Motivations

Implicit induction proof techniques allow for automated reasoning on inductive
properties of equational specifications. Up to now, implicit induction theorem
provers, as Spike [3], have been successfully used in treating non-trivial case
studies, for example, the validation of the JavaCard Platform [3] and the confor-
mance algorithm of a telecommunications protocol [19]. Spike proofs are highly
automated; in [3], almost half of the JavaCard bytecode instructions have been
checked completely automatically, i.e. do not require users to provide additional
lemmas, and done in a reasonable time. These proofs are shallow but large,
involving several induction, case analysis and rewriting steps. Even if the theo-
retical backgrounds of implicit induction proof techniques are widely accepted by
the scientific community, their implementation inside theorem provers is error-
prone and their certification still stands for a challenge. The most common and
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ancient validation technique is by human checking. It may work well when the
proof size is reasonable, but is not suited for checking many (even easy) inference
steps.

To the other extreme, the approach is to certify inference systems such that
any proof developed inside certified proof environments is guaranteed to be
sound. For example, the proofs done with the Coq proof assistant [24] are me-
chanically checked by the kernel of its inference system, which is small enough to
be human checked and reliable. However, the process for certifying complex soft-
ware systems is tedious [13], in the case of Spike it would require the validation
of thousands of OCaml code lines. The midway approach that we adopted would
therefore not consist in certifying inference systems, but in checking proofs that
would play the role of test cases for the unreliable systems. More precisely, the
Spike proofs are converted into Coq scripts checkable by the Coq kernel. During
the last decade, different reasoning tools successfully applied this approach by
developing conversion options for Coq [8,4].

The soundness of any implicit induction reasoning can be easily explained
using ‘proof-by-contradiction‘ arguments characterizing the ’Descente Infinie’
induction-based approaches [21]. For example, proving that a non-empty and
potentially infinite set of first-order ground formulas F is true requires: 1) (the
‘well-foundedness’ requirement) a well-founded induction ordering over the for-
mulas from F, i.e. there are no infinite strictly descending sequences of formu-
las, and 2) (the ‘counterexample non-minimality’ requirement) to prove that for
each false formula from F, called counterexample, there exists a smaller one. The
proof starts by assuming by contradiction that there is a counterexample in F.
Therefore, by 2), there is a smaller counterexample for which is an even smaller
counterexample by applying 2) again, and so on. In this way, one can build
an infinite strictly descending sequence of counterexamples (hence the name of
’Descente Infinie’), which contradicts 1).

An example of implicit induction proof. Implicit induction proofs as performed
by Spike can easily manipulate conjectures about specifications integrating mu-
tually defined functions. Let’s consider the universally quantified axioms that
mutually define the even, respectively the odd functions over the naturals:

even(0) = true (1)
odd(x) = true⇒ even(S(x)) = true (2)
odd(x) = false⇒ even(S(x)) = false (3)

odd(0) = false (4)
even(x) = true⇒ odd(S(x)) = true (5)
even(x) = false⇒ odd(S(x)) = false (6)

using the constructors 0 and successor S for the naturals. Let’s assume that we
want to prove the conjectures odd(S(plus(x, x))) = true and even(plus(y, y)) =
true, where plus is the addition function over the naturals, defined by the axioms
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plus(0, x) = x and plus(S(x), y) = S(plus(x, y)). In addition, we assume the
lemma plus(x, S(y)) = S(plus(x, y)).

To prove that the conjectures are true (w.r.t the above axioms) using a ’De-
scente Infinie’ induction-based approach means to check the ‘well-foundedness’
and ‘counterexample non-minimality’ requirements. For example, the well-
founded induction ordering from the first requirement, denoted by ≺≺rpo, can be
defined as a multiset extension of the RPO ordering ≺rpo based on the prece-
dence 0 <F S <F plus <F even with multiset status for the defined functions,
where odd has the same precedence as even.1 The ≺rpo and ≺≺rpo orderings can
also be used to orient the above axioms from left to right into rewrite rules. In
general, the equality a = b ⇒ l = r is oriented into a = b ⇒ l → r if l is the
unique greatest term in the equality.

The rewrite rules are involved into rewrite operations that replace terms with
smaller ones, essential in the quest for smaller counterexamples during the real-
ization of the ‘counterexample non-minimality’ requirement. Let’s assume that
there is a counterexample in the first conjecture, c1 : odd(S(plus(n, n))) = true,
for some natural n. A smaller counterexample can be pointed out by performing a
case analysis on even(plus(n, n)): if it is false then odd(S(plus(n, n))) is false
according to (6), i.e. even(plus(n, n)) = false⇒ false = true; if it is true, then
we have the tautology c3 : even(plus(n, n)) = true ⇒ true = true, according
to (5). So, c4 : even(plus(n, n)) = false ⇒ false = true is a counterexample
smaller than odd(S(plus(n, n))) = true because we replaced odd(S(plus(n, n)))
by smaller terms. c4 can be rewritten with the second conjecture to get the
smaller instance c2 : even(plus(n, n)) = true. Since the rewritten equality,
c7 : true = false⇒ false = true, is a tautology, c2 is a counterexample.

We can go further and show that there exists at least one counterexample
smaller than c2. Since n is a natural, it can be either 0 or S(n′), for some
natural n′. If n is 0, plus(0, 0) is 0, so c6 : even(0) = true can be rewrit-
ten by (1) to c9 : true = true which is a tautology. Therefore, n should be
S(n′). Rewriting even(plus(S(n′), S(n′))) with the axiom plus(S(x), y) →
S(plus(x, y)) results c5 : even(S(plus(n′, S(n′)))) = true. By using the lemma
plus(x, S(y)) → S(plus(x, y)), we obtain the smaller counterexample c8 :
even(S(S(plus(n′, n′)))) = true. Another case analysis on odd(S(plus(n′, n′)))
yields two new equalities: i) c11 : odd(S(plus(n′, n′))) = true ⇒ true = true,
which is a tautology, and ii) the smaller counterexample c10 : odd(S(plus(n′, n′)))
= false ⇒ false = true. The instance of the first conjecture c′1 : odd(S(plus
(n′, n′))) = true is smaller and can be used to rewrite it into the tautology
c12 : true = false ⇒ false = true. Therefore, c′1 is a smaller counterexample.
To sum up, c′1 is smaller than the original counterexample c1. The quest for
smaller counterexamples can be similarly repeated ad infinitum, which contra-
dicts the ‘well-foundedness’ requirement. So, we conclude that the conjecture
odd(S(plus(x, x))) = true is true. For similar reasons, even(plus(x, x)) = true
is also true.

1 For more formal definitions, the reader may consult Section 2.
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Fig. 1. Example of simultaneous induction proof; the assumption of false initial conjec-
tures generates an infinite strictly descending sequence of counterexamples, as indicated
by the dotted arrows

The proof employs simultaneous induction, i.e. instances of the first conjecture
are used as induction hypotheses in the proof of the second, and viceversa, as
depicted by the proof graph from Fig. 1. The nodes are labelled with the names
of the ground equalities encountered during the proof. A branching node points
out a case analysis operation on the corresponding equality. The solid (resp.
dotted) arrows give pathways to tautologies (resp. smaller counterexamples).
Notice the infinite pathway of counterexamples which justifies the application of
the ’Descente Infinie’ induction principle.

Related approaches. Previous attempts to validate Spike proofs have been done
by Courant [9] and Kaliszyk [12] using the explicit induction tactics provided by
Coq. Their approaches are limited mainly because the explicit induction proof
methods require hierarchical manipulation of induction hypotheses; the proofs
have a tree-shape such that the exchange of information is forbidden between
different branches. Therefore, it is impossible to perform simultaneous induction
proofs.

Up to now, the current solution is to reconstruct implicit into explicit induc-
tion proofs. In [9], only the proofs done with restricted versions of the Spike
system (the K-systems) are considered. Their inference rules have to obey some
conditions that would allow proof representations under the form of a tree la-
belled with judgements. On the other hand, [12] identifies explicit induction
schemas from the proof steps that instantiate variables. More recently, Nahon
et al. [15] proposed a theoretical foundation based on deduction modulo that
permits automated construction of inductive proofs into the sequent calculus,
ready for insertion into proof assistants. As Brotherston has already shown in
his PhD thesis [6], the idea is to perform ’Descente Infinie’-style proofs using
an extension of the sequent calculus with explicit inductive schemas that define
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conjectures in terms of induction hypotheses and conclusions linked by shared
variables. However, it is difficult to see how the Spike proofs can be reproduced
by this calculus since Spike does not assume variable sharing between different
conjectures.2 In our opinion, implicit and explicit induction are just two different
proof techniques; they can be even combined during the proof process, as shown
in [22].

Some proof assistants already integrate automatizing mechanisms for induc-
tion reasoning, for example Coq [25], Agda [14], IsaPlanner [10], NuPrl [16] and
Clam [7]. To the best of our knowledge, all of them use explicit inductive def-
inition schemas. On the other hand, there is no similar work w.r.t. the direct
integration of implicit induction techniques. The first successful but manual con-
version and checking operations of an implicit induction proof by Coq have been
reported in [23].

Structure of the paper. The main contribution of the paper is a methodology for
mechanically checking potentially any implicit induction proof. We will explain
in particular how the methodology works for validating Spike proofs with Coq.
After presenting the basic notions and notations in Section 2, we will detail
in Section 3 the implicit induction proof techniques, then introduce a simplified
version of the Spike inference system but strong enough to prove the introductory
example. Section 4 develops the idea of explicitly defining, then implementing the
underlying implicit induction principles. The first part will prove the soundness
of the ’Descente Infinie’ induction principle instantiated for a particular well-
founded induction ordering. The second part uses deductive reasoning based on
current techniques such as rewriting, case analysis and tautology elimination in
order to check the ’counterexample non-minimality’ requirement. In addition,
we will show and give examples using implementation details that one can build
a one-to-one translation of the Spike inference rules into Coq tactics, hence
the generality of our approach. The methodology is applied for automatically
translating and validating the Spike proof of the introductory example and other
non-trivial examples. The conclusions and future work are given in the last
section.

2 Basic Notions

Conditional specifications consist of axioms representing conditional equalities be-
tween terms built on an alphabet of (arity-fixed) function symbols F and (uni-
versally quantified) variables V . The axioms define some of the function symbols,
the other symbols are referred to as constructors. The specifications of interest
are many-sorted and we assume that for each sort s there exists at least one con-
structor of sort s. The conjectures are clauses representing disjunctions of literals,
where a literal is either an equality or a inequality between two terms. Sometimes,
clauses that have at most one equality are represented as implications.
2 For more details, the reader may consult the Spike proof of the introductory example

from Subsection 3.1.
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The set of terms is denoted by T (F ,V) and the set of ground (or no variable)
terms by T (F). New terms (resp. clauses), called instances, can be built from
existing terms (resp. clauses) by replacing variables with terms. The mappings
from variables to terms are called substitutions. Two terms unify if there is a
substitution σ such that sσ and tσ are syntactically equal, denoted by sσ ≡ tσ.
A term s matches the term t if there exists a substitution σ such that sσ ≡ t.
The subterm t of a clause C is identified by its position p, denoted by C[t]p.

A quasi-ordering ≤ is a reflexive and transitive binary relation, consisting of
strict and equivalence parts. The strict part of a quasi-ordering is called ordering
and denoted by <. A quasi-ordering ≤ defined over the elements of a nonempty
set A is well-founded if there do not exist infinite strictly descending sequences
. . . < x2 < x1 of elements ofA. A binary relationR is stable under substitutions if
whenever sR t then (sσ)R (tσ), for any substitution σ. A reduction ordering is a
transitive and irreflexive relation that is well-founded, stable under substitutions
and stable under contexts (i.e. sR t implies u[s]Ru[t]). An example of syntactic
reduction ordering over terms is ≺rpo from Section 1. ≺rpo is recursively defined
as follows. Given f ∈ F , a status function τ for F returns τ(f) ∈ {lex,mul},
foreach f ∈ F , where lex stands for lexicographic status and mul for multiset
status. Given <F an ordering over F , an ordering ≺rpo on T (F ,V) is defined as
follows: for all terms s, t ∈ T (F ,V), t ≺rpo s if s = f(s1, . . . , sm) and i) either
si = t or t ≺rpo si for some si, 1 ≤ i ≤ m, or ii) t = g(t1, . . . , tn), ti ≺rpo s for all
i, 1 ≤ i ≤ n and either a) g <F f , or b) f = g and (t1, . . . , tn) ≺τ(f)

rpo (s1, . . . , sn).
≺lex

rpo is the lexicographic extension of ≺rpo, i.e. (a1, . . . , an) ≺lex
rpo (b1, . . . , bn) if

either i) a1 ≺rpo b1 or ii) a1 = b1 and (a2, . . . , an) ≺lex
rpo (b2, . . . , bn). ≺mul

rpo , also
denoted by ≺≺rpo in the rest of the paper, is the multiset extension of ≺rpo.
Two terms s and t are equivalent if either a) s ≡ t, or b) s ≡ f(s1, . . . , sn),
t ≡ g(t1, . . . , tn), f and g have the same arity and precedence and, for the case
when f and g have multiset status, it exists (t′1, . . . , t

′
n) such that si is equivalent

with ti, forall 1 ≤ i ≤ n, and (t′1, . . . , t
′
n) is a permutation of (t1, . . . , tn). The

relation ≺≺rpo is defined in the next paragraph.
(Conditional) equalities can be transformed into (conditional) rewrite rules of

the form a = b⇒ l → r if l is greater than a, b and r. A rewrite system R consists
of a set of rewrite rules. The rewrite relation →R denotes rewrite operations only
with rewrite rules from R. The reflexive transitive (resp. equivalence) closure
of →R is denoted by →∗

R (resp ∗↔R). Given a substitution σ, a rewrite rule
a = b ⇒ l → r and a clause C such that C[lσ]u, a rewrite operation replaces
C[lσ]u by aσ = bσ ⇒ C[rσ]u.3 Any clause can also be represented as the multiset
of its literals. A well-founded and stable under substitutions ordering over clauses
can be built as the multiset extension of a reduction ordering over terms, as
follows. Given two multisets of terms A1 and A2, we write A1 ≺≺rpo A2 if,
after the pairwise elimination of the equivalent terms from A1 and A2, ∀s ∈ A1,
∃t ∈ A2 such that s ≺rpo t. A1 and A2 are equivalent if both of them become
empty after the elimination process. Finally, Φ≺≺rpoC denotes the set {ψσ | ψ ∈

3 For details on term rewriting, the reader may consult [1].
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Φ, σ a substitution and ψσ ≺≺rpo C} of instances of clauses from Φ that are
smaller than the clause C.
s = t is an inductive theorem of a set of axioms Ax orientable into a rewrite

system R if, for any of its ground instances sσ = tσ, we have sσ ∗↔R tσ. A
ground equality is a counterexample if it is not an inductive theorem. s = t is
false if it ‘contains’ (i.e. one of its instances is) a counterexample. Tautologies
are inductive theorems either of the form (e⇒)t = t, where e is an unconditional
equality and t a term, or of the form e1 ⇒ e2, where e1 ≡ a = b and e2 ≡ a = b
(or b = a), and a, b are terms.

3 Implicit Induction Proofs with Spike

In the introductory part, we have shown how the ’Descente Infinie’ induction
principle can help to justify the soundness of implicit induction proofs. We can
give a more pragmatic application of this principle since well-founded orderings
guarantee the existence of minimal elements. The proof is done by contradiction,
by assuming that there is no such minimal element, as follows. We pick an
arbitrary element from the set. Since it is not minimal, there exists a smaller
one which is not minimal, and so on. In this way, an infinite strictly descending
sequence of elements can be built. This contradicts the fact that the ordering is
well-founded.

The implicit induction inference systems consist of inference rules that replace
a conjecture with a potentially empty set of new conjectures. Proof derivations
are built by the successive application of inference rules on an initial set of
conjectures. We say that an implicit induction inference system is sound if the
minimal counterexamples are preserved in the derivations, i.e. whenever an in-
ference rule replaces a conjecture containing a minimal counterexample, there is
a further state in the derivation, usually the next state, with a conjecture having
an equivalent (w.r.t. well-founded induction quasi-ordering) minimal counterex-
ample. The soundness property is interesting because we can state that the initial
set of conjectures are true whenever the derivations end with an empty set of
conjectures. Otherwise, assuming that there is a counterexample in the initial set
of conjectures, there exists a minimal counterexample in the set of conjectures
encountered in the derivation. Since any minimal counterexample is preserved,
it should be present in the last state of the derivation. On the other hand, this
is not possible because the last state is empty.

From a logical point of view, it is sufficient to show that the replaced minimal
counterexample is a consequence of the equivalent minimal counterexample from
the further state. The consequence relation is not affected if other true formulas
like the axioms and smaller conjectures from the derivation, or equivalent con-
jectures from further states are involved [20]. These conjectures play the role of
induction hypotheses.

Implicit induction proofs similar to that presented as example in Section 1 can
be highly automated if the quest for smaller or equivalent minimal counterexam-
ples is limited only to the conjectures from the next state. The trick is to store
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in the current state previously replaced conjectures that do not contain minimal
counterexamples, called premises.4 In this case, the initial set of conjectures are
true for any derivation starting with an empty set of premises and finishing with
an empty set of conjectures.

3.1 The Spike Prover

Spike is an implicit induction prover that reasons on conditional specifications. In
the last decade, it has been successfully used in many real-size case studies from
different areas (telecommunications [19], programming language platforms [3],
collaborative editing systems [11], web services [18], etc).5

Specifications and properties. The conditional specifications are sorted and
consist in sets of axioms defining functions, represented as conditional equalities.
We assume that a reduction ordering exists such that it can orient the axioms into
rewrite rules. The specifications accepted by Spike should be coherent, i.e. any
formula and its negation cannot be simultaneously consequences of the axioms,
and complete, i.e. the functions are defined in any point of the domain.

A sufficient condition to achieve coherent conditional specifications is the
ground convergence, i.e. the rewriting process of any ground term terminates
and yields a unique result [5]. This property is easier to check for specifications
based on free constructors: the lhs of the rewrite rules defining a function symbol
f is basic, i.e. of the form f(

→
t ) with

→
t≡ t1, . . . , tn a vector of n constructor

terms, and there is no equality relation between two constructors terms starting
with different constructor symbols.

Complete specifications may define only operational sufficiently complete func-
tion symbols f , i.e. for any ground basic term f(

→
s ), i) there are matching axioms

ai = bi ⇒ li → ri such that f(
→
s ) ≡ liσi, and ii)

∨
i aiσi = biσi is an inductive

theorem and any two matching substitutions are equivalent modulo renaming.
The test for inductive validity is generally undecidable, therefore we will re-
strict to the case when the specifications contain only conditional axioms with
conditions having the form a = b, where b is either true or false.

The inference system. The Spike inference system is made of inference rules
manipulating clauses, representing transitions between states (E,H) � (E′, H ′),
where E, E′ are conjectures, and H , H ′ premises. In Fig. 2, we introduce a
simplified version of it consisting only of 4 inference rules.

Generate applies on clauses having subterms that unify with some lhs of the
axioms, referred to as unifying axioms. The soundness of the system is preserved
if all the unifying axioms are considered [3]. Total Case Rewriting can apply
on clauses with subterms that are matched by some lhs of conditional axioms.
If the position of the subterm resides inside a maximal term of the treated
clause C, then C cannot have minimal counterexamples and is added to the set
4 Notice that the two notions of induction hypothesis and premise are different.
5 For a more detailed list of publications, see [17].
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Generate: (E ∪ {C[t]p}, H) � (E ∪ (∪σEσ), H)
if Eσ is {aσ = bσ ⇒ Cσ[rσ]p} and a = b ⇒ l → r ∈ Ax s.t. tσ ≡ lσ.

Total Case Rewriting: (E ∪ {C[t]p}, H) � (E ∪ E′, H ∪ {C})
if E′ is {a1σ1 = true ⇒ C[r1σ1]p, a2σ2 = false ⇒ C[r2σ2]p} and
a1 = true ⇒ l1 → r1, a2 = false ⇒ l2 → r2 ∈ Ax s.t. l1σ1 ≡ t and l2σ2 ≡ t.

(Unconditional) Rewriting: (E ∪ {C}, H) � (E ∪ {C′}, H)
if C →Ax∪L∪(H∪E)≺≺rpoC

C′.

Tautology: (E ∪ {C}, H) � (E, H)
if C is a tautology.

Fig. 2. A simplified version of the Spike inference system

of premises. Rewriting rewrites clauses with unconditional orientable axioms
Ax, lemmas L, and smaller instances of premises and conjectures. Tautology
deletes tautologies.

Proof example. The above inference system can prove e1 : even(plus(x, x)) =
true and e2 : odd(S(plus(y, y))) = true using the lemma plus(x, S(y)) =
S(plus(x, y)) and the ≺rpo, ≺≺rpo orderings from the introductory example.
The initial state of the proof is ({e1, e2}, ∅). Total Case Rewrite (TCR)
is applied on odd(S(plus(y, y))) of e2 with axioms (5) and (6) to yield e3 :
even(plus(y, y)) = true ⇒ true = true and e4 : even(plus(y, y)) = false ⇒
false = true. From the current state ({e1, e3, e4}, {e2}), e3 is deleted by Tau-
tology (T). Rewriting (R) simplifies e4 with the conjecture e1 to give the tau-
tology e5 : true = false⇒ false = true, which is deleted in the next step. Gen-
erate (G) can be applied on the remaining conjecture, e1. The term plus(x, x)
is unified with the lhs of the axioms defining plus, to yield e6 : even(0) = true
and e7 : even(S(plus(z, S(z)))) = true, where z is a new variable. e6 is re-
duced to the tautology e8 : true = true by Rewriting with axiom (1), then
deleted using Tautology. e7 is reduced to e9 : even(S(S(plus(z, z)))) = true by
Rewriting with the lemma. A second Total Case Rewriting on the term
even(S(S(plus(z, z)))) of e9 yields e10 : odd(S(plus(z, z))) = true ⇒ true =
true and e11 : odd(S(plus(z, z))) = false ⇒ false = true. From the new cur-
rent proof state ({e10, e11}, {e2, e9}), e10 is deleted by Tautology and e11 is
reduced to the tautology e12 : true = false ⇒ false = true by Rewriting
with the premise e2. The proof finishes after the application of Tautology on
the last conjecture e12.

The proof is schematised as follows: ({e1, e2}, ∅) �(TCR) ({e1, e3, e4}, {e2}) �(T)

({e1, e4}, {e2}) �(R) ({e1, e5}, {e2}) �(T) ({e1}, {e2}) �(G) ({e6, e7}, {e2}) �(R)

({e8, e7}, {e2}) �(T) ({e7}, {e2}) �(R) ({e9}, {e2}) �(TCR) ({e10, e11}, {e2, e9})
�(T) ({e11}, {e2, e9}) �(R) ({e12}, {e2, e9}) �(T) (∅, {e2, e9}). The underlined for-
mula from a proof state is the conjecture to which the corresponding inference rule
is applied.
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4 Translating and Checking Spike Specifications

Spike specifications and proofs can be directly translated into Coq scripts. Each
Spike datatype and function definition is translated into an equivalent Coq rep-
resentation. In addition, the underlying ’Descente Infinie’ induction principle is
explicitly defined. In order to do this, Coq formulas have to be syntactically
represented and compared as Spike does. The idea is to use a term algebra that
abstracts the Coq datatypes and function symbols such that each Coq term
is weighted with an abstract term. In this way, comparing two Coq formulas
reduces to comparing the weights of their built-in terms.

The Coq scripts consist in the specification and proof parts. The specifica-
tion part defines the abstract term algebra and the RPO ordering built from
abstractions of Spike function symbols and their precedence. Then, the Coq
datatypes and functions are introduced, together with translation functions for
each datatype, which show how to abstract constructor terms. In the proof part,
firstly a weight is associated to each conjecture encountered in the Spike proof,
then lemmas about weight comparisons are defined. The ’Descente Infinie’ prin-
ciple is explicitly stated in the main lemma which proves that for each false
instance from the set of conjectures, there is another one with a smaller weight.
Another lemma states that all conjectures are true. The last lemma trivially
concludes that the initial conjectures are true, too.

Datatypes and the function definitions. The Coq datatypes, function defi-
nitions and translation functions have to be defined manually by the user. Spike
specifications can be annotated with Coq code that is inserted into the generated
Coq script during the translation process. As example, here is the code for the
introductory example, consisting of a set of computing functions :

Fixpoint model nat (v : nat): term :=
match v with
| O ⇒ (Term id 0 nil)
| S x ⇒ let r := model nat x in (Term
id S (r ::nil))
end.
Fixpoint model bool (v : bool): term
:=
match v with
| true ⇒ (Term id true nil)
| false ⇒ (Term id false nil)
end.

Fixpoint plus (x y:nat): nat :=
match x with
| O ⇒ y
| S x’ ⇒ S (plus x’ y)
end.

Fixpoint even (v :nat): bool :=
match v with
| 0 ⇒ true
| S x ⇒ match odd x with

| true ⇒ true
| false ⇒ false

end
end
with odd (v :nat): bool :=
match v with
| 0 ⇒ false
| S x ⇒ match even x with

| true ⇒ true
| false ⇒ false

end
end.



330 S. Stratulat

where id x is the abstraction of a function symbol x, model sort is the transla-
tion function for sort and term (recursively defined as Inductive term : Set :=
| Var : variable→ term | Term : symbol → list term → term.) is the type
of the abstracted terms provided by COCCINELLE [8], a Coq library well suited
for modelling mathematical notions needed for rewriting, such as term algebras
and RPO. This is the checking step for the Spike specification and its proper-
ties, since any computing function written as a structurally recursive function
is guaranteed to be complete and ground convergent, if accepted by Coq. The
termination and ground confluence properties result from the fact that every re-
cursive call is executed on a structurally smaller argument and that the inserted
Coq script is based on free constructors, respectively.

The ordering over conditional equalities. An important part of the Coq
script concerns the implementation of the induction ordering involved in the
‘well-foundedness’ requirement. Its definition and the computation of compar-
isons between conjectures are based on computable functions and inductive pred-
icates provided by COCCINELLE. COCCINELLE formalises RPO in a generic
way using a precedence and a status (multiset/lexicographic) for each function
symbol. Spike automatically generates a term algebra starting from the abstract
function symbols which preserve the precedence of the original symbols. Then,
the algebra is applied as argument to the functor of the generic RPO module
which establishes fundamental properties about RPO orderings, for example,
any RPO ordering is a reduction ordering. Also, the well-foundedness of the
induction ordering, denoted below by less, is provided.

In order to deal with mutually recursive functions, the RPO definition from
the generic module has been extended to take into account precedence relations
with equivalent symbols. Also, even if many interesting properties about the
RPO orderings have been already provided by COCCINELLE, some about the
multiset extension of RPO were missing. A new function computing weight com-
parisons was defined and its equivalence with less was proved as a soundness
lemma. This guarantees that any terminating weight comparison operation is
sound. The termination property is ensured if the size of the terms is limited by
a global maximal value. For a given proof, it has to be greater than the double
of the maximal size of the terms encountered in the proof. The stability under
substitutions of less was also proved.

The ’Descente Infinie’ induction principle is implemented in three steps.
Firstly, the existence of minimal elements in any non-empty set of weights, rep-
resented as lists of abstract terms, is guaranteed:

∀ Y : P (list term), (∃ y, y ∈ Y ) → ∃ n ∈Y, ∀m ∈ Y, ¬ (less m n).

Then, the ‘counterexample non-minimality’ requirement is implemented such
that, for any list of pairs (coq formula, weight), whenever a formula instance is
false there is another one with a smaller weight:

∀F ∈ F, ∀ →
x ,¬π1(F

→
x ) → (∃F1 ∈ F, ∃ →

x1,¬π1(F1
→
x1)∧ less π2(F1

→
x1) π2(F

→
x ))
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where π1 and π2 are the first and second projections of a pair, respectively. F is
the set of functors that associate a pair (formula, weight) to a vector of terms.

Finally, we prove that ∀F ∈ F, ∀ →x , π1(F
→x ). The first and the third step

require classical reasoning. The third step is valid for any set F satisfying the
‘counterexample non-minimality’ requirement.

Satisfying the ‘counterexample non-minimality’ requirement. All crucial
information for satisfying this requirement can be extracted from the Spike proof,
in particular the set F, the conjectures containing smaller counterexamples and
the comparisons between the weights of the conjecture instances. For example,
the set F for validating the introductory example consists of functors associated
to each of the twelve conjectures e1 to e12: {(fun x => (even(plus x x) =
true, weighte1)), . . . , (fun => (true = false ⇒ false = true, weighte12))}.
The proof consists of a case analysis on the conjectures that may have counterex-
amples following the ‘quest for smaller counterexample’ reasoning represented in
Fig. 1. Each of the cases can be treated independently and in any order. For ex-
ample, if e1 has a counterexample, by performing a case analysis on x instantiated
with 0 and (S z), a smaller counterexample should exist either in e6 or e7.

An important part of the proof is spent on verifying weight comparisons. The
comparison proofs can be automatically generated and consist in i) the replace-
ment of all terms of the form (model sort x) with COCCINELLE abstraction
variables of the form (Var i), where i is a natural, ii) the use of the ‘stability
under substitutions’ property of less which allows to perform the comparison
tests on weights with abstraction variables instead of using the original weights,
iii) computing the comparison result of weights with abstraction variables, and
iv) validating the result using the soundness lemma. In order to perform iii) for
the case when the weights of two compared terms, weight1 and weight2, consist
of m and n abstracted terms, respectively, we have to check that the size of any
term from weight1 added with the size of any term from weight2 does not exceed
the maximal value. The total number of size comparisons is therefore m ∗ n.

One-to-one translation of Spike inference steps. Automatic translators
have been implemented for the inference rules from Fig. 2. Deductive steps like
rewriting, case analysis and tautology elimination operations are directly trans-
lated into Coq proof commands.

The variable instantiation schemas of Generate are controlled by Coq func-
tional schemas [2]. This is the checking step for complete instantiation schemas.
For example, to show that x from e1 is replaced by 0 and (S z), we define a
function f with all the instantiation cases:

Fixpoint f (x : nat) {struct x} : nat :=
match x with
| 0 ⇒ 0
| (S z ) ⇒ 0
end.
Functional Scheme f ind := Induction for f Sort Prop.
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The instances are generated by the Coq script pattern x, (f x ). apply f ind.
The idea is that, for each instance HFabs, we choose the functor from F cor-
responding to the appropriate conjecture from the Spike proof script, and show
that HFabs is logically equivalent with a smaller instance. For the case when
x is 0, here is the generated Coq script: exists (fun ⇒ ((even 0) = true,
weighte6)). eexists. split. contradict HFabs. auto. apply less HFabs e6.
The first two commands instantiate e6, then the proof is split in two: the ‘logi-
cally equivalence’ and comparison parts consisting of the application of auto, a
tactic enough powerful to show the equivalence between plus 0 0 and 0, and of
the comparison lemma less HFabs e6, respectively.

The translation of Total Case Analysis is similar, excepting that the
case analysis on whether a condition a is either true or false is performed by
destruct a. This is the checking step for the inductive validity of the disjunc-
tion of rewrite rules conditions. This translation offers a better control of the
rewritten term than auto. For example, the fact that C[f(t)] is rewritten with a
rule of the form f(x) → . . . can be simulated by pattern t. simpl f . cbv beta.
pattern t isolates t from C, simpl f rewrites f(t) and cbv beta puts back the
resulted term in C. Rewriting is translated using the same trick for rewriting.

There is no need to reduce or compare tautologies with other conjectures.
Tautologies can be eliminated by Coq using intros. auto. intros separates
the conditions from the conclusion of a conditional equality. auto checks either
that the conclusion is of the form t = t or that the conditions contain the
conclusion.

Experimental results. Table 1 displays some statistics about the execution
time and size of the Coq scripts generated with our implementation for sev-
eral Spike specifications and conjectures: properties about plus and different
definitions of even and odd (conjectures 1] to 10]), about other recursive data
structures like trees and lists (conjectures 11] and 12]) and conjectures stating
the soundness of a simple insertion sorting algorithm (conjectures 13] to 16]).

The third and fourth columns show the number of comparison lemmas and
the time needed for their validation, respectively. The fifth and sixth columns
display the cardinality of F and the validation time of the corresponding formu-
las, respectively. The last column gives the total execution time, including the
overhead time needed for checking the algebra and the ordering. The overhead
time for the first ten conjectures was 45.5s, for the next two conjectures was
1m10s and for the last conjectures 59.6s. The statistics for 5], 6] and 7] take
into account that 4] was executed before being used as lemma. On the other
hand, 16] requires a lemma whose proof in Spike needs arithmetic reasoning. In
Coq, the lemma was represented as a hypothesis. Finally, the execution time
of each of the Spike proofs and the translation operations lasted less than one
second.

The experiments have been done on a MacBook Air featuring a 1.6 GHz Intel
Core 2 Duo processor and 2 GB RAM.
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Table 1. Statistics about the Coq validation process of some implicit induction proofs

# conjecture(s) # less less time # F proof time total time
1] evenr(plus(x, y)) = true ∧ 27 3m15s 22 0m50.5s 4m51s

evenr(plus(y, z)) = true
⇒ evenr(plus(x, z)) = true

2] evenm(x) = evenr(x) 9 0m10s 8 0m00.5s 0m56s
3] plus(x, 0) = x 4 0m02s 3 0m02s 0m48s
4] plus(x,S(y)) = S(plus(x, y)) 7 0m01.5s 8 0m01.5s 0m56s
5] even(plus(x, x)) = true and 17 0m44s 20 0m06.5s 1m34s

odd(S(plus(x, x))) = true (needs 4])
6] plus(x, y) = plus(y, x) (needs 4]) 26 0m39s 24 0m05.5s 1m30s
7] evenm(plus(x,x)) = true and 21 1m13s 20 0m13.5s 2m12s

oddm(plus(x, x)) = false (needs 4])
8] evenr(S(x)) = true ⇒ 11 0m49s 10 0m10.5s 1m45s

true = oddm(x)

9] oddc(x) = oddm(x) 19 1m09s 16 0m29.5s 2m24s
10] plus(x, plus(y, z)) = plus(plus(x, y), z) 7 0m46s 6 0m23.5s 1m55s
11] flat(ins(x, t)) = Cons(x, flat(t)) 14 0m53s 15 0m38.4s 2m21s
12] app(x,app(y, z)) = app(app(x,y), z) 8 0m46s 17 0m22.4s 1m58s
13] sorted(Cons(x, y)) = true ⇒ 5 0m07s 6 0m30s 1m47s

sorted(y) = true

14] length(insert(x, y)) = S(length(y)) 9 0m28s 10 0m27s 2m05s
15] length(isort(x)) = length(x) 14 0m36s 16 0m32s 2m18s
16] sorted(isort(x)) = true (needs lemma) 5 0m02s 4 0m27s 1m39s

5 Conclusions and Future Work

We have proposed a methodology for directly checking potentially any implicit
induction proofs using certified proof environments. By the means of the Coq
proof assistant, the methodology was applied to check non-trivial proofs done
with a restricted version of the Spike system. The ’Descente Infinie’ induction
principle underlying the Spike proofs was explicitly defined and every single Spike
inference step has been translated into equivalent Coq script using automated
translators.

One of our long-term goals is to automatically check large Spike proofs. As
shown by the experimental results, the checking time is some orders of magnitude
longer than for producing a Spike proof, so the current implementation has
to be optimised. To meet this objective, the fixed part of the scripts (i.e. the
specification and the RPO ordering definition) can be validated in a separate
Coq module to be imported, instead of being (re)validated each time a new
conjecture is proved. Also, a lot of time is spent validating comparison lemmas.
Computing the size of all terms in advance would linearize the complexity of
comparison proofs. Last but not least, since the translated inference steps can
be performed independently, it would be interesting to check them concurrently.



334 S. Stratulat

Some other Spike proofs require more sophisticated inference rules to deal with
arithmetic reasoning, parametrized specifications and existential variables [3],
or more general versions of the presented inference rules, for example Total
Case Rewriting with conditional axioms having more complex conditions. A
challenge would be to implement automatic translators for each of these cases.

In other direction, we intend to define a tactic that performs implicit induc-
tion reasoning as an alternative to the existing explicit induction techniques for
validating inductive properties. In this way, Coq (and other similar proof as-
sistants) would be able to automatically execute multiple induction steps and
manage more conveniently mutually defined functions.
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