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Abstract 

BACKGROUND: Mutations and deletions of the homeobox transcription factor gene 

SHOX are known to cause short stature. We have analyzed SHOX enhancer regions in a 

large cohort of short stature patients to study the importance of regulatory regions in 

developmentally relevant genes like SHOX. METHODS: We tested for the presence of 

copy number variations in the pseudoautosomal region of the sex chromosomes in 

735 individuals with idiopathic short stature and compared the results to 58 cases with 

Leri-Weill syndrome and 100 normal height controls, using FISH, SNP, 

microsatellites and MLPA analysis. RESULTS: A total of 31/735 (4.2%) 

microdeletions were identified in the pseudoautosomal region in patients with 

idiopathic short stature; eight of these microdeletions (8/31; 26%) involved only 

enhancer sequences residing a considerable distance away from the gene. In 58 

Leri-Weill syndrome patients, a total of 29 microdeletions were identified; almost half 

of these (13/29; 45%) involve enhancer sequences and leave the SHOX gene intact. 

These deletions were absent in 100 control persons. CONCLUSION: We conclude 

that enhancer deletions in the SHOX gene region are a relatively frequent cause of 

growth failure in patients with idiopathic short stature and Leri-Weill syndrome. Our 

data highlight the growing recognition that regulatory sequences are of crucial 

importance in the genome when diagnosing and understanding the etiology of disease. 
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Introduction  

Short stature is a developmental, multifactorial condition with a strong genetic 

component. Three percent of the population are defined as being short. Short stature 

can have many different causes, a multitude of which are genetic. Several large scale 

genome-wide association studies have recently determined variants that affect 

susceptibility to disease and identified a total of 54 validated SNP variants with an 

influence on height. 1-3 However, in total these large scale studies only pinpointed 

candidate genes of relatively minor effect within each locus, explaining only a small 

proportion of the phenotypic variance in the normal population, thus accounting 

together for little more than 5% of our height (0.4 cm per “increasing” allele).   

Although mutations in several genes have been reported that cause pronounced short 

or tall stature with a drastic effect on height (10 to 30 cm per “mutant” allele), this 

normally accounts for only a very small proportion of patients with short stature. So 

we are left with the fact that for the vast majority of short individuals with a height 

below -2 standard deviations scores (SDS), no causing defects are known, clinically 

termed as “idiopathic” short stature. 4 

One of the more prevalent causes of short stature was shown to derive from a defect 

in a developmental gene on the X chromosome, SHOX (for: short stature homeobox 

gene; MIM 312865). Defects in the coding region of SHOX have been demonstrated 

in individuals with different short stature syndromes including Leri-Weill, Langer and 

Turner syndrome (MIM 127300), 5-8 but mutations are also found in patients with 

idiopathic short stature (ISS) (MIM 300582). 9 

Regulatory elements residing either 5  ́ or 3´of a gene can be sites of mutations in 

genetic disease and interfere with the normal expression of a gene. Some of these 

elements - defined as enhancers or repressors - can lie a considerable distance away 

from the coding portion of a gene. 10 Enhancer elements can act up- and downstream 

of a gene and function only in certain cell types. In concert with transcription factors 
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that bind to these enhancer sequences, they play a role in achieving the appropriate 

level of gene expression. Defects in enhancer sequences have as yet only rarely been 

identified, and like promoter mutations, are considered to play only a relatively minor 

role in disease.  

Comparative genomic analysis has previously identified evolutionarily conserved 

non-coding DNA elements, termed CNE, several hundred kilobases downstream of 

the SHOX gene in patients with Leri-Weill syndrome. 11-14 Three of these elements 

have subsequently been shown to act as enhancers in the chicken limb bud and five 

elements as enhancers in the neural tube. 15 To establish the frequency and 

significance of long-range regulatory elements also in individuals with idiopathic 

short stature (ISS), we have analyzed the DNA of 735 patients with ISS and compared 

these results to 58 patients with a clinical manifestation of Leri-Weill syndrome (LWS) 

and 100 controls.   
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Material and Methods 

The study was conducted in accordance with the principles of the Declaration of 

Helsinki/Good Clinical Practice and was approved by the ethics committees of the 

participating institutions. Investigators obtained written informed consent from the 

participants’ parent(s) or legal guardian(s) before conducting study-related 

procedures. 

Study Subjects 

We studied 740 unrelated pre-pubertal children with ISS from 14 countries: Belgium 

(n = 61), Canada (n = 39), Croatia (n = 34), Czech Republic (n = 87), France (n = 60), 

Germany (n = 144), Hungary (n = 29), India (n = 7), Netherlands (n = 2), Poland (n = 

49), Russia (n = 6), Spain (n = 107), Turkey (n = 61), and USA (n = 54). Inclusion 

criteria were: chronological age ≥ 3 years and pre-pubertal (males: genital stage Tanner 

1 and testes ≤ 2 ml; females: breast stage Tanner 1); height ≤ 3rd percentile of the local 

reference range or height ≤ 10th percentile with height velocity ≤ 25th percentile; bone 

age ≤ 10 years for boys and ≤ 8 years for girls; no GH deficiency or GH resistance; no 

chronic disease; and no known growth-influencing medications. 

Our study also included 67 patients with LWS from 8 different European countries: 

Germany (n = 37), Austria (n = 1), Croatia (n = 4), France (n = 10), Italy (n = 2), 

Netherlands (n = 8), Spain (n = 4), and Sweden (n = 1). The control cohort consisted 

of 100 individuals of European origin with normal stature. We used a combination of 

DNA sequencing, microsatellite analysis, fluorescence in situ hybridization (FISH), 

and multiplex ligand-dependent probe amplification (MLPA), 16 to search for copy 

number variations in the proximity of SHOX in the pseudoautosomal region (PAR1). 

Details are given in the Supplementary Appendix.  
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Results 

The main focus of this study was to find out about the frequency of enhancer 

deletions in a large cohort of patients with ISS and compare the results to patients 

with LWS and control individuals. Patients that presented (point) mutations within the 

SHOX gene were excluded from the deletion analysis (5 patients with ISS, 9 patients 

with LWS), leaving altogether 735 patients with ISS, 58 patients with LWS and 100 

controls for the enhancer deletion analysis. 

To screen for enhancer deletions downstream of the SHOX gene, we carried out 

multiplex ligand-dependent probe amplification (MLPA) on 201 of the 735 ISS 

patients. These 201 patients were selected as they showed homozygosity with at least 

one of the microsatellite markers (DXYS10085, DXYS10087, and DXYS10096), in 

addition to the limb-specific enhancer CNE9, all residing at a distance of 150 to 250 

kb from the SHOX gene (Figure 1).  

We have also screened the 735 ISS patients for homozygosity of two markers in direct 

vicinity of the SHOX gene (DXYS201 and CAII) 14, to pinpoint SHOX containing 

deletions. In all individuals where all 2 markers were homozygous, FISH analysis was 

carried out and in 18 individuals, a deletion of the SHOX gene was demonstrated by 

FISH. In these 18 individuals, MLPA was also carried out additionally as a further 

confirmation for the SHOX containing deletions. MLPA analysis was also carried out 

in DNA of 58 LWS patients who had been previously tested for the presence or 

absence of the SHOX gene and in DNA of 100 control individuals.  

In total, MLPA analysis demonstrated a deletion in the pseudoautosomal region of 

33/201 tested ISS patients, with peaks at a ratio <0.5 as compared to normal controls 

(Figure 2). Deletion sizes ranged between 52 kb and several Megabases of DNA and 

no duplications were detected. Twenty-three of the 33 microdeletions included the 

SHOX gene. A comparison of the results to the control cohort showed that two of the 

deletions (no.27 and 28; see Figure 2) represent polymorphisms as they were also 

detected in two control individuals (Figure 2). Among the 31 remaining 

microdeletions of the PAR region, eight ISS patients presented deletions including 
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only the enhancer sequences, CNE7, CNE8 and/or CNE9 (no.24-26,29-33; Figure 2). 

Three of the eight patients (no.29-31) presented very small deletions of only the 

enhancer intervals CNE7 and CNE8, and in proband 32 only the CNE8 interval was 

deleted (CNEs as defined by Sabherwal et al, 2007). 

MLPA analysis also demonstrated a heterozygous deletion in the PAR region in 30/58 

LWS patients, showing all the peaks at a ratio <0.5 as compared to normal controls. 

Among the 30 microdeletions, 16 deletions encompassed the SHOX gene, whereas 14 

deletions were located downstream of the SHOX gene. The smallest deletion (no.49, 

Figure 2) included exons 4–5 of the SHOX gene (10 kb) and was only detectable by 

MLPA. A comparison with the controls demonstrated that the deletion in one of the 

patients (no.50) represents a polymorphism. Among the 29 microdeletions of the 

PAR1 region in LWS patients, one patient (no.62) included only the enhancer interval 

CNE7 and CNE8. 

Altogether, we identified 63 persons with copy number variations in the PAR region 

by screening 793 patients with short stature (735 with ISS and 58 with LWS). Sixty of 

these deletions were absent in a series of 100 control persons, while three were also 

found in the control group and had to be judged as normal variants (no.27, 28, 50). To 

confirm these results with an independent method, we carried out fluorescence in situ 

hybridization (FISH) on chromosomes of several patients with small deletions, where 

metaphase spreads were available (no.24-26, 29-33, 62). In all cases, deletions were 

confirmed by FISH analysis using the cosmids 51D11, 61E05 and 10D05 with a map 

location between 670 and 780 kb from the telomere (Figure 3). 

To further correlate the significance of one or more of the enhancer CNE elements in 

SHOX downstream deletions, a detailed analysis of the deletion boundaries was 

carried out in seven ISS cases (no.27-33) and one LWS case (no.62) by SNP and 

microsatellite analysis (Suppl.Figure). The smallest deletion was confined to ≤ 2 kb in 

proband 27 and 28 and represents a polymorphism, proband 33 had a deletion of ≤ 80 

kb. In three individuals with ISS and one individual with LWS, a deletion interval 

smaller than 60 kb was detected that included the CNE7 and CNE8 enhancer interval. 

The deletion in ISS proband 32 was the smallest detectable functional variant in this 
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series and included only the CNE8 interval.  

 

 

Discussion 

This study was performed to establish a comprehensive view of copy-number 

variations in the pseudoautosomal region of the human sex chromosomes in 735 

patients with idiopathic short stature. The pseudoautosomal region represents a block 

of sequence identity shared between the X and Y chromosomes, flanked by the 

telomere. It is characterized by an elevated CG content, abundant Alu repeats and one 

of the highest recombination rates in the human genome.17 Deletions in the 

pseudoautosomal region were identified in 33 of the 735 screened ISS patients (4.5%), 

31 of these were not found in the screened controls. Deletions in the PAR1 region 

were also identified in 30 of the 58 screened LWS cases and in three of the analyzed 

controls. As we were interested in the level and significance of enhancer deletions in 

patients with idiopathic short stature with regard to the overall frequency of detected 

mutations/deletions, the incidence of enhancer deletions of 22% was an unexpected 

finding, while this proportion was even higher at 34% in patients with LWS. Figure 4 

gives a summary of all the SHOX gene deletions, the intragenic mutations and 

downstream enhancer deletions in the analysed patients with ISS and LWS. It is very 

likely that these high incidences are still an underestimate, as we cannot rule out the 

possibility that some cases have been overlooked due to point mutations in enhancer 

sequences or deletions in other parts of this region.  

Do cis-regulatory mutations in ISS or LWS make a qualitatively different contribution 

to disease? Leri-Weill syndrome is clinically defined by a shortened middle portion of 

the limb (mesomelia) leading to short stature and an abnormal alignment of the radius 

and ulna at the wrist. The Madelung deformity typically develops at puberty and 

females are generally more severely affected than males. Other clinical features 

include a high muscle mass and high body mass index. 14  18 19 As cis-regulatory 

deletions in our analysis occur more frequently in patients with LWS compared to ISS, 
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it is possible that enhancer deletions may lead to more pronounced phenotypes, as 

exemplified in the more striking phenotype of Leri-Weill syndrome.  

The deletion of the limb-specific enhancer CNE9 has been previously shown to be an 

important cis-controlling element in SHOX haploinsufficiency. 11-13 15  This study 

confirms that CNE9 probably represents the most important enhancer in the proximal 

SHOX region, but has also has revealed that CNE8 together with CNE7, but also the 

deletion of the CNE8 interval alone, can be identified in patients with short stature as 

well as skeletal defects (no.29-32; 62; Suppl.Figure). Alternatively, it also can not be 

totally ruled out that the deletion of the CNE7 and CNE8 intervals may have only a 

minor effect, as this interval was absent in the sequence data of one recently 

sequenced individual, however pedigree data were not available and SNP and 

microsatellite analysis, MLPA and FISH was not carried out. 20 It is also possible that 

this part of the sequence is still inaccurate or incomplete. We also know that the 

phenotype in patients can be very variable (intra- and interfamiliar) and that there are 

individuals with SHOX deficiency and normal stature. 12,14 Long-range 

transcriptional control by enhancer sequences have been identified mostly through the 

analysis of patients with genetic malformations and found to reside up to hundred of 

kilobases away from the genes they control. 10 Three examples of long-range control 

in limb development include enhancers in the vicinity of the mammalian Hoxd cluster 

21 and the Sox9 gene, defects in which cause campomelic dysplasia, a dominant 

skeletal malformation syndrome often associated with XY sex reversal, or Pierre 

Robin sequence, an important subgroup of cleft palate. 22-24 Chromosome 

rearrangements which separate the genes from their conserved non-coding DNA 

elements have only been reported in a small minority of cases. The PAX6 and SHH 

position effect cases are further good examples of the separation of cis-regulatory 

elements. 10 Given the findings on enhancer significance on key regulatory master 
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genes in the literature, the high level of enhancer deletions in the SHOX gene is to our 

knowledge unprecedented in the human genome. 

The conserved non-coding elements in the vicinity of the SHOX gene are embedded 

in a region with characteristics of a gene desert. Deletions encompassing more 

proximal or more distal pseudoautosomal genes have been detected in a number of 

patients in our study, but this does not lead to obvious phenotypic consequences. The 

same holds true for a duplication of the ASMT gene which was found in two normal 

controls. An important diagnostic issue has however been raised, related to the 

observation that five female probands carry deletions extending into the X-specific 

region of the X chromosome. While these females only present short stature, their 

male babies could also suffer from mental retardation, Chondrodysplasia punctata, 

Ichthyosis and Kallmann Syndrome, 25 depending on their exact deletion size and 

which X-chromosomal genes are missing. For these individuals, prenatal diagnosis 

might represent an option. 

In summary, we have applied DNA sequencing, microsatellite, FISH and MLPA 

analysis to detect DNA rearrangements in a large population of patients with 

idiopathic short stature of different ethnic origin. We have provided strong evidence 

that cis-regulatory deletions can contribute to the patient´s condition to an 

unexpectedly high degree. These data also re-emphasize that regulatory input can be 

crucial for developmental genes, most notably genes with a dynamic expression 

pattern. Lastly, our findings also help to optimise diagnostic options for individuals 

with SHOX haploinsufficiency and thus may have immediate value for patients with 

idiopathic short stature.  
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Figures legends 

 

Figure 1. Schematic representation of the PAR1 region showing the position of 

evolutionarily conserved non-coding DNA elements (CNEs), microsatellites and 

cosmids that were used for deletion mapping. 15 The SHOX gene is indicated in red 

and resides between 505.1 and 540.1 kb from the telomere (NCBI build 125, March 

2006). The CNEs and microsatellites used for deletion mapping are shown above the 

scale bar. CNEs are indicated in green; CNE4, CNE5 and CNE9 with a star symbol 

have shown enhancer activity in the developing chicken limb bud. 15 CNE3, CNE4, 

CNE5, CNE7 and CNE9 have previously shown enhancer activity in the chicken 

neural tube.15 Microsatellites are indicated in blue. The SHOX exons and the cosmids 

contig used for deletion mapping are shown below the scale bar. Cosmid 34F05 

(LLN0YCO3´M´34F05) includes the SHOX gene; Cosmid 51D11 

(LLN0YCO3'M'51D11) includes CNE6, CNE7 and markers DXYS10085; Cosmid 

61E05 (LLN0YCO3'M'61E05) includes CNE8 and markers DXYS10087 and 

DXYS10096; Cosmid 10D05 (LLN0YCO3'M'10D05) includes CNE9. TEL, telomere; 

CEN, centromere. 

 

Figure 2. Mapping of 63 PAR deletions in patients with ISS and LWS using the 

SALSA P018C and P018D-1 SHOX MLPA kit. Maximum deletion sizes are 

according to Ensemble Genome Browser coordinates (in kb) and are given on the 

right side. Blackened areas indicate the presence of two copies of the MLPA probe; 

white areas indicate the deletion of one allele; green areas indicate the presence of 

more than two copies of the MLPA probe; grey areas indicate the common minimal 

deletion interval in patients, and solidus areas indicate that the analyzed marker was 

non-informative. The ISS 24-33 and LWS 50-63 patients present cases with an intact 

SHOX region and downstream deletions. In the control population, two deletions of 

the locus at 685 Xptel, a duplication of locus at 818 Xptel, as well as two duplications 
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of the ASMT gene at 1711 Xptel were found. Note also that in one patient (no.9) a 

deletion of the STS gene was identified. 

Figure 3. FISH analyses of patients with idiopathic short stature  

The CNE9-containing cosmid 10D05 (LLN0YCO3'M'10D05) was used as a probe for 

FISH analysis. A) Metaphase chromosomes from a female control with FISH signals 

on both X chromosomes. B) Metaphase chromosomes from a female patient (no. 24) 

with a deletion on one of the chromosomes (arrows). C) Metaphase from a male 

control with FISH signals on both X and Y chromosomes. D) Metaphase from a male 

patient (no. 33) with a deletion on the Y chromosome (arrows) but not on the X 

chromosome. A reference probe residing on the long arm of the X-chromosome 

(cosmid P9) and a Y centromeric probe (DYZ3) were used as controls. The green 

signals indicate cosmids 10D05 and P9 and hybridised to opposite ends of the X 

chromosome; the red signal indicates probe DYZ3. 

 

Figure 4. Summary of the spectrum of different SHOX mutations in patients with ISS 

and LWS 

From all studied 735 unrelated patients with ISS, 31 are caused by SHOX-related 

deletions. Eight presented deletions proximal to SHOX (black) and 23 presented a 

SHOX gene deletion (hatched). A further five patients with ISS presented an 

intragenic mutation (white; 4 missense, 1 frameshift mutation; data not shown), which 

were initially excluded from the deletion study (total number of patients with ISS: 

740). In 67 unrelated LWS, 38 are caused by SHOX- related defects: 13 presented a 

deletion downstream of SHOX (black), 16 presented a SHOX gene deletion (hatched) 

and nine presented an intragenic mutation (white; 5 missense, 3 nonsense, 1 

frameshift mutation). The nine patients with intragenic mutations were initially 

excluded from the deletion study. In total, 4.9 % of patients with ISS and 56.7 % of 

patients with LWS are caused by point mutations or deletions of SHOX or its 

regulatory regions. 

 

Suppl. Figure 1. Summary of the fine mapping by SNP, Microsatellite, and MLPA 
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analysis in 7 ISS (no. 27-33) and 1 LWS case (no. 62) with smallest SHOX 

downstream deletions to pinpoint the affected CNEs. Numbers indicate PCR 

fragments containing SNPs, named according to their distance (kilobases) from the 

telomere (build 36.1). Blacked areas indicate the presence of two copies of MLPA 

probe or heterozygosity of a SNP marker; white areas indicate one copy of MLPA 

probe (deleted interval) or homozygosity of a SNP marker. 
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