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1. Static and Quasi-Static Fields
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Abstracil Model refinements of non-linear magnetic circuits
are performed via a finite element subproblem method. A com-
plete problem is split into subproblems to allow a progression
from 1-D to 3-D including linear to non-linear model corrections.
Its solution is then expressed as the sum of the subproblem solu-
tions supported by different meshes. A convenient and robust
correction procedure is proposed allowing independent overlap-
ping meshes for both source and reaction fields. It simplifies both
meshing and solving processes, and quantifies the gain given by
each refinement on both local fields and global quantities.

|. INTRODUCTION

The perturbation of finite element (FE) solutionevyides
clear advantages in repetitive analyses and helpsoving the
solution accuracy [1]-[6]. It allows to benefit froprevious
computations instead of starting a new completesélation
for any variation of geometrical or physical ddtalso allows
different problem-adapted meshes and computatiefii
ciency due to the reduced size of each subproblem.

A FE subproblem method (SPM) is herein developed
coupling solutions of various dimensions, starfiregn simpli-
fied models, based on ideal flux tubes defining aDdels,
that evolve towards 2-D and 3-D accurate modelswiig
leakage flux and end effects. Progressions froemalirto non-
linear models are aimed to be performed at any sibigch ex-
tends the method proposed in [3]-[6]. A convenimd robust
correction procedure is proposed here. It combinaeyg
changes, via volume sources (VSs) and surfacese®($Ss),
with possible superpositions in single correctiteps. It al-
lows independent overlapping meshes for both soancere-
action fields, which simplifies the meshing procedu

The developments are performed for the magnetitovec

potential FE magnetostatic formulation, paying $pleatten-
tion to the proper discretization of the constraiimvolved in
each SP. The method will be illustrated and vadidadn test
problems.

Il. PROGRESSIVEMAGNETIC SUBPROBLEMS

A. Sequence of Subproblems

General 2-D and 3-D non-linear models are proposdat
split into sequences of SPs, some of lower dimessice. 1-D
and 2-D models, and others for adequate correctibngri-
ous types. Non-linear corrections are aimed to llmeved at
any level of this sequence. The SP solutions abetadded to
give the complete solution. This offers a way tafqen
model refinements, with a direct access to eachecton,
usually of useful physical meaning.
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Each SP is defined in its own domain. At the discievel,
this aims to decrease the problem complexity aralltov dis-
tinct meshes with suitable refinements and possilamain
overlapping, each SP having to approximate at ibesbntri-
bution to the complete solution.

B. Canonical magnetic problem

A canonical magnetostatic problgms defined in a domain
Qp, with bpundary)Qp=l'p=I'h,pD I'b,p_. Subscripp refers to
the associated problem The equations, material relation,
boundary conditions (BCs) and interface conditi¢iis) of
problemp are

nx hp|Fh,p=. 0,n Ebplrbf 0, (1d-e)
[nx hp]ypzlf,p, [n [bp]ypz bt p, (1f-9)

wherehy, is the magnetic fieldy, is the magnetic flux density,
jp is the prescribed current densify, is the magnetic perme-

f%bility andn is the unit normal exterior t@,. The notation
[Oy=0y -0y expresses the discontinuity of a quantity
through any interfacg (with sidesy* andy") in Qp, which is
allowed to be non-zero.

The fieldhgp in (1) is a VS, usually used for fixing a rem-
nant induction. With the SPMig, is also used for expressing
changes of permeability, e.g. for added regionsraordlinear
changes. For a change of permeability of a regiom g, for
problemg to p, for problemp, the VShg, in this region is

hs,p = (Up_l—Uq_l) lOq )

for the total field to be related Ity +hp = up—l (bg+bp).

The surface field§ , andby  in (1f-g) are generally zero to
define classical ICs for the fields. If nonzercgyttdefine pos-
sible SSs. This is the case when some field triacagprevious
problemqg have been forced to be discontinuous, e.g. for ne-
glecting leakage fluxes and reducing the problena tower
dimension [2]-[6]. The continuity has to be recmatafter a
correction via a problerp. The SSs in problem are thus to
be fixed as the opposite of the trace solutionrobfemaq.

Each problenp is constrained via the so defined VSs and
SSs from parts of the solutions of other problefigs offers a
wide variety of possible corrections [2]-[6], tha&lcome lin-
ear to non-linear changes as well.

)

[ll. V ARIOUS POSSIBLEPROBLEM SPLITTINGS

For a typical magnetic circuit, e.g. an electronsgthe SP
procedure commonly splits the problem into 3 Skg. (B: (1)
the magnetic region and the air gaps considerednaisieal
flux tube (with possible start from 1-D models [8]), (2) the
stranded inductor alone, and (3) the consideraifahe leak-
age flux via a SSj;3 on the flux tube boundary, simultane-



ously with the change of permeability due to thelitgoh of
the magnetic region in the inductor source fielfl |& this
way, steps 2 and 3 are based on totally independeshes;
step 1 uses a portion of mesh 3.
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Fig. 1. Field lines in the ideal flux tub®,( W, .oe = 100), for the inductor
alone b,), for the leakage fluxbg) and for the total fieldk) (left to right).

It is herein proposed to allow changes from lineanon-
linear material properties in the correction SPM iAitially
linear pg can change to a non-linepp to be expressed as a
function of the total magnetic flux density. Thesukting VS
(2) supported by the non-linear region is

hsp= (Mp~(bg+bp) —Hg ) by - 3)

At the discrete level, the source quankigy-curlay, initially
given in meshy, is projected in the megh[6], limited to the
non-linear region. A classical non-linear iteratpcess has
then to lead to the convergence lpf=curla,. This solution
corrects the flux linkages of the inductors, antissmuently
their reluctances. It will be shown that the redunte correc-
tion can be accurately calculated via an integnalimited to
the non-linear region, with no need to integratefthx density
linked to the inductor, part of a different mesh.

Various combinations of problem splitting will baugied,
discussed and validated in the extended paper, inorgbany
of the following steps in various orders: inductdrélone, per-
fect magnetic materials (infinite permeability) saturated ma-
terials, linear or non-linear ideal flux tubes (frd-D to 3-D),
linear or non-linear real tubes with leakage flénorfh 2-D to
3-D). The results of a two-step SPM from lineantm-linear
problems are shown in Figs. 2 and 3 for high and deluc-
tance circuits, illustrating the way the correctf@ids behave
(the first step is actually the combination of atseeps, con-
sidering the inductor alone and the added lineaggnadc ma-
terial). An initial estimation ofu;, e.g. from a 1-D linear
model, can help the non-linear correction processduce the
correction (Fig. 2). Another correction, from aead flux tube
to a non-linear one with leakage flux, is illusttin Fig. 4.
The developed combinations will be shown to helpafdetter
understanding of magnetic circuit behaviors, reigardon-
linear properties, leakage flux, and 2-D and 3-f2até.
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Fig. 2. Field lines and magnetic flux density fdretlinear model b,
K, ,=1000,top lef) and its non-linear correctioi top righy; another non-
linear correction If,, from 1, ;=780, top righf); final relative permeability
(M 2, bottom righy.
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Fig. 3. Field lines and magnetic flux density fdretlinear model b,
M 1=1000,top lef) and its non-linear correctiot top righ9, and for the
total solution Ipy+b,, bottom lef}; relative permeabilityy ,, bottom righj.

Fig. 4. Field lines and magnetic flux density foe ideal flux tube modeby,
left) and for the non-linear correction with leakagexfib,, right).



