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ZERO FREE REGIONS FOR DIRICHLET SERIES

CHRISTOPHE DELAUNAY, EMMANUEL FRICAIN, ELIE MOSAKI,
AND OLIVIER ROBERT

Abstract. In this paper, we are interested in explicit zero-free discs for some
Dirichlet series and we also study a general Beurling-Nyman criterion for L-
functions. Our results generalize and improve previous results obtained by N. Nikol-
ski and by A. de Roton. As a concrete application, we get, for example, a Beurling-
Nyman type criterion for the Siegel zero problem.

1. Introduction

In this article, we are interested in zero-free regions for functions that are obtained
as meromorphic continuation of Dirichlet series s 7→∑

n≥1 ann
−s. Such study arises

naturally in various fields of mathematics such as functional analysis and number
theory.

The particular case of the Riemann zeta function has been most studied, and is
related to the Riemann Hypothesis, asserting that the zeta function does not vanish
on the half-plane ℜ(s) > 1/2. Several attempts have been made in the direction of
solving or reformulating this conjecture.

In his thesis B. Nyman [Nym50] gave a reformulation of the Riemann Hypothesis
by means of functional analysis. More precisely let {·} denotes the fractional part
and let N be the set of functions

f(x) =
n∑

j=1

cj

{
θj
x

}
,

where 0 < θj ≤ 1, cj ∈ C and
n∑

j=1

cjθj = 0.(1.1)

Then Nyman proved that the Riemann Hypothesis holds if and only if the character-
istic function χ(0,1) of the interval (0, 1) belongs to the closure ofN in L2(0, 1). Later
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on A. Beurling [Beu55] extended this result by proving that if 1 < p < +∞, then
the Riemann zeta function has no zeros in ℜ(s) > 1/p if and only if χ(0,1) belongs
to the closure of N in Lp(0, 1). The case p = 1 has been investigated in [BF84].
After the works of Beurling and Nyman, several results occur in this direction, see
for example [Nik95], [BS98], [BDBLS00], [BD03] and [dR07a].
In particular, N. Nikolski [Nik95] gave, in a way, an effective version of the

Beurling-Nyman criterion and produces explicit zero-free regions for the Riemann
zeta function: let r > 0 and λ ∈ C with ℜ(λ) > 0 be fixed parameters and let K̃r

be the subspace of L2((0, 1), dx/x) spanned by functions

Eα,r(x) = xr
({α

x

}
− α

{
1

x

})
, 0 < x < 1,

where 0 ≤ α ≤ 1. Then the zero-free regions obtained by Nikolski are domains of
the form

(1.2) r +

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄

∣∣∣∣
2

< 1− 2ℜ(λ)d̃r(λ)2
}
,

where d̃r(λ) = dist(xλ, K̃r) is the distance in L2((0, 1), dx/x) between xλ and the

subspace K̃r. In the case λ = r = 1/2, if d̃r(λ) = 0 the region (1.2) corresponds to
the half-plane ℜ(µ) > 1/2 and Nikolski recovers Nyman’s result (note that in this

case, d̃1/2(1/2) = 0 if and only if χ(0,1) belongs to the closure of N in L2(0, 1); see
Proposition 7.3).
More recently, A. de Roton [dR07a] generalized Nyman’s work to the Selberg

class of Dirichlet functions and reformulated the Generalized Riemann Hypothesis.
Finally let us mention that in [BDBLS00] and [Bur02] interesting lower bounds are

obtained. First the authors proved in [BDBLS00] that if 0 < λ ≤ 1 and N ♯
λ is the

closed span in L2(0,+∞) of functions

f(x) =

n∑

j=1

cj

{
θj
x

}
, x > 0,

where λ < θj ≤ 1, cj ∈ C, then the Riemann Hypothesis holds if and only if

limλ→0 d(λ) = 0, where d(λ) = dist(χ(0,1),N ♯
λ). In other words, we can drop the

condition (1.1) in the Nyman’s theorem. Furthermore they proved that

lim inf
λ→0

d(λ)

√
log

1

|λ| > 0.

Then this lower bound was improved by J.F. Burnol in [Bur02] and generalized by
de Roton in [dR06] and [dR09] for the Selberg class.
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The aim of our article is to make a further investigation of Nikolski’s work in a
more general situation including, in particular, the Selberg class. Associated to some
auxiliary function ϕ : [0,∞) → C, we introduce a class of spaces Kr (in particular,

in the case of the Riemann zeta function, Kr contains K̃r for a special choice of
ϕ). Then, for a large class of Dirichlet series, we obtain explicit zero-free regions
that are larger than Nikolski’s regions in the case of zeta. For some well chosen
parameters, if dist(xλ, Kr) = 0 our zero-free regions correspond to ℜ(µ) > r and we
recover (and in fact improve a little bit) the results of de Roton concerning the re-
formulation of the Generalized Riemann Hypothesis. Finally, we investigate several
explicit applications. In particular, we give zero-free regions for the zeta function
and Dirichlet L-functions ; it should be pointed out that the domains obtained have
the property of being explicit, but they do not have the ambition of competing with
the classical non-zero regions that are involved, for instance, in the prime number
theorem. An other application we obtain is somehow a Beurling-Nyman’s criterion
for the Siegel’s zero problem of Dirichlet L-functions. As far as we know, it seems
to be a new criterion concerning this question.

2. Notations and statements of the main results

For a generic s ∈ C, we denote by σ (respectively t) its real (respectively imagi-
nary) part so that we have s = σ + it. For s ∈ C, we denote by Πs the half-plane
defined by

Πs = Πσ = {z ∈ C : ℜ(z) > σ}.
For the sequel, we fix a Dirichlet series

L(s) =
∑

n≥1

an
ns

satisfying the following conditions:

• For every ε > 0, we have an ≪ε n
ε.

• There exists σ0 < 1 such that the function s 7→ L(s) admits a meromorphic
continuation to ℜ(s) > σ0 with a unique pole of order mL at s = 1.

• The function s 7→ (s− 1)mLL(s) is analytic with finite order in Πσ0
.

The growth condition on the coefficients (an)n implies that L(s) is an absolutely
convergent Dirichlet series for ℜ(s) > 1. The second condition tells us that the
function (s− 1)mLL(s) can be analytically continued in some half-plane Πσ0

which
contains Π1. Note that we do not require neither an Euler product nor a functional
equation for L(s).
We also consider an auxiliary function ϕ : [0,+∞[−→ C satisfying the following
conditions:
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• ϕ is supported on [0, 1].
• ϕ is locally bounded on (0, 1).
• ϕ(x) = O(x−σ0) when x→ 0.
• ϕ(x) = O((1− x)−σ1) when x→ 1−, for some σ1 < 1/2.

The fact that σ1 < 1 is sufficient for the integral
∫ 1

0

ϕ(t)ts
dt

t

to be absolutely convergent for ℜ(s) > σ0. Hence, the Mellin transform ϕ̂ of ϕ
is analytic on Πσ0

. The condition σ1 < 1/2 will become clearer in Lemma 3.3.
Recall that the (unnormalized) Mellin transform of a Lebesgue-measurable function
ϕ : [0,+∞[→ C is the function ϕ̂ defined by

ϕ̂(s) =

∫ +∞

0

ϕ(t)ts
dt

t
(s ∈ C),

whenever the integral is absolutely convergent. Let H2(Πσ) be the Hardy space of
analytic functions f : Πσ → C such that ‖f‖2 <∞ where

‖f‖2 = sup
x>σ

(∫ +∞

−∞
|f(x+ it)|2dt

) 1

2

.

Then the (normalized) Mellin transform

M : L2
∗
(
(0, 1), dt

t1−2σ

)
−→ H2(Πσ)

ϕ 7−→ 1√
2π
ϕ̂

is a unitary operator (use the Paley-Wiener’s theorem and the change of vari-
ables going from the Fourier transform to the Mellin transform, for instance see
[Nik02, p. 166]). Here, we write L2

∗
(
(0, 1), dt

t1−2σ

)
for the subspace of functions in

L2
(
(0,+∞), dt

t1−2σ

)
that vanish almost everywhere on (1,+∞). We define

ψ(u) = res (L(s)ϕ̂(s)us, s = 1)−
∑

n<u

anϕ
(n
u

)
(u ∈ R+),

where res(F (s), s = 1) denotes the residue of the meromorphic function F at s = 1.
The method that is going to be explored depends on the fact that the function ψ
belongs to L2((1,+∞), du

u1+2r ) for a certain real number r > σ0. The following gives
a criterion for this property.

Theorem 2.1. Let r > σ0. If mL ≥ 1, we assume furthermore that r 6= 1. The
following are equivalent:

(i) The function ψ belongs to L2((1,+∞), du
u1+2r ).

(ii) The function t 7−→ L(r + it)ϕ̂(r + it) belongs to L2(R).
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We will see in Corollary 3.4 that the conditions (i) and (ii) above are satisfied
whenever r > 1. Furthermore, Theorem 2.1 is a generalization of [dR07a, Proposi-
tion 3.3] when ϕ = χ(0,1) and r = 1/2.

We see that the second condition of the theorem above depends on some growth
estimates of L in vertical strip which is, in its turn, linked with questions related to
the convexity bound and to the Lindelöf hypothesis. In particular, if L is a function
in the Selberg class, then one can prove that L satisfies the generalized Lindelöf
hypothesis if and only if for every k ∈ N, we have

(2.1) t 7−→ Lk(1
2
+ it)

1
2
+ it

∈ L2(R).

Note that with the special choice of ϕ = χ(0,1), then ϕ̂(s) = 1/s and the con-
dition (ii) above for r = 1/2 means exactly that (2.1) is satisfied for k = 1.
Moreover, in [dR07a] using the functional equation, it is shown that the condition
ψ ∈ L2((1,+∞), du

u2 ) (in the case when ϕ = χ(0,1)) is necessary for the generalized
Riemann Hypothesis for L-functions in the Selberg class. In [dR07b], it is also
shown that the condition on ψ (still with ϕ = χ(0,1)) is satisfied for L-functions in
the Selberg class of degree less than 4.

Fix an integer m ≥ 0 and let W =
⋃

n≥1(0, 1]
n. We say that α ∈ W is of length n if

α belongs to (0, 1]n. For each α in W , its length is denoted by ℓ(α). Now let α ∈ W
and c ∈ Cℓ(α), we say that A = (α, c) is an m-admissible sequence if

ℓ(α)∑

j=1

cjαj(logαj)
k = 0 for all 0 ≤ k ≤ m− 1 .(2.2)

Furthermore, A is said to be non-trivial if c ∈ Cℓ(α) \ {(0, . . . , 0)}.
It is easy to prove (see Lemma 4.2 and Lemma 4.1) that for any fixed ℓ > m, there

are infinitely many non-trivialm-admissible sequences of length ℓ. We also easily see
that every A = (α, c) is 0-admissible. Note that the notion of admissible sequences
had been introduced in [dR07a] and it is a generalization of condition (1.1) which
appears in Nyman’s theorem and which corresponds to m = 1.

From now on, we assume that r is chosen such that ψ ∈ L2((1,+∞), du
u1+2r ).

Then we associate to each mL-admissible sequence A = (α, c) the function fA,r

defined by

fA,r(t) = tr−σ0

ℓ(α)∑

j=1

cjψ
(αj

t

)
, t > 0.

We will show that fA,r ∈ L2
∗((0, 1),

dt
t1−2σ0

) and we let

Kr = span{fA,r : A a mL-admissible sequence}



6 CHRISTOPHE DELAUNAY, EMMANUEL FRICAIN, ELIE MOSAKI, AND OLIVIER ROBERT

and
dr(λ) = dist

(
tλ̄−2σ0χ(0,1), Kr

)
(λ ∈ Πσ0

),

where the (closed) span and the distance are taken with respect to the space
L2
∗((0, 1),

dt
t1−2σ0

). Let us remark that we trivially have d2r(λ) ≤ 1/(2ℜ(λ)− 2σ0).
One of our main theorems is the following which gives zero-free discs for the

function L.

Theorem 2.2. Let λ ∈ Πσ0
. Then L does not vanish on r − σ0 +Dr(λ), where

Dr(λ) :=

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄− 2σ0

∣∣∣∣ <
√
1− 2(ℜ(λ)− σ0)d2r(λ)

}
.

Note that the zero-free regions which appear in Theorem 2.2 are discs (empty
if d2r(λ) = 1/(2ℜ(λ) − 2σ0)) or half-planes. More precisely, for λ = a + ib ∈ Πσ0

(a > σ0, b ∈ R) and R ∈ [0, 1], then the set
{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄− 2σ0

∣∣∣∣ < R

}

is the open (euclidean) disc whose center is Ω =
(

a+R2(a−2σ0)
1−R2 , b

)
and radius is

2R(a−σ0)
1−R2 if R ∈ [0, 1[; if R = 1 this set is the half-plane Πσ0

. In both cases, we easily
see that this set is contained in the half-plane Πσ0

.
As a corollary of the proof of Theorem 2.2, we obtain an other explicit version.

Corollary 2.3. Let λ ∈ Πσ0
. Then L does not vanish on the disc

r − σ0 +

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄− 2σ0

∣∣∣∣ <
√
2(ℜ(λ)− σ0)

|f̂A,r(λ)|
‖fA,r‖2

}
,

for any mL-admissible sequence A.

Note that taking L(s) = ζ(s), ℓ(α) = 2 and ϕ = χ(0,1) (so that σ0 = σ1 =
0) we recover exactly the results of Nikolski ([Nik95]). Now, taking ϕ(t) = (1 −
t)−σ1χ(0,1)(t), we obtain larger zero-free discs whenever ℑ(λ) is large enough. We
refer the reader to Section 7 for further discussions about the Rieman zeta function
and other examples.
We will see in Theorem 4.3 that

f̂A,r(λ) = L(λ+ r − σ0)ϕ̂(λ+ r − σ0)

(
n∑

j=1

cjα
λ+r−σ0

j

)
, λ ∈ Πσ0

.

Hence Corollary 2.3 can be understood as follows: let λ ∈ Πσ0
such that L(λ+ r −

σ0) 6= 0; then there is a small neighborhood of λ + r − σ0 free of zeros for L. Of
course, this is an obvious consequence of the continuity of the function L but the
interest of Corollary 2.3 is that it gives an explicit neighborhood where the function
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L does not vanish; moreover, this explicit neighborhood is expressed in terms of the
values of L and in particular it does not use any estimates of the derivatives.

Finally, we obtain a general Beurling-Nyman type theorem.

Theorem 2.4. Suppose that the function ϕ̂ does not vanish on the half-plane Πr,

that lim supx→+∞
log |ϕ̂(x+r−σ0)|

x
= 0 and that a1 6= 0. Then the following assertions

are equivalent:

(1) The function L does not vanish on the half-plane Πr.
(2) There exists λ ∈ Πσ0

such that dr(λ) = 0.
(3) For all λ ∈ Πσ0

, we have dr(λ) = 0.
(4) We have Kr = L2

∗((0, 1), dt/t
1−2σ0).

Taking L(s) = ζ(s), ℓ(α) = 2, r = λ = 1/2 and ϕ = χ(0,1) (so that we can take
σ0 = σ1 = 0), we obtain Nyman’s theorem. Now, taking ϕ(t) = (1 − t)−σ1χ(0,1)(t)
we extend the results of [dR07a] (see also Section 7 for more details).

An other consequence of Theorem 2.2 is, in a way, a Beurling-Nyman criterion for
Dirichlet L-functions. More precisely, let χ be a Dirichlet character with conductor
q and L(χ, s) its L-function. Then, for 1/2 ≤ r < 1, we define dr by

dr = min
ℓ,c,α



∫ 1

0

∣∣∣∣∣∣
t1−r − tr

ℓ∑

j=1

cj
∑

n<αj/t

χ(n)

∣∣∣∣∣∣

2

dt

t




1

2

where the minimum is taken over all ℓ ≥ 0, c = (cj) ∈ Cℓ and α = (αj) ∈ (0, 1]ℓ.
One can show (see Proposition 7.6) that d2r < 1/(2− 2r). We have

Theorem 2.5. If

d2r ≤
1

2− 2r
− C2

2(log q)2(1− r)3

for some (absolute) constant C and some 1/2 ≤ r ≤ 1, then L(χ, σ) does not vanish
in the real-interval σ > 1− C/ log q.

In order to obtain the criterion for the Siegel zero problem, then we consider all
Dirichlet characters χ and an absolute constant C independant of χ.

The next section is devoted to the proof of Theorem 2.1 and to the study of the
function ψ. Section 4 will focus on the admissible sequences and the functions fA,r.
Theorem 2.2 and Corollary 2.3 will be proven in Section 5 and Theorem 2.4 will be
proven in Section 6. Some explicit examples will be studied in Section 7 in which
we will prove Theorem 2.5.
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3. The function ψ and proof of theorem 2.1

We define the functions ψ1 and ψ2 by

ψ1(u) = res (L(s)ϕ̂(s)us, s = 1) (u ∈ R+),

ψ2(u) =
∑

n<u

anϕ
(n
u

)
(u ∈ R+),

so that ψ(u) = ψ1(u)− ψ2(u) by definition.
The function s 7→ ϕ̂(s) is analytic in Πσ0

and the meromorphic continuation of
L(s) has a pole (of order mL) only at s = 1, hence we can write

(3.1) L(s)ϕ̂(s) =

mL∑

k=1

p−k

(s− 1)k
−H(s),

with H analytic in Πσ0
.

Lemma 3.1. We have

(3.2) H(s) =

∫ 1

0

ψ

(
1

t

)
ts−1 dt = φ̂(t), ℜ(s) > 1,

where φ(t) = ψ(1/t)χ(0,1)(t).

Proof of Lemma 3.1. On the one hand, we have

(3.3) L(s)ϕ̂(s) =

∫ +∞

1

ψ2(u)u
−s−1du, ℜ(s) > 1.

Indeed, this equality comes from the following computation and Fubini’s theorem:

L(s)ϕ̂(s) =

(∑

n≥1

an
ns

)∫ 1

0

ϕ(t)ts−1dt =
∑

n≥1

an

∫ 1

0

ϕ(t)

(
t

n

)s
dt

t

=
∑

n≥1

an

∫ +∞

n

ϕ
(n
u

)
u−s−1du

=

∫ +∞

1

∑

n<u

anϕ
(n
u

)
u−s−1du

=

∫ +∞

1

ψ2(u)u
−s−1du.

Note that Fubini’s theorem can be applied here because σ = ℜ(s) > 1 and then

∑

n≥1

|an|
nσ

∫ 1

0

|ϕ(t)|tσ−1 dt < +∞.
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On the other hand, for each 1 ≤ k ≤ mL, we have

(3.4) res

(
us

(s− 1)k
, s = 1

)
=
u(log u)k−1

(k − 1)!
,

and an easy induction argument gives

1

(k − 1)!

∫ +∞

1

(log u)k−1u−sdu =
1

(s− 1)k
.

Hence, with the notation of (3.1), the equality

(3.5)

∫ +∞

1

ψ1(u)u
−s−1 du =

mL∑

k=1

p−k

(s− 1)k
.

follows by linearity.
Equations (3.3) and (3.5) imply

H(s) =

mL∑

k=1

p−k

(s− 1)k
− L(s)ϕ̂(s) =

∫ +∞

1

ψ(u)u−s−1 du =

∫ 1

0

ψ

(
1

t

)
ts−1 dt.

�

Remark 3.2. From (3.1) and (3.4), we easily see that we can write ψ1(t) = tP (log t)
where P is a polynomial of degree < mL (P ≡ 0 if mL = 0). More precisely we have

ψ1(t) = t

mL∑

k=1

p−k

(k − 1)!
(log t)k−1.

Lemma 3.3. The function s 7→ H(s) is of finite order on Πr. Moreover, for all
σ > 1, the function t 7→ H(σ + it) belongs to L2(R) and

∫

R

|H(σ + it)|2dt = O

(
1

σ1−2σ1

)
for σ → +∞.

Proof of Lemma 3.3. The function s 7→ H(s) is bounded on some neighborhood V1
of s = 1. The functions s 7→ ∑

j
p−j

(s−1)j
and (by assumption) s 7→ L(s) are of finite

order on Πσ0
r V1. Moreover, s 7→ ϕ̂(s) is bounded on the closure of Πr since

|ϕ̂(s)| ≤
∫ 1

0

|ϕ(x)|xr dx
x
, ℜ(s) ≥ r,

and the last integral is convergent because r > σ0 and ϕ(x) = O(x−σ0(1 − x)−σ1).
Hence we can conclude that H is of finite order on Πr, which proves the first part
of the lemma.
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Let σ > 1 be a fixed real number. We easily check that, for every 1 ≤ j ≤ mL, the
function t 7−→ (σ − 1 + it)−j belongs to L2(R) and we have

∫

R

∣∣∣∣
1

(σ + it− 1)j

∣∣∣∣
2

dt = O

(
1

σ2j−1

)
, σ → +∞.(3.6)

On the other hand, using Plancherel’s formula and the fact that σ1 < 1/2 and
σ > 1 > σ0, we have

∫

R

|ϕ̂(σ + it)|2dt = 2π

∫ 1

0

|ϕ(x)|2x2σ dx
x
< +∞.(3.7)

More precisely
∫ 1

0

|ϕ(x)|2x2σ dx
x

= O

(
1

σ1−2σ1

)
, σ → +∞.(3.8)

Indeed, we have ϕ(x) = O(x−σ0(1− x)−σ1) and
∫ 1

0

|x−σ0(1− x)−σ1 |2x2σ dx
x

= β(2(σ − σ0), 1− 2σ1)

where β(s, z) is the beta function. Using Stirling’s formula, we have

β(2(σ − σ0), 1− 2σ1) ∼
Γ(1− 2σ1)

(2σ)1−2σ1
, σ → +∞.

So we get the estimate (3.8).
Therefore t 7−→ ϕ̂(σ + it) belongs to L2(R) and we have

(3.9)

∫

R

|ϕ̂(σ + it)|2dt = O

(
1

σ1−2σ1

)
, σ → +∞.

It remains to notice that s 7→ L(s) is bounded in Πσ (since by hypothesis σ > 1)
and then the second part of the lemma follows immediately from (3.6), (3.9) and
(3.1). �

Now we can prove Theorem 2.1.

Assume that (i) is satisfied. Then the function φ(t) = ψ
(
1
t

)
χ(0,1)(t) belongs to

L2
∗((0, 1),

dt
t1−2r ) and thus the function G := φ̂ belongs to H2(Πr). The analytic

continuation principle implies that the equality (3.2) is satisfied for every s ∈ Πr,

that is H(s) = φ̂(s) = G(s), s ∈ Πr. Since G ∈ H2(Πr), we know that the function
G∗, defined by

G∗(t) := lim
σ→

>
r
G(σ + it),

exists almost everywhere on R and belongs to L2(R). But

G∗(t) = lim
σ→

>
r
H(σ + it) = H(r + it),
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because H is continuous on the closed half-plane ℜ(s) ≥ r. Therefore t 7−→ H(r+it)
belongs to L2(R). It remains to notice that for every 1 ≤ k ≤ mL, the function
t 7−→ (r − 1 + it)−k belongs to L2(R) (this is where we have to assume that r 6= 1
whenever mL ≥ 1). Thus according to (3.1), we get that t 7→ L(r + it)ϕ̂(r + it)
belongs to L2(R).

Conversely assume that (ii) is satisfied. Then the function t 7−→ H(r + it) belongs
to L2(R).

Let σ2 > max(1, r). The function H is analytic on Ω := {s : r < ℜ(s) < σ2} and
continuous on the closure of Ω. Using the Hardy, Littlewood and Ingham’s theorem
[HIP27, Theorem 7], we deduce from Lemma 3.3 that

sup
r≤σ≤σ2

∫

R

|H(σ + it)|2dt < +∞.

Hence, the second part of Lemma 3.3 gives that H belongs to H2(Πr). Since we
have H2(Πr) = M

(
L2
∗
(
(0, 1), dt

t1−2r

) )
, there exists φ1 ∈ L2

∗
(
(0, 1), dt

t1−2r

)
such that

H(s) = φ̂1(s), for every s ∈ Πr. Thus for ℜ(s) > max(1, r), we have φ̂1(s) = H(s) =

φ̂(s).
By injectivity of the Mellin transform, we get that

ψ

(
1

t

)
χ(0,1)(t) = φ(t) = φ1(t).

Thus t 7−→ ψ
(
1
t

)
χ(0,1)(t) belongs to L

2
∗
(
(0, 1), dt

t1−2r

)
, which implies that ψ belongs

to L2
(
(1,+∞), du

u1+2r

)
and that concludes the proof of Theorem 2.1.

�

Corollary 3.4. Let r > 1. Then ψ ∈ L2
(
(1,+∞), du

u1+2r

)
and we have

‖ψ‖2 = O
(
rσ1−1/2

)
, as r → +∞.

Proof. Let r > 1 be a fixed real number. By Lemma 3.3, the function t 7−→ H(r+it)
belongs to L2(R) and for every 1 ≤ j ≤ mL, the function t 7−→ (r−1+ it)−j belongs
also to L2(R). Therefore it follows from (3.1) that t 7−→ L(r + it)ϕ̂(r + it) belongs
to L2(R) and Theorem 2.1 implies that ψ ∈ L2((1,+∞), du

u1+2r ). Moreover, if we let



12 CHRISTOPHE DELAUNAY, EMMANUEL FRICAIN, ELIE MOSAKI, AND OLIVIER ROBERT

as before φ(t) = ψ(1/t)χ(0,1)(t), we have by Plancherel’s formula

‖ψ‖22 =

∫ +∞

1

|ψ(u)|2 du

u1+2r
=

∫ 1

0

∣∣∣∣ψ
(
1

t

)∣∣∣∣
2

dt

t1−2r

= ‖φ‖2
L2
∗((0,1),

dt

t1−2r )

=
1

2π

∫

R

|φ̂(r + it)|2 dt

=
1

2π

∫

R

|H(r + it)|2 dt,

and Lemma 3.3 gives the result. �

Remark 3.5. In fact, if L(s) has some nice arithmetical properties (e.g. satisfying
a Wiener-Ikehara type theorem), one can expect that the main contributions of ψ1

will be compensated by the main contributions of ψ2 and so that the function ψ
will belong to the space L2

(
(1,+∞), du

u1+2r

)
for smaller value of r. For example, if

L(s) = ζ(s) and if ϕ(t) = χ0,1(t) for all t ∈ (0, 1), then ψ(u) = u − ⌈u⌉ + 1 (so
ψ(u) = {u} for almost all u ∈ (1,∞)) and ψ ∈ L2

(
(1,+∞), du

u1+2r

)
for all r > 0. In

this case ϕ̂(s) = 1/s and t 7→ |ζ(r + it)|/|r + it| ∈ L2(R) for all r > 0 as expected
by Theorem 2.1. We will discuss about other examples in Section 7.

Remark 3.6. Assume that ϕ is bounded at t = 1 (which corresponds to σ1 = 0).
Thus, for every α > 1, we have ψ(t) = ψ1(t)− ψ2(t) = O(tα), t → +∞. Indeed, on
the one hand, as we have seen ψ1(t) = tP (log t), where P is a polynomial of degree
< mL. On the other hand, let α > 1 be a fixed real number. Then there exists a
constant C > 0 such that

|ϕ(t)| ≤ Ct−α, t ∈ (0, 1).

Hence we get

|ψ2(t)| ≤
∑

n<t

|an|
∣∣∣ϕ
(n
t

)∣∣∣ ≤ C
∑

n<t

|an|
(
t

n

)α

≤ C ′tα
∑

n<t

1

nα−ε
,

which gives that ψ2(t) = O(tα) as t → +∞. It is now easy to check that ψ belongs
to L2((1,+∞), du

u1+2r ), for every r > 1 and ‖ψ‖2 = O(r−1/2), r → +∞. We recover
Corollary 3.4.

4. Admissible sequences and the functions fA,r

The following results will be useful in the sequel.
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Lemma 4.1. Let (α, c) be an m-admissible sequence.

(1) For any polynomial P of degree d < m, we have

ℓ(α)∑

j=1

cjαjP (logαj) = 0.

(2) For any positive real number λ1 and for any real number λ2 ≥ maxj(αj),

both ((αλ1

j )j , (cjα
1−λ1

j )j) and ((αj/λ2)j, c) are m-admissible sequences.

The proof is easy and follows immediately from the definition and so we omit it.
For an m-admissible sequence A = (α, c) we define the entire function

gA(s) =

ℓ(α)∑

j=1

cjα
s
j (s ∈ C).

Using (2.2), we notice that these functions satisfy

(4.1) g
(k)
A (1) = 0 (0 ≤ k ≤ m− 1).

Lemma 4.2. Let m be a nonnegative integer. Then we have the followings

(1) For every integer ℓ ≥ m + 1 and every 0 < α1 < α2 < · · · < αℓ ≤ 1,
there exists c ∈ Cℓ such that A = (α, c) is an m-admissible sequence and

g
(m)
A (1) 6= 0. Furthermore we can choose cℓ 6= 0.

(2) For every s1 ∈ C r {1}, there exists an m-admissible sequence A such that
gA(s1) 6= 0.

Proof. (1) Let ℓ ≥ m+ 1, then there is a unit vector (b1, b2, . . . , bm, bℓ) ∈ C
m+1 such

that




1 . . . . . . 1 1
(logα1) . . . . . . (logαm) (logαℓ)

...
...

...
(logα1)

m . . . . . . (logαm)
m (logαℓ)

m







b1
...
bm
bℓ


 =




0
...
0
1


 ,(4.2)

since the corresponding van der Monde matrix is invertible. Setting

cj =





bj
αj
, 1 ≤ j ≤ m

0, m+ 1 ≤ j ≤ ℓ− 1
bℓ
αℓ
, j = ℓ.
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Then A = (α, c) is an m-admissible sequence and g
(m)
A (1) = 1. Furthermore we

easily see that bℓ 6= 0. Indeed if bℓ = 0 then we have



1 . . . . . . 1
(logα1) . . . . . . (logαm)

...
...

(logα1)
m−1 . . . . . . (logαm)

m−1







b1
...
...
bm


 =




0
...
...
0


 ,

and using once more that the corresponding van der Monde matrix is invertible, we
get b1 = b2 = · · · = bm = bℓ = 0, which contradicts (4.2). Therefore bℓ 6= 0 and
then cℓ 6= 0.

(2) Let A = (α, c) be a non trivial m-admissible sequence. For 0 < λ < 1, consider
gAλ

(s) = gA(1− λ+ λs). Note that

gAλ
(s) =

ℓ∑

j=1

cjα
1−λ
j (αλ

j )
s,

and, by Lemma 4.1, Aλ = ((αλ
j )j, (cjα

1−λ
j )j) is an m-admissible sequence. Now let

s1 6= 1; then there necessarily exists 0 < λ < 1 such that gAλ
(s1) 6= 0, since gA is

analytic and non identically zero. �

Theorem 4.3. Let r > σ0 such that ψ ∈ L2((1,+∞), du
u1+2r ) and let A = (α, c) be

an mL-admissible sequence. We define

fA,r(t) = tr−σ0

ℓ(α)∑

j=1

cjψ
(αj

t

)
(t > 0).

Then we have:

(1) fA,r(t) = 0, if t > maxj αj.
(2) fA,r(t) ∈ L2

∗((0, 1),
dt

t1−2σ0
).

(3) For ℜ(s) > σ0, we have

f̂A,r(s) = −L(s + r − σ0)ϕ̂(s+ r − σ0)gA(s+ r − σ0).(4.3)

Proof. (1) As before, we write ψ = ψ1 − ψ2. From the remark 3.2, we have ψ1(u) =
uP (logu) where P is a polynomial of degree < mL. Then

ℓ(α)∑

j=1

cjψ
(αj

t

)
=

ℓ(α)∑

j=1

cjψ1

(αj

t

)
−

ℓ(α)∑

j=1

cjψ2

(αj

t

)

=

ℓ(α)∑

j=1

cj
αj

t
P
(
log(

αj

t
)
)
−

ℓ(α)∑

j=1

cj
∑

n<αj/t

anϕ

(
nt

αj

)
.
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If t > maxj(αj) the second sum is 0 because αj/t < 1. Furthermore, by Lemma 4.1,
(α/t, c) is an mL-admissible sequence and the first sum is also zero.

(2) Each of the terms tr−σ0ψ
(αj

t

)
belongs to the space L2((0, 1), dt

t1−2σ0
). Indeed, if

‖α‖ := maxj αj, we have

∫ ‖α‖

0

t2r−2σ0

∣∣∣ψ
(αj

t

)∣∣∣
2 dt

t1−2σ0
=

∫ ‖α‖

0

t2r−1
∣∣∣ψ
(αj

t

)∣∣∣
2

dt

= α2r
j

∫ +∞

αj

‖α‖

|ψ(u)|2 du

u1+2r

= α2r
j

∫ 1

αj

‖α‖

|ψ(u)|2 du

u1+2r
+ α2r

j

∫ +∞

1

|ψ(u)|2 du

u1+2r

= α2r
j

∫ 1

αj

‖α‖

|ψ1(u)|2
du

u1+2r
+ α2r

j

∫ +∞

1

|ψ(u)|2 du

u1+2r
,

since ψ(u) = ψ1(u) for u < 1. Now, by hypothesis, the second integral is finite and
the first integral is also finite because ψ1(u) = uP (logu) and

αj

‖α‖ > 0. Furthermore,

we see that
(4.4)

‖fA,r‖L2
∗((0,1),

dt

t1−2σ0
) ≤

ℓ(α)∑

j=1

|cjαr
j |






∫ 1

minj αj

maxj αj

|ψ1(u)|2
du

u1+2r




1/2

+ ‖ψ‖L2((1,+∞), du

u1+2r )


 .

(3) For ℜ(s) > 1, we have by (3.3)

L(s)ϕ̂(s) =

∫ +∞

1

ψ2(u)u
−s−1du.

Hence

L(s)ϕ̂(s)

ℓ(α)∑

j=1

cjα
s
j =

ℓ(α)∑

j=1

cj

∫ +∞

1

(
u

αj

)−s

ψ2(u)
du

u

=

ℓ(α)∑

j=1

cj

∫ αj

0

ψ2

(αj

t

) dt

t1−s

=

ℓ(α)∑

j=1

cj

∫ 1

0

ψ2

(αj

t

) dt

t1−s
,

the last equality follows from ψ2(αj/t) = 0 if αj < t ≤ 1.
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Using once more Lemma 4.1, we have

ℓ(α)∑

j=1

cjψ
(αj

t

)
= −

ℓ(α)∑

j=1

cjψ2

(αj

t

)
,

whence

L(s)ϕ̂(s)

ℓ(α)∑

j=1

cjα
s
j = −

∫ 1

0




ℓ(α)∑

j=1

cjψ
(αj

t

)

 dt

t1−s

= −
∫ 1

0

tσ0−rfA,r(t)
dt

t1−s

= −
∫ 1

0

fA,r(t)t
s+σ0−r−1 dt

= −f̂A,r(s+ σ0 − r), ℜ(s) > 1.

So, for ℜ(s) > 1+σ0−r, we have f̂A,r(s) = −L(s+r−σ0)ϕ̂(s+r−σ0)gA(s+r−σ0).
By the analytic continuation principle, the equality holds for ℜ(s) > σ0. (Note that
from (4.1) the pole of L(s + r − σ0) is killed by the zero of gA(s + r − σ0) at
s = 1− r + σ0.) �

5. Zeros free regions for Dirichlet series

Before proving Theorem 2.2 we need some well known tools concerning the Hardy
space H2(Πσ0

). For these we refer to [Hof62, Chapter 8]. Actually, in [Hof62],
the following facts are stated for the space H2(Π0) but it is easy to obtain the
corresponding results for H2(Πσ0

), for instance using the unitary map h(z) 7−→
h(z − σ0) from H2(Πσ0

) onto H2(Π0).
Recall that if h ∈ H2(Πσ0

), then

h∗(σ0 + it) := lim
σ→σ0
>

h(σ + it)

exists for almost every t ∈ R (with respect to the Lebesgue measure). Moreover
we have h∗ ∈ L2(σ0 + iR) and ‖h‖2 = ‖h∗‖2. We can therefore identify (unitarely)
H2(Πσ0

) with a (closed) subspace of L2(σ0+ iR). In the following we use the symbol
h not only for the function in H2(Πσ0

) but also for its ”radial ” limit (in other words
we forget the star). This identification enables us to consider H2(Πσ0

) as an Hilbert
space, with scalar product given by

〈h, g〉2 =
∫ +∞

−∞
h(σ0 + it)g(σ0 + it) dt, h, g ∈ H2(Πσ0

).(5.1)
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Now for λ ∈ Πσ0
, we have the following integral representation

h(λ) =
1

2π

∫ +∞

−∞

h(σ0 + it)

λ− σ0 − it
dt,

so that we can write, using (5.1),

h(λ) = 〈h, kλ〉2,(5.2)

where kλ is the function in H2(Πσ0
) defined by

kλ(z) :=
1

2π

1

z − 2σ0 + λ̄
, z ∈ Πσ0

.(5.3)

The function kλ is called the reproducing kernel of H2(Πσ0
) and we have

‖kλ‖22 = 〈kλ, kλ〉2 = kλ(λ) =
1

4π(ℜ(λ)− σ0)
.(5.4)

Recall now a useful property of factorization for functions in the Hardy space.

Lemma 5.1. Let h ∈ H2(Πσ0
) and µ ∈ Πσ0

such that h(µ) = 0. Then there exists
g ∈ H2(Πσ0

) such that ‖h‖2 = ‖g‖2 and

h(z) =
z − µ

z + µ̄− 2σ0
g(z), z ∈ Πσ0

.

Proof. See the results in [Hof62, Chapter 8, pp. 132] and apply the transform
h(z) 7−→ h(z − σ0).

�

Proof of Theorem 2.2 Denote by Er = MKr. Since the Mellin transform is a
unitary map from L2

∗((0, 1),
dt

t1−2σ0
) onto H2(Πσ0

), we have

Er = span H2(Πσ0
) (hA,r : A a mL-admissible sequence) ,

where hA,r(s) = MfA,r(s), for ℜ(s) > σ0. It follows from Theorem 4.3 that

hA,r(s) = − 1√
2π

L(s + r − σ0)ϕ̂(s+ r − σ0)gA(s+ r − σ0), ℜ(s) > σ0.

Now assume that there is µ ∈ Πσ0
such that L(µ + r − σ0) = 0. Since µ ∈ Πσ0

, we
get that hA,r(µ) = 0, for every mL-admissible sequence A. Thus, for all h ∈ Er with
‖h‖2 = 1, we have h(µ) = 0. Since h ∈ H2(Πσ0

), we know from Lemma 5.1 that
there is g ∈ H2(Πσ0

) such that ‖g‖2 = ‖h‖2 = 1 and

h(z) =
z − µ

z + µ̄− 2σ0
g(z) (z ∈ Πσ0

).

Hence with Cauchy-Schwarz inequality and (5.2), we deduce that

|h(λ)| =
∣∣∣∣

λ− µ

λ+ µ̄− 2σ0

∣∣∣∣ |g(λ)| ≤
∣∣∣∣

λ− µ

λ+ µ̄− 2σ0

∣∣∣∣ ‖g‖2‖kλ‖2 =
∣∣∣∣

λ− µ

λ+ µ̄− 2σ0

∣∣∣∣ ‖kλ‖2,
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so

sup
h∈Er

‖h‖2=1

|h(λ)| ≤
∣∣∣∣

µ− λ

µ+ λ̄− 2σ0

∣∣∣∣ ‖kλ‖2.

By contraposition, we have proved that L does not vanish on

r − σ0 +



µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄− 2σ0

∣∣∣∣ <
sup f∈Er

‖h‖2=1

|h(λ)|

‖kλ‖2



 .

It remains to prove that

sup h∈Er

‖h‖2=1
|h(λ)|2

‖kλ‖22
= 1− 2(ℜ(λ)− σ0)d

2
r(λ).

To show this equality, first remark that

sup
h∈Er

‖h‖2=1

|h(λ)| = sup
h∈Er

‖h‖2=1

|〈h, kλ〉2| = ‖PEr
kλ‖2,

where PE denotes the orthogonal projection onto the closed subspace E of H2(Πσ0
).

Then Pythagoras’ Theorem implies that

sup
h∈Er

‖h‖2=1

|h(λ)|2 = ‖PEr
kλ‖22 = ‖kλ‖22 − ‖PE⊥

r
kλ‖22.

Hence
sup h∈Er

‖h‖2=1
|h(λ)|2

‖kλ‖22
= 1− dist2(kλ, Er)

‖kλ‖22
.

But for ℜ(s) > σ0, we have

M
(
tλ̄−2σ0χ(0,1)(t)

)
(s) =

1√
2π

∫ 1

0

tλ̄−2σ0ts−1 dt =
1√
2π

1

λ̄− 2σ0 + s
=

√
2πkλ(s),

according to (5.3). Since the Mellin transform is an isometry from L2
∗((0, 1),

dt
t1−2σ0

)
onto H2(Πσ0

), we obtain

dist(kλ, Er) =
1√
2π

dist(tλ̄−2σ0χ(0,1)(t), Kr) =
dr(λ)√
2π

.

We conclude the proof of Theorem 2.2 using ‖kλ‖22 = 1
4π(ℜ(λ)−σ0)

.

�

Proof of Corollary 2.3 It follows from the proof of Theorem 2.2 and (5.4) that L
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does not vanish on

r − σ0 +




µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄− 2σ0

∣∣∣∣ <
√
4π(ℜ(λ)− σ0) sup

h∈Er

‖h‖2=1

|h(λ)|




.

So in particular (with h = hA,r), we get that L does not vanish on

r − σ0 +

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄− 2σ0

∣∣∣∣ <
√

4π(ℜ(λ)− σ0)
|hA,r(λ)|
‖hA,r‖2

}
,

which proves corollary 2.3 because hA,r = MfA,r =
1√
2π
f̂A,r. �

The following could be interesting in applications.

Corollary 5.2. Let M be a subspace of Kr and λ ∈ Πσ0
. Then L does not vanish

on the disc

r − σ0 +

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄− 2σ0

∣∣∣∣
2

< 1− 2(ℜ(λ)− σ0)dist
2(tλ̄−2σ0χ(0,1),M)

}
.

Proof. It is sufficient to note that dist(tλ̄−2σ0χ(0,1),M) ≥ dist(tλ̄−2σ0χ(0,1), Kr) =
dr(λ) and then apply Theorem 2.2. �

Adapting the proof of Theorem 2.2, we could obtain immediately the following
generalization.

Theorem 5.3. Let k ∈ N and λ ∈ Πσ0
. The function L does not have any zero of

order greater or equal to k on

r − σ0 +

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄− 2σ0

∣∣∣∣ <
(
1− 2(ℜ(λ)− σ0)d

2
r(λ)

) 1

2k

}
.

6. A Beurling–Nyman type theorem for Dirichlet series

One of the main steps for proving Theorem 2.4 is to prove that the space Er is a
closed subspace of H2(Πσ0

) that is invariant under multiplication operator τv, v ≥ 0,
and then to apply Lax–Beurling’s theorem. Before recalling this theorem, we give
some notations and results. We refer to [Nik02, Part A, Chap. 2 & 6] for more
details.

For v ∈ R, let τv be the operator of multiplication on L2(σ0 + iR) defined by

(τvf)(σ0 + it) = e−ivtf(σ0 + it) (f ∈ L2(σ0 + iR)).

We also denote by H∞(Πσ0
) the Hardy space of bounded analytic functions on Πσ0

;
as in H2(Πσ0

), functions in H∞(Πσ0
) admit ”radial” limits at almost every points

of the boundary ℜ(s) = σ0 and if f ∈ H∞(Πσ0
) and f ∗ is its boundary limits, then
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f ∗ ∈ L∞(σ0+iR) and ‖f ∗‖∞ = ‖f‖∞ (= supz∈Πσ0
|f(z)|). A function Θ in H∞(Πσ0

)

is said to be inner if |Θ(σ0 + it)| = 1 for almost every point t ∈ R.
It is easy to see that if Θ is inner and E = ΘH2(Πσ0

), then E is a closed subspace
of H2(Πσ0

) invariant by τv, v ≥ 0. Lax–Beurling’s theorem gives the converse.

Theorem 6.1 (Lax–Beurling). Let E be a closed subspace of H2(Πσ0
) such that

τvE ⊂ E, ∀v ≥ 0. Then there is an inner function Θ ∈ H∞(Πσ0
) unique (up to a

constant of modulus one) such that E = ΘH2(Πσ0
).

Remark 6.2. When E is spanned by a family of functions, we can precise a little bit
more the conclusion of Theorem 6.1. Indeed, let E be a closed subspace of H2(Πσ0

)
spanned by a family of functions (fi)i∈I , fi ∈ H2(Πσ0

) and let fi = higi be the
factorization of fi in inner factor hi and outer factor gi. If τvE ⊂ E, ∀v ≥ 0, then
E = ΘH2(Πσ0

), where Θ = gcd(hi : i ∈ I) is the greatest common inner divisor of
the family (hi)i∈I .

Proof of Theorem 2.4 First of all, note that
⋂

h∈Er

h−1({0}) = {s ∈ Πσ0
: L(s+ r − σ0) = 0},(6.1)

where we recall that

Er = MKr = span H2(Πσ0
) (hA,r : A a mL-admissible sequence) ,

and

hA,r(s) = − 1√
2π

L(s+ r − σ0)ϕ̂(s+ r − σ0)gA(s+ r − σ0), ℜ(s) > σ0.

Indeed, the first inclusion

{s ∈ Πσ0
: L(s + r − σ0) = 0} ⊂

⋂

h∈Er

h−1({0})

is trivial. For the converse inclusion, it is sufficient to notice that according to
Lemma 4.2, the only common zeros to functions gA(s+ r−σ0) is s = 1− r+ σ0 but
this zero is compensated by the singularities of L(s+ r − σ0) at this point.
The proofs of (4) =⇒ (3) and (3) =⇒ (2) are trivial.
(2) =⇒ (1): let λ ∈ Πσ0

such that dr(λ) = 0. Then according to Theorem 2.2,
the function L does not vanish on

r − σ0 +

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄− 2σ0

∣∣∣∣ < 1

}
,

and it follows from the paragraph after Theorem 2.2 that this region is precisely the
half-plane Πr.
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(1) =⇒ (4): denote by Sβ the ”shift” on L2
∗((0, 1),

dt
t1−2σ0

) defined by

(Sβf)(t) := β−σ0f

(
t

β

)
, 0 < β ≤ 1, 0 ≤ t ≤ 1.

It is clear that Sβ is a unitary operator on L2
∗((0, 1),

dt
t1−2σ0

). We will show that

SβKr ⊂ Kr (0 < β ≤ 1).(6.2)

If A = (α, c) is a mL-admissible sequence and 0 ≤ t ≤ 1, we have

(SβfA,r)(t) =β
−σ0fA,r

(
t

β

)

=β−σ0
tr−σ0

βr−σ0

ℓ(α)∑

j=1

cjψk

(
αjβ

t

)

=β−rfA′,r(t),

where A′ = (α′, c) is the mL-admissible sequence with α′ = (α′
j)j = (βαj)j and so

fA′,r ∈ Kr. Hence for every admissible sequence A, we have proved that SβfA,r ∈ Kr.
Since Sβ is a bounded operator and the functions fA,r span the subspace Kr, we
deduce (6.2). Therefore we obtain that Er = MKr is a closed subspace of H2(Πσ0

)
which is invariant under the semi-group of operators MSβM−1, 0 < β ≤ 1. Now
let us show that

MSβM−1 = τv,(6.3)

with v = − log β. If h ∈ H2(Πσ0
) and if f ∈ L2

∗((0, 1),
dt

t1−2σ0
) is such that M−1h = f ,

we have for ℜ(s) > σ0,

(MSβM−1h)(s) =
1√
2π

∫ ∞

0

(Sβf)(t)t
s−1 dt

=
1√
2π

∫ +∞

0

β−σ0f

(
t

β

)
ts−1 dt

=βs−σ0
1√
2π

∫ +∞

0

f(u)us−1 du

=βs−σ0(Mf)(s) = βs−σ0h(s).

Hence we have

(MSβM−1h)(σ0 + it) = βith(σ0 + it) = eit log βh(σ0 + it) = (τvh)(σ0 + it),

with v = − log β, which proves (6.3). We therefore obtain that τvEr ⊂ Er, for all
v ≥ 0 and then Lax–Beurling’s Theorem (see Theorem 6.1) implies that there is an
inner function Θ in the half-plane Πσ0

such that Er = ΘH2(Πσ0
). Moreover we know

that Θ = BS, where B is a Blaschke product and S is a singular inner function
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([Nik02]). But according to Remark 6.2, the zeros of B coincide with the set of
common zeros of functions h ∈ Er. Hence it follows from (6.1) and the hypothesis
that B has no zeros. In other words, B ≡ 1. We will now show that S ≡ 1. First
note that since hA,r is analytic on ℜ(s) > 2σ0 − r and since S is a common inner
divisor of all functions in Er, it follows that S can be continued analytically through
the axis σ0 + iR. In particular, this forces S to be of the form S(s) = e−a(s−σ0),
for some a ≥ 0 (see for instance [Nik02, Part A, Chap. 4 & 6]). Now let hA,r be a
function in Er and write hA,r = Sh, with h ∈ H2(Πσ0

).

Lemma 6.3. Let h ∈ H2(Πσ0
). Then

lim sup
σ→+∞

log |h(σ)|
σ

≤ 0.

Proof of lemma 6.3. Using (5.2) and (5.4), we get

|h(σ)| ≤ ‖h‖2‖kσ‖2 =
‖h‖2

2
√
π(σ − σ0)1/2

,

for every σ > σ0. Hence

log |h(σ)|
σ

≤ O(1)

σ
− 1

2

log(σ − σ0)

σ
,

which gives the result letting σ → +∞. �

On the one hand, according to the previous lemma, we have

lim sup
x→+∞

log |hA,r(x)|
x

≤ lim sup
x→+∞

log |S(x)|
x

= −a ≤ 0.(6.4)

And on the other hand, writing

hA,r(x) = L(x+ r − σ0)ϕ̂(x+ r − σ0)

ℓ(α)∑

j=1

cjα
x+r−σ0

j ,

we can assume, by Lemma 4.2, that 0 < α1 < · · · < αℓ(α) = 1 and that cℓ(α) 6= 0.
Then we have

|hA,r(x)| ∼ |a1||ϕ̂(x+ r − σ0)cℓ(α)|, x→ +∞.

Hence we can find x0 > 1 such that

|hA,r(x)| ≥
|a1|
2

|ϕ̂(x+ r − σ0)cℓ(α)|, (x > x0),

which gives

log |hA,r(x)| ≥ − log 2 + log |a1|+ log |cℓ(α)|+ log |ϕ̂(x+ r − σ0)|, (x > x0).
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Therefore we obtain that

lim sup
x→+∞

log |hA,r(x)|
x

≥ lim sup
x→+∞

log |ϕ̂(x+ r − σ0)|
x

= 0.

Using (6.4), we conclude that a = 0. Hence S ≡ 1, which gives Er = H2(Πσ0
), that

is Kr = L2
∗((0, 1),

dt
t1−2σ0

). �

Remark 6.4. In fact, with the hypothesis on ϕ, one can easily show that we always

have lim supx→+∞
log |ϕ̂(x+r−σ0)|

x
≤ 0. Note that there exists some ϕ for which the

lim sup is negative.

7. Some examples and applications

7.1. The Riemann zeta function. Let

ζ(s) =
∑

n≥1

1

ns
(ℜ(s) > 1),

be the Riemann zeta function. Then it is well known that ζ can be meromorphically
continued in the whole plane C, with a unique pole of order 1 at the point s =
1 ([Tit86]). Thus, the function ζ satisfies our hypothesis with mL = 1 (and for
instance, σ0 = 0). Now let us consider the function ϕ defined on [0,+∞[ by

ϕ(t) =

{
(1− t)−σ1 if 0 ≤ t < 1

0 if t ≥ 1
,

where σ1 < 1/2 is fixed.

Then an elementary computation shows that ϕ̂(s) = Γ(s)Γ(1−σ1)
Γ(s+1−σ1)

, ℜ(s) > 0. Hence,

(7.1) |ϕ̂(s)| ∼ Γ(1− σ1)

|t|1−σ1
as |t| = |ℑ(s)| → ∞.

We now illustrate1 the use of Theorem 2.1 in order to determine the values of r such
that

ψ ∈ L2

(
(1,∞),

du

u1+2r

)
.

An obvious computation shows that

ψ(u) =
u

1− σ1
−
∑

n<u

1(
1− n

u

)σ1
, u > 0.

1It is an illustration since here Theorem 2.1 is useless as it can be seen in Theorem 7.2.
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Let µ = µ(1/2) be a convexity bound for ζ(1/2 + it) ([Ten08]), so that we have for
all ε > 0,

|ζ(r + it)| =
{
Oε

(
|t| 12−(1−2µ)r+ε

)
if 0 ≤ r ≤ 1/2,

Oε

(
|t|2µ(1−r)+ε

)
if 1/2 ≤ r < 1.

We know that µ < 1/4. We get from (7.1)

|ζ(r + it)ϕ̂(r + it)|2 =
{
Oε

(
|t|−1−(2−4µ)r+2σ1+ε

)
if 0 ≤ r ≤ 1/2,

Oε

(
|t|−2+2σ1+4µ(1−r)+ε

)
if 1/2 ≤ r < 1.

So a direct application of Theorem 2.1 gives:

Proposition 7.1. With the notation above, then ψ ∈ L2
(
(1,∞), du

u1+2r

)
if one the

following holds:

• max(0, σ1/(1− 2µ)) < r ≤ 1/2;
• max(1/2, 1− (1− 2σ1)/(4µ)) < r < 1;
• r > 1.

By a result of Huxley ([Hux05]), we can take µ = 32
205

. In particular, one may
have r = 1/2 if σ1 is chosen such that σ1 <

141
410

≈ 0.343 . . . .
If we assume the Lindelöf Hypothesis, we have µ(1/2) = 0 and a similar compu-

tation as above implies that if r 6= 1 and r > max(0, σ1), then

ψ ∈ L2

(
(1,∞),

du

u1+2r

)
.

In fact, the work above is useless for the Riemann zeta function since we can prove
directly the following:

Theorem 7.2. Let r 6= 1. Then ψ ∈ L2((1,∞), du
u1+2r ) if and only if r > max(0, σ1).

Moreover, if the condition holds we have

‖ψ‖2
L2((1,∞), du

u1+2r )
≤ C(σ1)ζ(1 + 2(r − σ1)),

where C(σ1) =
23−2σ1

(3−2σ1)(1−σ1)2
+ 22−σ1

(1−σ1)2
+ 1

1−2σ1
.

Proof. In the case of the zeta function and for the previous choice of ϕ, we have

ψ(u) =
u

1− σ1
−
∑

n<u

(
1− n

u

)−σ1

(u > 0).
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Hence

‖ψ‖22 =

∫ ∞

1

∣∣∣∣∣
u

1− σ1
−
∑

n<u

(
1− n

u

)−σ1

∣∣∣∣∣

2
du

u2r+1

=

∫ ∞

1

∣∣∣∣∣
u1−σ1

1− σ1
−
∑

n<u

(u− n)−σ1

∣∣∣∣∣

2
du

u1+2r−2σ1

=

∞∑

k=1

∫ k+1

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du

u1+2r−2σ1

Now, if u ∈ (k, k + 1] and n < k, we have

∫ n

n−1

(u− t)−σ1dt ≤ (u− n)−σ1 ≤
∫ n+1

n

(u− t)−σ1dt,

and so

(7.2)
1

uσ1
+

(u− k)1−σ1

1− σ1
≤ u1−σ1

1− σ1
−

k−1∑

n=1

(u− n)−σ1 ≤ (u− k + 1)1−σ1

1− σ1
.

In particular, one has

u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1 = − 1

(u− k)σ1
+Oσ1

(1)
(
u ∈ (k, k + 1], k ≥ 1

)

so for each k, the integral

∫ k+1

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du

converges if and only if 2σ1 < 1.
Moreover, if 2σ1 < 1 these integrals are uniformly bounded with respect to k

because using (7.2), we have

∫ k+1

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du ≤
∫ k+1

k

∣∣∣∣
(u− k + 1)1−σ1

1− σ1
+

1

(u− k)σ1

∣∣∣∣
2

du

≤
∫ 1

0

∣∣∣∣
(u+ 1)1−σ1

1− σ1
+

1

uσ1

∣∣∣∣
2

du = C̃(σ1)
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From this, we deduce that for r > σ1

‖ψ‖22 =
∞∑

k=1

∫ k+1

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du

u1+2r−2σ1

≤
∞∑

k=1

1

k1+2r−2σ1

∫ k+1

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du

≤ C̃(σ1)
∞∑

k=1

1

k1+2r−2σ1
< +∞.

As far as C̃(σ1) is concerned, we have the following bound

C̃(σ1) =

∫ 1

0

(u+ 1)2−2σ1

(1− σ1)2
du+

2

1− σ1

∫ 1

0

(1 + u)1−σ1

uσ1
du+

∫ 1

0

du

u2σ1

≤
∫ 1

0

(u+ 1)2−2σ1

(1− σ1)2
du+

22−σ1

1− σ1

∫ 1

0

du

uσ1
+

∫ 1

0

du

u2σ1

≤ 23−2σ1

(3− 2σ1)(1− σ1)2
+

22−σ1

(1− σ1)2
+

1

1− 2σ1
= C(σ1),

which proves the first part of the theorem.
On the other hand, suppose that σ1 > 0. (If σ1 ≤ 0 there is nothing to prove

since by hypothesis r > σ0 and σ0 = 0 in our case).
It sufficies to find U(σ1) > 0 such that

∫ k+1

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du ≥ U(σ1)

uniformely in k. In that case, we shall have

‖ψ‖22 =
∞∑

k=1

∫ k+1

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du

u1+2r−2σ1

≥
∞∑

k=1

1

(k + 1)1+2r−2σ1

∫ k+1

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du

≥ U(σ1)

∞∑

k=1

1

(k + 1)1+2r−2σ1

hence r > σ1.



ZERO FREE REGIONS FOR DIRICHLET SERIES 27

It now remains to prove

∫ k+1

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du ≥ U(σ1)

uniformely in k.
From (7.2), we see that we have in fact

u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1 = − 1

(u− k)σ1
+

κ(u)

1− σ1

(
u ∈ (k, k+1], k ≥ 1, σ1 < 1/2

)
,

where 0 ≤ κ(u) ≤ (u− k + 1)1−σ1 for all u ∈ (k, k + 1].
We deduce that for any 0 < δ < 1

∫ k+1

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du ≥
∫ k+δ

k

∣∣∣∣∣
u1−σ1

1− σ1
−

k∑

n=1

(u− n)−σ1

∣∣∣∣∣

2

du

≥
∫ k+δ

k

(
1

(u− k)2σ1
− 2

(u− k + 1)1−σ1

(1− σ1)(u− k)σ1

)
du

≥
∫ k+δ

k

(
1

(u− k)2σ1
− 2

(1 + δ)1−σ1

(1− σ1)(u− k)σ1

)
du

≥ δ1−2σ1

1− 2σ1
− 2(1 + δ)1−σ1δ1−σ1

(1− σ1)2

≥ δ1−2σ1

(
1

1− 2σ1
− 2(1 + δ)1−σ1δσ1

(1− σ1)2

)
.

We have the expected result by choosing

U(σ1) := δ1−2σ1

(
1

1− 2σ1
− 2(1 + δ)1−σ1δσ1

(1− σ1)2

)

with δ > 0 small enough so that

2(1 + δ)1−σ1δσ1

(1− σ1)2
<

1

1− 2σ1
.

�

7.1.1. Zero-free discs for ζ. Let r > max(0, σ1), r 6= 1. Then according to The-
orem 7.2, the function ψ ∈ L2

(
(1,∞), du

u1+2r

)
. Let A = (α, c) be a 1-admissible

sequence, which means that
ℓ(α)∑

j=1

cjαj = 0,
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with 0 < αj ≤ 1, cj ∈ C. Take λ ∈ C, ℜ(λ) > 0. It follows from Theorem 2.2 that
the Riemann zeta function s 7−→ ζ(s) does not vanish in the disc

r +

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄

∣∣∣∣ <
√

1− 2ℜ(λ)d2r(λ)
}
,

where dr(λ) = dist(tλ̄χ(0,1), Kr), with Kr = span(fA,r : A a 1-admissible sequence).
If we take only admissible sequences of length 2, we can easily prove the following.

Proposition 7.3. We have

Kr = span
(
tr(c1ψ

(α1

t

)
+ c2ψ

(α2

t

)
), c1α1 + c2α2 = 0, 0 < αj ≤ 1

)
=

span

(
tr(ψ

(α
t

)
− αψ

(
1

t

)
), 0 < α ≤ 1

)
.

In particular, taking ϕ = χ(0,1) (that is σ1 = 0), we recover the subspace K̃r (see
the Introduction) and the result of Nikolski [Nik95, Theorem 0.1].
We will now try to give more explicit zero free discs for the Riemann zeta function.

Applying Corollary 2.3 gives that s 7→ ζ(s) does not vanish in the disc

r +



µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄

∣∣∣∣ <
√
2ℜ(λ)

∣∣∣ζ(λ+ r)ϕ̂(λ+ r)
∑ℓ(α)

j=1 cjα
λ+r
j

∣∣∣
‖fA,r‖L2

∗((0,1),dt/t)



 .

But the estimate (4.4) gives

‖fA,r‖L2
∗((0,1),dt/t)

≤





∑ℓ(α)
j=1 |cjαr

j |
(

1
(1−σ1)

√
2−2r

+ ‖ψ‖L2((1,∞), du

u1+2r )

)
if 0 < r < 1,

∑ℓ(α)
j=1 |cjαr

j |
(

(minj(αj )/maxj(αj))
1−r

(1−σ1)
√
2r−2

+ ‖ψ‖L2((1,∞), du

u1+2r )

)
if r > 1,

and thus we deduce (note that the case r > 1 is less useful):

Proposition 7.4. Let max(0, σ1) < r < 1 and let A = (α, c) be a 1-admissible
sequence. If ℜ(λ) > 0, then s 7→ ζ(s) does not vanish in the disc

r+



µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄

∣∣∣∣ <
√

2ℜ(λ)
|∑ℓ(α)

j=1 cjα
λ+r
j |

∑ℓ(α)
j=1 |cjαr

j |(‖ψ‖2 + 1
(1−σ1)

√
2−2r

)
|ϕ̂(λ+ r)||ζ(λ+ r)|



 .

In particular, if we consider only admissible sequences of length 2, we obtain
zero-free discs of the form
(7.3)

r+

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄

∣∣∣∣ <
√
2ℜ(λ) |αλ+r − α|

(αr + α)(‖ψ‖2 + 1
(1−σ1)

√
2−2r

)
|ϕ̂(λ+ r)||ζ(λ+ r)|

}
.
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Since |ϕ̂(λ+ r)| = O(1/|ℑ(λ)|1−σ1) we obtain larger disc than in ([Nik95]) whenever
ℑ(λ) is large enough and σ1 > 0. We emphasize on the fact that our zero-free discs
are explicit.

For example, if we take α = 1/4 in (7.3), we obtain the following zero-free region
for zeta which can be improved but has the merit to be quite explicit:

Corollary 7.5. Let max(0, σ1) < r < 1 and let λ ∈ C such that ℜ(λ) > 0. Then
the Riemann zeta function does not vanish in the disc

r +

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄

∣∣∣∣ < F (λ, r, σ1)

}
,

where

F (λ, r, σ1) =
√
2ℜ(λ)

∣∣∣
(
1
4

)λ+r − 1
4

∣∣∣
∣∣Γ(λ+ r)Γ(1− σ1)

∣∣
((

1
4

)r
+ 1

4

) (√
C(σ1)ζ(1 + 2(r − σ1)) +

1
(1−σ1)

√
2−2r

) ∣∣Γ(λ+ r + 1− σ1)
∣∣
|ζ(λ+ r)|.

Recall that the discs in Corollary 7.5 are euclidean discs of center (x, y) and radius
R where:

x = r + ℜ(λ)1 + F (λ, r, σ1)
2

1− F (λ, r, σ1)2
, y = ℑ(λ)

R =
2ℜ(λ)F (λ, r, σ1)
1− F (λ, r, σ1)2

.

Taking, for example, λ = 0.01+50i, r = 0.49 and σ1 = 0.4 then a simple evaluation
of F (λ, r, σ1) implies that ζ has no zero in the disc of center 1

2
+ 50i and radius

3.75×10−6. Note that ζ has a zero at s = 1
2
+49.773 . . . i and at s = 1

2
+52.970 . . . i.

7.2. Dirichlet L-functions. Let χ be a non trivial Dirichlet character of conductor
cond(χ) = q and L(χ, s) =

∑
n≥1 χ(n)n

−s be the (degree 1) associated Dirichlet
function. This function has an analytic continuation to the whole complex plane.
For simplicity, we take σ1 = σ0 = 0 and

ϕ(t) =

{
1 if 0 ≤ t < 1,

0 if t ≥ 1.

So we have ψ(u) = −∑n<u χ(n). Since ψ is bounded, it belongs to L2((1,∞), du
u1+2r )

for all r > 0. The admissibility condition for the sequence A is empty and we may
take

fA,r(t) = tr
ℓ∑

j=1

cj
∑

n<αj/t

χ(n)
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for all A = (α, c) where ℓ ≥ 0, α ∈ (0, 1]ℓ and c ∈ Cℓ. Let r such that 1/2 ≤ r < 1
and λ = 1− r. For simplicity, we write dr = dr(λ) so that

d2r = min
cj ,αj



∫ 1

0

∣∣∣∣∣∣
t1−r − tr

ℓ∑

j=1

cj
∑

n<αj/t

χ(n)

∣∣∣∣∣∣

2

dt

t




Furthermore, we will write dr,χ if we need to specify the dependance on χ. Remark
that we have trivially d2r ≤ 1/(2− 2r) (just take all the cj to be 0). In fact, we can
be a little bit more precise.

Proposition 7.6. We have d2r < 1/(2− 2r).

Proof. Let c ∈ C and 0 < α ≤ 1. A short calculation gives

d2r ≤
∫ 1

0

∣∣∣∣∣∣
t1−r − ctr

∑

n<α/t

χ(n)

∣∣∣∣∣∣

2

dt

t
=

1

2− 2r
− 2αℜ(cL(χ, 1)) + |c|2α2r+1

∫ ∞

1

∣∣∣∣∣
∑

n<u

χ(n)

∣∣∣∣∣

2
du

u1+2r
.

Since we know that L(χ, 1) 6= 1 (see for example [IK04, p. 37]), one can choose a
suitable c such that the right hand side of the equation above is less than 1/(2 −
2r). �

Theorem 2.2 asserts that L(χ, s) does not vanish on the disc

(7.4) r +

{
µ ∈ C :

∣∣∣∣
µ+ r − 1

µ− r + 1

∣∣∣∣ <
√
1− 2(1− r)d2r

}
.

Note that the proposition above implies that the disc is not empty. We deduce, in
particular, that L(χ, σ) does not vanish on the real-interval

σ > 1−
√

1− 2(1− r)d2r − (1− 2(1− r)d2r)

d2r
.

(We can easily check that the disc (7.4) contains σ = 1 and it is known that L(χ, σ) 6=
0 for σ ≥ 1.) Hence, L(χ, σ) does not vanish on

σ > 1− (1− r)
√
1− 2(1− r)d2r.(7.5)

We expect (by the Riemann hypothesis for Dirichlet functions) that dr = 0 which
would imply that L(χ, s) does not vanish on Πr. If we had “only”

d2r ≤
1

2− 2r
− C2

2(log q)2(1− r)3
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for some (absolute) constant C, it would imply (using (7.5)) that L(χ, σ) does not
vanish in the real-interval σ > 1 − C/ log q. That proves Theorem 2.5 and we also
get immediately the following.

Theorem 7.7. If there exists an absolute constant C such that for all (real) char-
acter χ there exists r ∈ [1/2, 1) with

d2r,χ <
1

2− 2r
− C2

2(log cond(χ))2(1− r)3
,

then there is no Siegel’s zero for Dirichlet L-functions.

The previous theorem can be seen as a Beurling-Nyman criterion for Siegel’s
conjecture.

7.2.1. Explicit zero-free discs for L(χ, s). We now apply Corollary 2.3. Note that
for the special choice of ϕ we have done (ϕ = χ(0,1)), we have ϕ̂(s) = 1/s. Moreover,
since the function ψ is bounded, say ‖ψ‖ ≤ B, we have

‖ψ‖L2((1,∞),du/u1+2r) ≤ B/
√
2r.

Then Corollary 2.3 asserts that s 7→ L(χ, s) does not vanish in the disc

r +

{
µ ∈ C :

∣∣∣∣
µ− λ

µ+ λ̄

∣∣∣∣ <
√

2ℜ(λ) |L(χ, λ+ r)|
|λ+ r|

√
2r

B

}
.

Let us remark that the Pólya-Vinogradov’s theorem implies that B ≤ 2
√
q log q

where q = cond(χ) is the conductor of χ. Note also that there are some improve-
ments of the Pólya-Vinogradov’s inequality for some characters (see for example
[GS07]).

7.3. The Selberg class. Let L(s) =
∑

n≥1 ann
−s be a L-function in the Selberg

class S ([dR07a]). We denote by d its degree and by mL the order of its pole at
s = 1.

As for the Riemann zeta function, we take

ϕ(t) =

{
(1− t)−σ1 if 0 ≤ t < 1

0 if t ≥ 1

where σ1 < 1/2. By the Phragmen-Lindelöf principle, we have that L(r + it) =

Oε(t
d
2
(1−r)+ε) for 0 < r ≤ 1/2. Then we deduce from Theorem 2.1 and (7.1) that

ψ ∈ L2

(
(1,∞),

du

u1+2r

)

if the following inequality holds

σ1 <
1

2
− 1− r

2
d.
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In particular, for r = 1/2, this gives σ1 < 1/2− d/4 which is better than σ1 < −d/4
obtained in [dR07a]. Nevertheless, we should mention that for d < 4, we can in fact
take σ1 = 0 (see [dR07b]).
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Jordan CNRS UMR 5208; 43, boulevard du 11 Novembre 1918, F-69622 Villeurbanne

E-mail address : delaunay@math.univ-lyon1.fr
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CNRS UMR 5208; 43, boulevard du 11 Novembre 1918, F-69622 Villeurbanne

E-mail address : mosaki@math.univ-lyon1.fr
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