

The effect of Spironolactone upon corticosteroid hormone metabolism in patients with early stage chronic kidney disease

Fabian Hammer, Nicola C Edwards, Beverly A Hughes, Rick Steeds, Charles J Ferro, Jonathan N Townend, Paul M Stewart

► To cite this version:

Fabian Hammer, Nicola C Edwards, Beverly A Hughes, Rick Steeds, Charles J Ferro, et al.. The effect of Spironolactone upon corticosteroid hormone metabolism in patients with early stage chronic kidney disease. Clinical Endocrinology, 2010, 73 (5), pp.566. 10.1111/j.1365-2265.2010.03832.x. hal-00552610

HAL Id: hal-00552610 https://hal.science/hal-00552610

Submitted on 6 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **Clinical Endocrinology**

The effect of Spironolactone upon corticosteroid hormone metabolism in patients with early stage chronic kidney disease

Journal:	Clinical Endocrinology
Manuscript ID:	CEN-2010-000061.R2
Manuscript Type/Office:	1 Original Article - UK/Europe
Date Submitted by the Author:	29-Apr-2010
Complete List of Authors:	Hammer, Fabian; University of Birmingham, School of Clinical and Experimental Medicine Edwards, Nicola C; University of Birmingham, Department of Cardiology Hughes, Beverly A; University of Birmingham, School of Clinical and Experimental Medicine Steeds, Rick; University of Birmingham, Department of Cardiology Ferro, Charles J; University of Birmingham, Department of Nephrology Townend, Jonathan N; University of Birmingham, Department of Cardiology Stewart, Paul; University of Birmingham, School of Clinical and Experimental Medicine
Key Words:	Spironolactone, Chronic kidney disease, Adrenal, Glucocorticoids, Mineralocorticoids, Hypertension
	·

The effect of Spironolactone upon corticosteroid hormone metabolism in patients with early stage chronic kidney disease

Fabian Hammer¹, Nicola C Edwards², Beverly A Hughes¹, Richard P Steeds², Charles J Ferro³, Jonathan N Townend², Paul M Stewart¹

School of Clinical and Experimental Medicine¹, University of Birmingham and Departments of Cardiology², & Nephrology³, University Hospitals Birmingham Foundation NHS Trust, Edgbaston, Birmingham, B15 2TT, UK.

Key words: chronic kidney disease, aldosterone, spironolactone, hypertension Word count: 2995

Please address all correspondence to

Paul M Stewart, MD FRCP FMedSci Professor of Medicine College of Medical and Dental Sciences University Hospital Birmingham Birmingham. B15 2TH United Kingdom.

 Telephone Number: +44 121 415 8708

 Fax Number:
 +44 121 415 8712

 E-mail:
 p.m.stewart@bham.ac.uk

ClinicalTrials.gov Identifier: NCT00291720

Funding source

F.H. is a Medical Research Council clinical research training fellow. This work was supported by a project grant from the British Heart Foundation.

Abstract

Context

Aldosterone has emerged as an important mediator of disease progression and mortality in patients with chronic heart and kidney disease (CKD). Despite the increasing use of mineralocorticoid receptor antagonists (MRAs) in these patients little is known about the effects on corticosteroid hormone secretion and metabolism.

Objective

To assess corticosteroid hormone secretion and metabolism in early stage CKD patients before and after spironolactone (Spiro).

Design

Randomised, double-blind, placebo-controlled interventional study.

Setting

Single tertiary referral center.

Patients

112 patients with stable stage 2/3 CKD.

Interventions

Patients were randomised to receive either Spiro 25mg once daily or placebo for 36 weeks.

Main Outcome measures

Plasma renin activity (PRA), angiotensin II (AngII) and steroid hormones were analysed by standard assays, urinary corticosteroid hormone metabolites (5α +5 β tetrahydro cortisol (5α +5 β -THF), TH–cortisone (THE), 3α 5 β -TH-aldosterone (TH-Aldo), 5α +5 β -TH-deoxycorticosterone (5α +5 β -TH-DOC), TH-11-desoxycortisol (THS)), were analysed by gas chromatography/mass spectrometry (GC/MS).

Results

Plasma aldosterone concentration was inversely correlated with eGFR (r= -0.331, p<0.001). Urinary 24h excretion of TH-Aldo was correlated with plasma Aldo concentration (PAC) (r=0.214, p<0.05) and diastolic blood pressure (BP) (r=0.212, p=<0.05), whereas total 24h urinary cortisol metabolite excretion was correlated with systolic BP (r=0.316, p<0.01). In addition, 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1 activity (urinary 5α+5β-THF) / THE) ratio) was correlated with PRA (r=0.277,p<0.01). Spiro treatment significantly reduced BP (123±11/76±7 vs 119±11/73±8 mmHg, p<0.01) despite RAAS induction, reflected by increased urinary 24h TH-Aldo excretion (17.6 (12,86) vs 26 (18,80) μ g/24h, p<0.05). By contrast,

Spiro had no effect on total urinary cortisol metabolite excretion, 11β -hydroxylase, 11β -HSD type 1 and 2 activity.

Conclusions

Aldo and cortisol are positively associated with BP suggesting that adrenal hyperactivity may in part explain the increased cardiovascular risk in patients with early end-stage CKD. Addition of Spiro had no effect on glucocorticoid metabolism or total 24h corticosteroid production.

a f Spir. Jotion.

Introduction

In chronic kidney disease (CKD) the renin-angiotensin-aldosterone system (RAAS) becomes progressively activated with decreasing kidney function ¹ and angiotensin II (AngII) and aldosterone (Aldo) have emerged as important drivers of both kidney disease progression and increased cardiovascular mortality ²⁻⁴. Consequently, RAAS inhibition by angiotensin converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB) remains the mainstay of treatment. However, RAAS inhibition by ACEi or ARBs is only partial and a recent study suggests that addition of the mineralocorticoid receptor antagonist (MRA) spironolactone (Spiro) in CKD patients already treated with an ACEi and ARB further reduces markers of renal disease progression ⁵. Similarly, the use of MRAs in heart failure patients in addition to established treatment regimens including ACEi and ARBs has been shown to dramatically improve survival ^{6, 7}.

One important mode of action of MRAs in CKD patients is by lowering blood pressure through blockade of renal MR in epithelial cells of the distal nephron. The MR has similar affinities for mineralocorticoids and glucocorticoids *in vitro*⁸ and is only protected from glucocorticoid activation by the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) which inactivates cortisol to cortisone. Reduced activity of 11β-HSD2 results in glucocorticoid mediated MR activation and has been described in selected patients with salt sensitive essential hypertension ^{9, 10}. In CKD patients 11β-HSD2 activity ^{11, 12} and expression ¹³ declines with progressively impaired renal function suggesting that in these patients blood pressure and renal damage may be partly driven by glucocorticoid induced MR activation. Therefore this mechanism provides a rationale for the incremental benefit of MRAs on lowering blood pressure in CKD patients.

Besides MR blockade, animal and *in vitro* studies also suggest that Spiro and its active metabolites can also inhibit steroidogenic enzymes including 11β-hydroxylase and thereby may impact on corticosteroid hormone synthesis ^{14, 15}. However, so far this has never been investigated in humans. In addition, studies in healthy subjects suggest that hippocampal MR may play a role in the modulation of hypothalamopituitary-adrenal (HPA) drive ^{16, 17} but so far this has never been demonstrated in patients on long-term low-dose Spiro treatment.

Here we studied corticosteroid hormone secretion and metabolism in CKD patients with mild-moderate renal impairment at baseline and following treatment with low

dose Spiro. We hypothesised that some of the beneficial effects of Spiro may relate to changes in cortisol secretion and/or metabolism.

Methods

Study design

The study protocol and subjects have been reported as part of an evaluation of the effect of Spiro on left ventricular mass and aortic stiffness in CKD patients ¹⁸. In brief, this was a single centre, prospective, double-blind, placebo controlled, randomised interventional trial of patients with early stage CKD of diverse aetiologies including glomerulonephritis (IgA nephropathy, nephrotic disease, focal segmental glomerular sclerosis) (53%), quiescent vasculitis (19%), adult polycystic kidney disease (8%), reflux (8%), calculi (4%) and others (8%) (Henoch-Schoenlein Purpura, sickle cell disease, sarcoidosis, nephrectomy). Patients had stage 2 (GFR 60-89 ml/min/1.73m²) (GFR was calculated using the 4 variable MDRD equation) or stage 3 CKD (GFR 30-59 ml/min/1.73m²) and evidence of kidney damage for \geq 3 months)¹⁹. All patients were treated with an ACE inhibitor and / or ARB for at least 6 months to maximally tolerated dose and had controlled blood pressure (mean daytime 24 hour ambulatory blood pressure monitoring <130/85 mmHg). 24 patients with CKD secondary to vasculitis were on a stable immunosuppressive treatment with glucocorticoids which was not altered during the study period. Patients were excluded if they had a history of diabetes, or symptomatic ischaemic or nonischaemic heart disease, peripheral vascular or cerebrovascular disease, renovascular disease, anaemia (<12g/dL) or previous documented hyperkalaemia (>5.5mmol/L).

A spironolactone dose of 25mg was chosen in this study as previously low dose spironolactone has been shown to be safe and clinical effective in patients with heart failure ⁷. All patients received a 4 week open label run-in phase of 25mg of spironolactone once daily (or alternate days if potassium levels were between 5.5 and 5.9 mmol/l), after which patients were randomised to continue treatment with 25 mg spironolactone or to placebo for a further 36 weeks. Patients were assessed at baseline (before the run in phase) and at the end of the study (week 40) with a clinical history and examination, 24 hour ambulatory blood pressure monitoring, and collection of a 24h urine sample. Venous blood samples were also collected after 30 minutes supine rest for routine hematology and biochemistry and measurement of plasma renin activity, aldosterone and angiotensin II.

During the open-label run-in phase, 1 patient developed serious hyperkalemia (potassium 6.5 mmol/l) and was withdrawn, 6 (5%) patients had potassium levels between 5.5 and 5.9 mmol/l and were switched to spironolactone on alternate days

Clinical Endocrinology

as per protocol. On blinded treatment, 4 patients had potassium levels between 5.5 and 5.9 mmol/l that required a dose reduction to alternate day treatment. After unblinding, two of these 4 patients were found to have received placebo. After randomization, no patients were withdrawn because of hyperkalemia, and there were no reported side effects, including gynecomastia or menstrual disturbances. The protocol was approved by South Birmingham Local Research Ethics Committee and all patients gave written informed consent.

Blood Pressure

Office brachial blood pressure was recorded with the subject lying supine after 10, 20 and 30 minutes in the non-dominant arm using a validated oscillometric sphygmomanometer (Dinamap® Procare, GE). In addition, all subjects underwent 24 hour ambulatory BP monitoring (Meditech® ABPM-04) at baseline and at week 40.

Biochemical assays

Plasma renin activity (PRA) was measured by an in-house antibody trapping technique in the presence of added excess renin substrate ²⁰ (coefficient of variation: 3.4%). An in-house radioimmunoassay was used for plasma angiotensin II as previously described ²¹. Angiotensin II was pre-extracted from plasma before assay (coefficient of variation: 10%). Plasma aldosterone was measured with a solid-phase (coated tube) radioimmunoassay kit supplied by Diagnostic Products (UK) Ltd (coefficient of variation: <8.3%).

Urinary steroid metabolites

Mineralocorticoids and glucocorticoids are metabolised by various enzymes and are excreted as metabolites in the urine. The main urinary metabolites of mineralo- and glucocorticoids including their precursors were measured by gas chromatography/mass spectrometry (GC/MS) as described previously ²². The sum of total cortisol metabolites (tetrahydrocortisol [THF], tetrahydrocortisone [THE], 5α-THF, α -cortolone, cortisone [E], cortisol [F], β -cortolone, β -cortol, and α -cortol) provides a reflection of cortisol secretion rate. The ratio of tetrahydrometabolites of cortisol (THF + 5 α -THF) to those of cortisone (THE) provides a reflection of 11 β -HSD1 activity when considered with the ratio of urinary free cortisol (UFF) to cortisone (UFE), which more accurately reflects renal 11β-HSD2 activity²². The ratios of cortols to cortolones and of 11β-hydroxy-etiocholanolone and 11β-hydroxyandrosterone combined to 11oxo-etiocholanolone also reflect 11 β -HSD1 activity ²³. The activities of 5 α - and 5 β -reductases can be inferred from measuring the ratio of 5 α -THF to THF and androsterone to etiocholanolone. 3 α 5 β -tetrahydro-aldosterone (TH-Aldo) is the main urinary aldosterone metabolite and reflects 24h aldosterone production. The activity of 11 β -hydroxylase can be inferred from measuring the ratio of total cortisol metabolites (see above) to tetrahydro-11-desoxycortisol (THS) ²⁴.

Statistical Analysis

Normally distributed data were expressed as means ± SD (unless stated). Non parametric data were expressed as median (interquartile range) and were log-transformed where applicable. Treatment groups were compared using t tests or chi-square tests (at baseline) and repeated measures analysis of variance (for changes over time). Correlations of non-parametric data were assessed by the Spearman's correlation coefficient.

Results

All 112 patients enrolled in this study had stage 2 or 3 CKD, were all on either ACEi or ARB treatment for more than 6 months and had normal office blood pressure levels (Table 1). There were no differences in blood pressure or gender distribution between the two groups. However, body weight and BMI was higher in the Spiro compared to the placebo group and in the Spiro group significantly more patients were treated with beta-blockers and statins compared to the placebo group (Table 1). As expected, at baseline patients on beta blockers had a significantly lower plasma renin activity (PRA) (median (interguartile range): 23 mU/l (8, 85) vs 82 mU/l (49, 185), p<0.001) and angiotensin II (AngII) levels (4.9 pmol/l (3.1, 8.3) vs 9.9 pmol/l (5.0, 23.1), p<0.05) compared to patients not taking beta-blockers. However by contrast, the plasma aldosterone concentration (PAC) was slightly but significantly higher in patients on beta-blocker treatment (222 pmol/l (152, 300) vs 166 pmol/l (108, 222), p<0.05) suggesting an alternative mechanism of Aldo release in addition to Angll. Analysis of urinary glucocorticoid and mineralocorticoid steroid hormone metabolites between patients on and off beta-blockers did not reveal significant differences suggesting that beta-blockers do not have a major influence on steroid hormone production or metabolism. Comparison of patients on ACEi vs ARB at baseline did not reveal any differences in PRA (64 mU/l (37, 133) vs 81 mU/l (25, 151), p=0.676), PAC (169 pmol/l (114, 247) vs 172 pmol/l (97, 238), p=0.627) or 24h urinary excretion of $3\alpha 5\beta$ -tetrahydro-aldosterone (TH-Aldo) (18.1 µg/24h (10.5, 26.8) vs 17.5 µg/24h (13.4, 25.4), p=0.984). However as expected, circulating AnglI levels were significantly lower in the ACEi compared to the ARB group (5.3 pmol/l (3.8, 10.5) vs 31.6 pmol/l (12.6, 72.7), p<0.001). No significant differences were found between males and females with regard to PRA, Angll, PAC or urinary TH-Aldo.

Total body weight and BMI were correlated with 24h total glucocorticoid excretion (r=0.407, p<0.001; r=0.296, p=0.003) but not with 5 α -reductase activity as assessed by urinary metabolite ratios (Etiocholanolone/Androsterone; 5 α -tetrahydro cortisol (5 α -THF)/THF). PAC levels were significantly correlated with 24h urinary TH-Aldo excretion (r=-0.214; p=0.036) and furthermore showed a significant negative association with the estimated glomerular filtration rate (eGFR) (r= -0.331, p<0.001). However, 24h urinary TH-Aldo excretion was not associated with eGFR.

Mean diastolic 24h ambulatory blood pressure (24h ABP) showed a significant correlation with 24h urinary TH-Aldo excretion (**Figure 1a**) but not with PAC. Moreover, after adjusting for age, BMI and eGFR, systolic 24h ABP was significantly

associated with 24h urinary total cortisol (F) metabolite excretion at baseline (**Figure 1b**). No correlation was found for systolic (r=0.156, p=0.1) or diastolic blood pressure (r=0.105, p=0.271), TH-Aldo (r=-0.112, p=0.284), eGFR (r=-0.097, p=0.313) and the aldosterone-renin-ratio. Moreover, neither urinary (tetrahydro-cortisol (THF) + 5 α -THF / tetrahydrocortisone (THE) ratio) reflecting global 11 β -hydroxysteroid dehydrogenase type 1 (11 β -HSD1) activity, nor urinary free cortisol / cortisone (UFF/UFE) reflecting 11 β -HSD type 2 activity were associated with blood pressure or eGFR (**Table 2**). However, PRA was positively associated with the urinary THF+5 α THF/THE ratio (**Figure 2**).

24 patients were on stable glucocorticoid treatment for their underlying kidney disease throughout the study period. However, inclusion or exclusion of glucocorticoid treated patients did not have a significant effect on the analysis of steroid hormone metabolites (total GC excretion, TH-Aldo, enzymatic activities) between the placebo and Spiro group. Treatment with Spiro compared to placebo significantly reduced both systolic and diastolic 24h ABP despite a significant increase in circulating PRA, AngII and aldosterone levels (**Table 2**). Induction of the renin angiotensin aldosterone system (RAAS) was reflected by a significant increase in 24h urinary TH-Aldo excretion, consistent with an increased aldosterone synthase (AS) activity (**Table 2**). By contrast, Spiro had no effect on global 11β-hydroxylase, 11β-HSD type 1 and 2 activity or total cortisol metabolite excretion as assessed by 24h urinary steroid hormone excretion.

Discussion

In this study we assessed corticosteroid hormone secretion and metabolism in CKD patients on stable treatment with ACEi or ARB before and after addition of Spiro by means of urinary steroid hormone metabolite analysis which allows assessment of cumulative 24h steroid hormone production and, secondly, an estimation of steroid hormone enzyme activities.

As expected, 24h urinary TH-Aldo excretion correlated with PAC although this association was weak. A possible explanation for this weak association could be that the 24h urine collection for TH-Aldo was performed on a different day than blood sampling for circulating aldosterone was done. Additionally, Aldo levels are stimulated by ACTH during stress such as a venous puncture which is likely to vary between individuals. Circulating Aldo concentrations have previously been shown to correlate with blood pressure in black hypertensive ²⁵ and PCOS ²⁶ patients. However, we did not find a correlation of PAC with systolic or diastolic 24h ABP. In this study lack of association might be explained by the interfering effects of ACEi and ARB on the RAAS and variable stress induced PAC fluctuations during blood sampling. Nevertheless, cumulative 24h urinary TH-Aldo excretion reflecting 24h Aldo production was indeed positively correlated with 24h blood pressure as well as PAC. It was recently reported that Aldo levels in CKD patients treated with an ACEi are lower compared to ARB treated patients ²⁷. However, in our study we did not find any significant differences in PAC or urinary TH-Aldo excretion, suggesting that ACEi and ARBs have a similar effect on Aldo secretion.

Total urinary 24h cortisol metabolite excretion is a well established measure to assess daily cortisol production rate and thus reflects activity of the hypothalamopituitary-adrenal (HPA) axis. In agreement with previous studies, we found total glucocorticoid metabolite excretion to be correlated with total body weight and BMI ²⁸. Furthermore, 24h glucocorticoid secretion rate was positively correlated with 24h systolic blood pressure after correction of potential confounders such as age, BMI, and eGFR, suggesting that increased total glucocorticoid production as a result of increased HPA activity is implicated in blood pressure regulation in CKD patients. Although the vast majority of patients with Cushing's syndrome exhibit hypertension ²⁹, increased 24h cortisol production within the physiologic range has to our knowledge not been associated with blood pressure so far. Increased HPA-drive may therefore be a novel risk factor in CKD patients by driving blood pressure levels. These findings are in line with a recent report in which high yet within the normal range serum cortisol levels were found to be associated with an adverse outcome in heart failure patients ³⁰. Further clinical studies are urgently needed to better define and understand the mechanisms of high-normal as opposed to low-normal cortisol levels on blood pressure and ultimately cardiovascular risk in these patients.

Previous studies on glucocorticoid metabolism in CKD patients suggest that 11 β -HSD2 activity ^{11, 12} and expression ¹³ declines with reduced GFR which in turn may lead to increased MR activation by glucocorticoids leading to increased sodium retention and blood pressure. In our study we did not find a correlation between renal function and the UFF / UFE ratio reflecting renal 11 β -HSD2 activity. This is most likely explained by the relatively mild impairment in renal function in our cohort, whereas cohorts in previous studies included patients with more severe renal impairment as well as patients on haemodialysis.

Following Spiro treatment all components of the RAAS were significantly upregulated including PRA, AngII and PAC levels. Consistent with a RAAS activating effect, total 24h urinary TH-Aldo excretion was also significantly increased in the Spiro but not the placebo group. Our findings are in good agreement with a recent report on the neurohormonal effects of Spiro in patients with congestive heart failure and on stable ACEi treatment, which showed increased AngII and Aldo levels following Spiro treatment ³¹. These findings suggest that MR blockade by Spiro results in a compensatory stimulation of the RAAS despite tonic inhibition by ACEi and ARBs. However, the degree of compensation inflicted by Spiro is not complete as both diastolic and systolic 24h ABP were reduced compared to baseline.

Previous reports suggested that Spiro and its metabolites exert direct inhibitory effects on steroidogenic enzymes ^{14, 15}. Here, using urinary steroid hormone metabolites as a surrogate Spiro did not exert an obvious direct inhibitory effect on 11 β -hydroxylase. The most likely explanation for this finding may be that the Spiro dose used in this study was too low to exert a measurable effect on 11 β -hydroxylase compared to previous studies.

However, by contrast, we found an increased aldosterone synthase (AS) activity following Spiro treatment. AS is the final enzyme involved in Aldo production by converting 11-deoxycorticosterone (DOC) into aldosterone in the *zona glomerulosa* and is regulated by circulating AngII which was also significantly increased following Spiro. This finding is consistent with *in vitro* studies which show increased expression of AS following AngII treatment ³².

Page 13 of 23

Clinical Endocrinology

Compared to baseline, Spiro treatment did not alter total urinary 24h cortisol metabolite excretion in this study. The main conclusion that can be drawn from this observation is that MR blockade does not seem to interfere with the negative feedback mechanism of cortisol on the HPA axis. Although the hypothalamus mainly expresses the glucocorticoid receptor (GR) but not the mineralocorticoid receptor (MR) ³³, the hippocampus readily expresses both receptors and is implicated in HPA axis modulation ^{34, 35}. It is therefore conceivable that the negative feedback of cortisol is not solely mediated through the GR, particularly as the MR in vitro shows a 10 fold higher affinity for cortisol than the GR³⁶. A number of studies have addressed the role of the MR in mediating negative cortisol feedback. Most studies have shown a short term stimulatory effect on the HPA axis following canrenoate infusion ³⁷⁻³⁹ or spironolactone treatment ^{16, 17}. However, a recent study assessing the effects of the alucocorticoid receptor (GR) antagonist RU28486 and Spiro alone or in combination on the HPA axis ⁴⁰ showed that RU28486 and Spiro by themselves had no effect but in combination showed a significant compensatory activation of the HPA axis. It is difficult to compare the findings of these studies with our own results for a number of reasons. First of all we assessed HPA axis activity indirectly by means of urinary steroid metabolite excretion. Moreover, treatment duration and doses of MRAs were considerably different. Our study does not support a major effect of low dose Spiro on HPA axis modulation but equally does not rule out more subtle changes.

Indirect analysis of global 11β-HSD type 1 and 2 activity by means of urinary steroid hormone metabolite ratios did not reveal any significant differences following Spiro treatment. It has been suggested that the ratio of urinary free cortisol to free cortisone (UFF/UFE) more precisely reflects renal 11β-HSD2 activity than the tetrahydro-cortisol (THF) + 5α-THF / tetrahydrocortisone (THE) ratio which is a better surrogate marker for global 11β-HSD1 activity ^{22, 41}. In the kidney the enzyme 11β-HSD2 protects the MR from illicit cortisol binding and thereby ensures Aldo specificity. Loss of function mutations are the underlying cause of severe hypertension and hypokalaemia in AME patients, whereas polymorphisms in HSD11B2 encoding for 11β-HSD2 have been associated with salt-sensitive essential hypertension ²⁹. Spiro did not result in downregulation of 11β-HSD type 2 activity, which would allow cortisol to activate the MR and thereby lead to sodium and fluid retention, suggesting that only RAAS activation but not modulation of 11β-HSD2 in the kidney is involved in compensating MR antagonism.

Interestingly, global 11β-HSD1 activity was correlated with PRA in this study. We are not aware of a direct interaction of 11β-HSD1 activity and PRA but one could speculate that 11β -HSD1 activity and PRA are regulated by a common factor.

In summary, total 24h production of aldosterone and cortisol are positively associated with BP in CKD patients suggesting that adrenal hyperactivity may contribute to the hypertension and increased cardiovascular risk. Addition of Spiro resulted in compensatory RAAS activation but did not affect glucocorticoid production or metabolism.

η cardis ation but .

References

- 1 Hillege, H.L., Girbes, A.R., de Kam, P.J., Boomsma, F., de Zeeuw, D., Charlesworth, A., Hampton, J.R. & van Veldhuisen, D.J. (2000) Renal function, neurohormonal activation, and survival in patients with chronic heart failure. *Circulation*, **102**, 203-210.
- 2 Go, A.S., Chertow, G.M., Fan, D., McCulloch, C.E. & Hsu, C.Y. (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. *N.Engl.J.Med.*, **351**, 1296-1305.
- 3 Mann, J.F., Gerstein, H.C., Pogue, J., Lonn, E. & Yusuf, S. (2002) Cardiovascular risk in patients with early renal insufficiency: implications for the use of ACE inhibitors. *Am.J.Cardiovasc.Drugs*, **2**, 157-162.
- 4 Tonelli, M., Wiebe, N., Culleton, B., House, A., Rabbat, C., Fok, M., McAlister, F. & Garg, A.X. (2006) Chronic kidney disease and mortality risk: a systematic review. *J.Am.Soc.Nephrol.*, **17**, 2034-2047.
- 5 Tylicki, L., Rutkowski, P., Renke, M., Larczynski, W., Aleksandrowicz, E., Lysiak-Szydlowska, W. & Rutkowski, B. (2008) Triple pharmacological blockade of the renin-angiotensin-aldosterone system in nondiabetic CKD: an open-label crossover randomized controlled trial. *Am.J.Kidney Dis.*, **52**, 486-493.
- 6 Pitt, B., Remme, W., Zannad, F., Neaton, J., Martinez, F., Roniker, B., Bittman, R., Hurley, S., Kleiman, J. & Gatlin, M. (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. *N.Engl.J.Med.*, **348**, 1309-1321.
- 7 Pitt, B., Zannad, F., Remme, W.J., Cody, R., Castaigne, A., Perez, A., Palensky, J. & Wittes, J. (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. *N.Engl.J.Med.*, **341**, 709-717.
- 8 Arriza, J.L., Weinberger, C., Cerelli, G., Glaser, T.M., Handelin, B.L., Housman, D.E. & Evans, R.M. (1987) Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. *Science*, **237**, 268-275.
- Agarwal, A.K., Giacchetti, G., Lavery, G., Nikkila, H., Palermo, M., Ricketts,
 M., McTernan, C., Bianchi, G., Manunta, P., Strazzullo, P., Mantero, F., White,
 P.C. & Stewart, P.M. (2000) CA-Repeat polymorphism in intron 1 of HSD11B2
 : effects on gene expression and salt sensitivity. *Hypertension*, **36**, 187-194.
- 10 Lovati, E., Ferrari, P., Dick, B., Jostarndt, K., Frey, B.M., Frey, F.J., Schorr, U. & Sharma, A.M. (1999) Molecular basis of human salt sensitivity: the role of the 11beta-hydroxysteroid dehydrogenase type 2. *J.Clin.Endocrinol.Metab*, **84**, 3745-3749.
- 11 N'Gankam, V., Uehlinger, D., Dick, B., Frey, B.M. & Frey, F.J. (2002) Increased cortisol metabolites and reduced activity of 11beta-hydroxysteroid dehydrogenase in patients on hemodialysis. *Kidney Int.*, **61**, 1859-1866.
- 12 Whitworth, J.A., Stewart, P.M., Burt, D., Atherden, S.M. & Edwards, C.R. (1989) The kidney is the major site of cortisone production in man. *Clin.Endocrinol.(Oxf)*, **31**, 355-361.
- 13 Quinkler, M., Zehnder, D., Lepenies, J., Petrelli, M.D., Moore, J.S., Hughes, S.V., Cockwell, P., Hewison, M. & Stewart, P.M. (2005) Expression of renal 11beta-hydroxysteroid dehydrogenase type 2 is decreased in patients with impaired renal function. *Eur.J.Endocrinol.*, **153**, 291-299.
- 14 Cheng, S.C., Suzuki, K., Sadee, W. & Harding, B.W. (1976) Effects of spironolactone, canrenone and canrenoate-K on cytochrome P450, and

11beta- and 18-hydroxylation in bovine and human adrenal cortical mitochondria. *Endocrinology*, **99**, 1097-1106.

- 15 Greiner, J.W., Kramer, R.E., Jarrell, J. & Colby, H.D. (1976) Mechanism of action of spironolactone on adrenocortical function in guinea pigs. *J.Pharmacol.Exp.Ther.*, **198**, 709-715.
- 16 Heuser, I., Deuschle, M., Weber, B., Stalla, G.K. & Holsboer, F. (2000) Increased activity of the hypothalamus-pituitary-adrenal system after treatment with the mineralocorticoid receptor antagonist spironolactone. *Psychoneuroendocrinology*, **25**, 513-518.
- 17 Young, E.A., Lopez, J.F., Murphy-Weinberg, V., Watson, S.J. & Akil, H. (1998) The role of mineralocorticoid receptors in hypothalamic-pituitary-adrenal axis regulation in humans. *J.Clin.Endocrinol.Metab*, **83**, 3339-3345.
- 18 Edwards, N.C., Steeds, R.P., Stewart, P.M., Ferro, C.J. & Townend, J.N. (2009) Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. *J.Am.Coll.Cardiol.*, **54**, 505-512.
- 19 Sarnak, M.J., Levey, A.S., Schoolwerth, A.C., Coresh, J., Culleton, B., Hamm, L.L., McCullough, P.A., Kasiske, B.L., Kelepouris, E., Klag, M.J., Parfrey, P., Pfeffer, M., Raij, L., Spinosa, D.J. & Wilson, P.W. (2003) Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. *Circulation*, **108**, 2154-2169.
- 20 Millar, J.A., Leckie, B.J., Morton, J.J., Jordan, J. & Tree, M. (1980) A microassay for active and total renin concentration in human plasma based on antibody trapping. *Clin.Chim.Acta*, **101**, 5-15.
- 21 Morton, J.J. & Webb, D.J. (1985) Measurement of plasma angiotensin II. *Clin.Sci.(Lond)*, **68**, 483-484.
- 22 Palermo, M., Shackleton, C.H., Mantero, F. & Stewart, P.M. (1996) Urinary free cortisone and the assessment of 11 beta-hydroxysteroid dehydrogenase activity in man. *Clin.Endocrinol.(Oxf)*, **45**, 605-611.
- 23 Walker, E.A., Ahmed, A., Lavery, G.G., Tomlinson, J.W., Kim, S.Y., Cooper, M.S., Ride, J.P., Hughes, B.A., Shackleton, C.H., McKiernan, P., Elias, E., Chou, J.Y. & Stewart, P.M. (2007) 11beta-Hydroxysteroid Dehydrogenase Type 1 Regulation by Intracellular Glucose 6-Phosphate Provides Evidence for a Novel Link between Glucose Metabolism and Hypothalamo-Pituitary-Adrenal Axis Function. *J Biol Chem*, **282**, 27030-27036.
- Freel, E.M., Ingram, M., Friel, E.C., Fraser, R., Brown, M., Samani, N.J., Caulfield, M., Munroe, P., Farrall, M., Webster, J., Clayton, D., Dominiczak, A.F., Davies, E. & Connell, J.M. (2007) Phenotypic consequences of variation across the aldosterone synthase and 11-beta hydroxylase locus in a hypertensive cohort: data from the MRC BRIGHT Study. *Clin Endocrinol (Oxf)*, **67**, 832-838.
- 25 Kidambi, S., Kotchen, J.M., Grim, C.E., Raff, H., Mao, J., Singh, R.J. & Kotchen, T.A. (2007) Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. *Hypertension*, **49**, 704-711.
- Cascella, T., Palomba, S., Tauchmanova, L., Manguso, F., Di Biase, S.,
 Labella, D., Giallauria, F., Vigorito, C., Colao, A., Lombardi, G. & Orio, F.
 (2006) Serum aldosterone concentration and cardiovascular risk in women
 with polycystic ovarian syndrome. *J.Clin.Endocrinol.Metab*, **91**, 4395-4400.
- 27 Haddad, N., Rajan, J., Nagaraja, H.N., Agarwal, A.K. & Hebert, L.A. (2007) Usual ACE inhibitor therapy in CKD patients is associated with lower plasma

 aldosterone levels than usual angiotensin receptor blocker therapy. <i>Kidney</i> <i>Blood Press Res.</i>, 30, 299-305. Andrew, R., Gale, C.R., Walker, B.R., Seckl, J.R. & Martyn, C.N. (2002) Glucocorticol metabolism and the Metabolic Syndrome: associations in an elderly cohort. <i>Exp. Clin. Endocrinol. Diabetes</i>, 110, 284-290. Hammer, F. & Stewart, P.M. (2006) Cortisol metabolism in hypertension. <i>Best. Tract. Res. Clin. Endocrinol. Metab.</i> 20, 337-353. Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Allolio, B., Ertl, G., Angermann, C.E. & Stork, S. (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghern, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am. Coll. Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainee, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-Il-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineraloc	1		
 Bload Press Res., 30, 299-305. Andrew, R., Gale, C.R., Walker, B.R., Seckl, J.R. & Martyn, C.N. (2002) Glucocorticoid metabolism and the Metabolic Syndrome: associations in an elderly cohort. <i>Exp. Clin. Endocrinol. Diabetes</i>, 110, 284-290. Hammer, F. & Stewart, P.M. (2006) Cortisol metabolism in hypertension. <i>Best. Pract. Res Clin. Endocrinol. Metab.</i> 20, 337-353. Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Allolio, B., Ertl, G., Angermann, C.E. & Stork, S. (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghem, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am. Coll. Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 103, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res.Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineratocortical (receptor relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603.<td>2</td><td></td><td>aldosterone levels than usual angiotensin receptor blocker therapy. <i>Kidney</i></td>	2		aldosterone levels than usual angiotensin receptor blocker therapy. <i>Kidney</i>
 Andrew, R., Gale, C. R., Walker, B.R., Seckl, J.R. & Martyn, C.N. (2002) Glucocortiod metabolism and the Metabolic Syndrome: associations in an elderly cohort. <i>Exp. Clin. Endocrinol. Diabetes</i>, 110, 284-290. Hammer, F. & Stewart, P.M. (2006) Cortisol metabolism in hypertension. <i>Best. Pract. Res. Clin. Endocrinol. Metab.</i> 20, 337-353. Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Allolio, B., Ertl, G., Angermann, C.E. & Stork, S. (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghern, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am. Coll. Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 37, 596-603. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr.Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pitultary-adrenocortical axis. <i>Endocr.Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the hypothalamus-pituliary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58	3		Blood Press Res., 30 , 299-305.
 Glucocorticoid metabolism and the Metabolic Syndrome: associations in an elderly cohort. <i>Exp. Clin. Endocrinol. Diabetes</i>, 110, 284-290. Hammer, F. & Stewart, P.M. (2006) Cortisol metabolism in hypertension. <i>Best. Pract. Res. Clin. Endocrinol. Metab.</i> 20, 337-353. Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Alloio, B., Ertl, G., Angermann, C.E. & Stork, S. (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghem, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am. Coll. Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res.Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhii, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr.Rev.</i>, 19, 269-301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pitultary-adrenocortical axis. <i>Endocr.Rev.</i>, 19, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario	4	28	Andrew, R., Gale, C.R., Walker, B.R., Seckl, J.R. & Martyn, C.N. (2002)
 elderly cohort. <i>Exp. Clin:Endocrinol.Diabetes</i>, 110, 284-290. Hammer, F. & Stewart, P.M. (2006) Cortisol metabolism in hypertension. <i>Best Pract Res. Clin. Endocrinol. Metab</i>, 20, 337-353. Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Alloio, B., Ertl, G., Angermann, C.E. & Stork, S. (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghem, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am. Coll.Cardiol</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res.Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oltzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghiyo, E. (2001) Mineralocorticoid receptor <i>Mol.Endocri</i>	5		Glucocorticoid metabolism and the Metabolic Syndrome: associations in an
 Hammer, F. & Stewart, P.M. (2006) Cortisol metabolism in hypertension. <i>Best.Pract.Res.Clin.Endocrinol.Metab</i>, 20, 337-353. Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Allolio, B., Erlt, G., Angermann, C.E. & Stork, S. (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghem, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am.Coll.Cardiol</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res.Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr.Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic, plutiary-adrenocortical axis. <i>Endocr.Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid canrenoate enhances secretory activity of he hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrino</i>	6 7		elderly cohort Exp Clin Endocrinol Diabetes 110 284-290
 Patimier, P. & Stewart, P.M. (2007) Contsol metabolism in projectifision. Best.Pract.Res.Clin.Endocrinol.Metab, 20, 337-353. Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Alloio, B., Ertl, G., Angermann, C.E. & Stork, S. (2007) Complementary and incremental mortality risk prediction by cortisol and addosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghem, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneticial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am. Coll.Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive addosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in marmalian brains: inter-species and intra-species differences. <i>Brain Res.Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oltzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr.Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr.Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a ben	/ 0	20	Hammer E & Stowart D M (2006) Cartial metabolism in hyportanaion
 Best, Pract. Hes. Cliff. Endocrinol. Metalo, 20, 337-333. Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Allolio, B., Ertl, G., Angermann, C.E. & Stork, S. (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghem, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>JAm Coll. Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res.Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr.Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr.Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoi, S., G	0	29	Hammer, F. & Stewart, P.M. (2006) Contisol metabolism in hypertension.
 Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Allolo, B., Erll, G., Angermann, C. E. & Stork, S. (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghern, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am.Coll. Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhi, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr.Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr.Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghiyo, E. (2001) Mineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009	3 10	•••	Best. Pract. Res. Clin. Endocrinol. Metab, 20, 337-353.
 Angermann, C.E. & Stork, S. (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghern, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am.Coll.Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269-301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralcoorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endo</i>	10	30	Guder, G., Bauersachs, J., Frantz, S., Weismann, D., Allolio, B., Ertl, G.,
 risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i>, 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghem, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am. Coll. Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269-301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocotical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid acrenal function in humans. <i>J. Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimiaralocorticoid acrenoate enhances secretory activity of the hypothalamus-pituitary-adrenocortical datereal function in humans. <i>J. Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid antegonist,	12		Angermann, C.E. & Stork, S. (2007) Complementary and incremental mortality
 115, 1754-1761. Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghem, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am.Coll.Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oltzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269-301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol. Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid advenal function in humans. <i>J.Clin. Endocrinology</i>, 58, 570-574. Gortoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of carrenoate, a mineralocorticoid caneronate enhances secretory activity of the hypothalamus-pituitary-adrenal activity of the hypothalamus-pituitary-darenal function in humans. <i>J.Clin. Endocrinol.</i>, 50, 576-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arv	13		risk prediction by cortisol and aldosterone in chronic heart failure. <i>Circulation</i> ,
 Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghem, W., Robert, A., Ahn, S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am. Coll.Cardiol.</i>, 40, 1596-1661. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pitulitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol. M.</i>, Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocr</i>	14		115 , 1754-1761.
 S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. <i>J.Am.Coll. Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properites of the mineralcorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary	15	31	Rousseau, M.F., Gurne, O., Duprez, D., Van Mieghem, W., Robert, A., Ahn,
 spironolactone in severe congestive heart failure: results from the RÅLES neurohormonal substudy. <i>J.Am. Coll.Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res.Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oltzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr.Rev.</i>, 19, 269-301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr.Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticol. 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Bing, J. (2001) Mineralocorticoid receptor blockade by carrenoate increases bot spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid cantenoticoid cantenoate increases bot spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Rev.</i>, 19, 4616-4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol nobese men. <i>J.Clin.Endocrinol.Metab</i>. 	16		S., Galanti, L. & Ketelslegers, J.M. (2002) Beneficial neurohormonal profile of
 neurohormonal substudy. <i>J.Am.Coll.Cardiol.</i>, 40, 1596-1601. Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-Il-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in marmalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid addrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349.<td>17</td><td></td><td>spironolactone in severe concestive heart failure: results from the RALES</td>	17		spironolactone in severe concestive heart failure: results from the RALES
 Bird, I.M., Hanley, N.A., Word, R.A., Mathis, J.M., McCarthy, J.L., Mason, J.I. & Rainey, W.E. (1993) Human NCI-H295 adrencortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulat	18		neurohormonal substudy. J.Am.Coll.Cardiol., 40, 1596-1601.
 & Rainey, W.E. (1993) Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	19	32	Bird I M Hanley N A Word B A Mathis J M McCarthy J J Mason J J
 andel for angiotensin-II-responsive aldosterone secretion. <i>Endocrinology</i>, 133, 1555-1561. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mamalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269-301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by carrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid carrenoate enhances secretory activity of the hypothalamus-pituitary-adrenoate enhances neuroate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616-4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. 	20	02	& Bainey, W.F. (1993) Human NCI-H295 adrenocortical carcinoma cells: a
 133, 1555-1. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res. Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269-301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralcoorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by carrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid carrenoate enhances secretory activity of the hypothalamus-pituitary-adrenocortical antagonist, on the activity of the hypothalamus-pituitary-adrenocortical antagonist, on the activity of the hypothalamus-pituitary-adrenocortical antagonist, on the activity of the hypothalamus-pituitary-adrenol. <i>Metab</i>, 87, 4616-4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisol-cortisol-cortisol-shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	22		model for angiotensin-Il-responsive aldosterone secretion. Endocrinology
 130, 1303-1301. Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. <i>Brain Res.Rev.</i>, 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr.Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr.Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinololog</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid raprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obses men. <i>J.Clin.Endocrinol.Metab.</i> Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349.<!--</td--><td>23</td><td></td><td></td>	23		
 Signification of the species of the sp	24	22	Drugo, C. D. (2009) Destructed entergony of expression of the corticesteroid
 deteptor genes in mammalan brains. Inter-species and intra-species differences. Brain Res. Rev., 57, 596-605. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. Endocr. Rev., 19, 269-301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr. Rev., 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J. Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid natagonist, on the activity of the hypothalamus-pituitary-adrenocortical natagonist, on the activity of the hypothalamus-pituitary-adrenocortical, a mineralocorticoid natagonist, on the activity of the hypothalamus-pituitary-adrenocortical, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenolocorticoid, antagonist, on the activity of the hypothalamus-pituitary-adrenolocorticoid stategonist, on the activity of the hypothalamus-pituitary-adrenolocorticoid	25	33	Fryce, C.n. (2006) Fostilatal onlogeny of expression of the control steroid
 differences. <i>Brain Hes. Hev.</i>, 57, 596-505. de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr. Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J. Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of aparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	26		differences Rusin Res Rev 57, 500,005
 de Kloet, E.H., Vreugdenni, E., Oitzl, M.S. & Joels, M. (1998) Brain corticosteroid receptor balance in health and disease. <i>Endocr.Rev.</i>, 19, 269- 301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr.Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of aparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	27	<u> </u>	differences. Brain Res. Rev., 57, 596-605.
 corticosteroid receptor balance in health and disease. <i>Endocr.Rev.</i>, 19, 269-301. Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr.Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary-adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616-4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisol-cortisol-cortisol-shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	28	34	de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S. & Joels, M. (1998) Brain
 301. 35 Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr.Rev.</i>, 12, 118-134. 36 Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. 37 Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. 38 Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary-adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. 39 Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616-4620. 40 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> 41 Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticid excess. A defect in the cortisol-cortisol-cortisol-cortisol-cortisol-cortisol-cortisol-cortisol-cortisol-cortisol-cortisol-shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	29		corticosteroid receptor balance in health and disease. Endocr. Rev., 19, 269-
 Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol. Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin. Endocrinol. Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	31		301.
 regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr. Rev.</i>, 12, 118-134. 36 Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol. Endocrinol.</i>, 7, 597-603. 37 Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by carrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin. Endocrinol. Metab</i>, 86, 3176-3181. 38 Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary-adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. 39 Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616-4620. 40 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> 41 Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	32	35	Jacobson, L. & Sapolsky, R. (1991) The role of the hippocampus in feedback
 118-134. Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary-adrenocortical (HPA) axis in humans. <i>J.Clin.Endocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616-4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	33		regulation of the hypothalamic-pituitary-adrenocortical axis. <i>Endocr.Rev.</i> , 12 ,
 36 Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F. & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. 37 Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. 38 Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. 39 Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. 40 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. 41 Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	34		118-134.
 & Damm, K. (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	35	36	Rupprecht, R., Arriza, J.L., Spengler, D., Reul, J.M., Evans, R.M., Holsboer, F.
 mineralocorticoid receptor: relationship to the glucocorticoid receptor. <i>Mol.Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary- adrenzolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	36		& Damm, K. (1993) Transactivation and synergistic properties of the
 <i>Mol. Endocrinol.</i>, 7, 597-603. Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	37		mineralocorticoid receptor: relationship to the alucocorticoid receptor.
 Arvat, E., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, L., Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Bodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	30 30		<i>Mol.Endocrinol.</i> , 7 , 597-603.
 Maccario, M., Camanni, F. & Ghigo, E. (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary- alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	40	37	Arvat, F., Maccagno, B., Giordano, R., Pellegrino, M., Broglio, F., Gianotti, I.,
 blockade by carrenoate increases both spontaneous and stimulated adrenal function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	41	0.	Maccario M Camanni E & Ghigo E (2001) Mineralocorticoid recentor
 discrete by callection in the more activity of the hypothalamus and stimulated adtential function in humans. <i>J.Clin.Endocrinol.Metab</i>, 86, 3176-3181. 38 Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary-adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. 39 Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616-4620. 40 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. 59 41 Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	42		blockade by carrenoate increases both spontaneous and stimulated adrenal
 Hunchon In Humans. J. Clin. Endocrinol. Metab., 50, 3170-3181. Dodt, C., Kern, W., Fehm, H.L. & Born, J. (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	43		function in humans. <i>I Clin Endogrinal Match</i> 86 , 2176, 2191
 45 38 Dout, C., Kerri, W., Perrin, H.L. & Born, J. (1993) Antimineraloconticoid 46 canrenoate enhances secretory activity of the hypothalamus-pituitary- 47 adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. 48 39 Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on 50 the activity of the hypothalamus-pituitary-adrenal axis is abolished by 51 alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 40 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) 55 Combined Receptor Antagonist Stimulation of the HPA axis test identifies 57 impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> 59 41 Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	44	20	Dodt C. Korn W. Echm H. & Born J. (1002) Antiminoral continuid
 46 Canrenoate enhances secretory activity of the hypothalamus-pitultary- adrenocortical (HPA) axis in humans. <i>Neuroendocrinology</i>, 58, 570-574. 48 39 Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. 40 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. 41 Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	45	30	Dout, C., Kein, W., Feinin, H.L. & Doni, J. (1995) Antimmeratoconticolo
 adrenocortical (HPA) axis in numans. <i>Neuroendocrinology</i>, 58, 570-574. Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616-4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	46		canrenoate enhances secretory activity of the hypothalamus-pitultary-
 Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E. (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	47	~~	adrenocortical (HPA) axis in numans. <i>Neuroendocrinology</i> , 58 , 570-574.
 (2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. 40 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. 59 41 Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	40 29	39	Grottoli, S., Giordano, R., Maccagno, B., Pellegrino, M., Ghigo, E. & Arvat, E.
 the activity of the hypothalamus-pituitary-adrenal axis is abolished by alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616- 4620. 40 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	50		(2002) The stimulatory effect of canrenoate, a mineralocorticoid antagonist, on
 alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i>, 87, 4616-4620. 40 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab</i>. 41 Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	51		the activity of the hypothalamus-pituitary-adrenal axis is abolished by
 4620. 40 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	52		alprazolam, a benzodiazepine, in humans. <i>J.Clin.Endocrinol.Metab</i> , 87 , 4616-
 Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009) Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	53		4620.
 Combined Receptor Antagonist Stimulation of the HPA axis test identifies impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	54	40	Mattsson, C., Reynolds, R.M., Simonyte, K., Olsson, T. & Walker, B.R. (2009)
 impaired negative feedback sensitivity to cortisol in obese men. <i>J.Clin.Endocrinol.Metab.</i> Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	55		Combined Receptor Antagonist Stimulation of the HPA axis test identifies
<i>J.Clin.Endocrinol.Metab.</i> <i>J.Clin.Endocrinol.Metab.</i> <i>Stewart</i> , P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) <i>Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-</i> <i>cortisone shuttle. J.Clin.Invest</i> , 82 , 340-349.	30 57		impaired negative feedback sensitivity to cortisol in obese men.
 41 Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards, C.R. (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i>, 82, 340-349. 	58		J.Clin.Endocrinol.Metab.
60 Syndrome of apparent mineralocorticoid excess. A defect in the cortisol- cortisone shuttle. <i>J.Clin.Invest</i> , 82 , 340-349.	59	41	Stewart, P.M., Corrie, J.E., Shackleton, C.H. & Edwards. C.R. (1988)
cortisone shuttle. <i>J.Clin.Invest</i> , 82 , 340-349.	60		Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-
			cortisone shuttle. J.Clin.Invest, 82, 340-349.

Table 1. Patient characteristics at baseline

	Placebo (n=56)	Spironolactone (n=56)
Male (%)	33 (59)	32 (57)
Age (years)	53 ± 12	54 ± 12
Body weight (kg)	74 ± 14	81 ± 14†
BMI (kg/m ²)	25.9 ± 3.8	28.0 ± 4.4†
Office blood pressure (mmHg)		
Systolic	130 ± 19	130 ± 16
Diastolic	77 ± 10	77 ± 10
Creatinine (µmol/l)	123 ± 35	132 ± 29
eGFR (ml/min/1.73m ²)	53 ± 12	49 ± 12

	Medication	
ACE Inhibitors (%)	39 (70)	38 (68)
Angiotensin receptor blockers (ARBs) (%)	19 (34)	19 (34)
Beta blockers (%)	8 (14)	15 (27)
Calcium channel blockers (%)	17 (30)	13 (23)
Diuretics (%)	13 (23)	18 (32)
Statins (%)	17 (30)	27 (48)
Values are Mean ± SD † p<0.01 spironolactone vs. placebo		

	Place	ebo	Spironolactone		
-	Week 0	Week 40	Week 0	Week 40	
24 ABP (mmHg)					
Systolic	125 ± 12	124 ± 11	124 ± 11	119 ± 11†	
Diastolic	77 ± 9	76 ± 7	76 ± 8	73 ± 8 †	
Na+ (mmol/l)	139 (138,141)	140 (139,142)	140 (139,142)	140 (138,141)	
K+ (mmol/l)	4.3 (4.1,4.6)	4.3 (4.2,4.5)	4.4 (4.1,4.7)	4.5 (4.3,5.0)	
Creatinine (mmol/l)	123 ± 35	126 ± 35	132 ± 29	140 ± 32††	
eGFR (mmol/min/1.73m ²)	53 ± 12.3	52 ± 12.1	49 ± 12	46 ± 15.9	
ACR (mg/mmol)	8.2 ± 48.4	9.5 ± 34.9	17.8 ± 48.6	5.4 ± 34.9†	
_	Renin Angiotensin Aldosterone System				
PRA (mU/l)	83 (34,138)	68 (42,148)	75 (36,146)	130 (72,260)††	
Angiotensin II (pmol/l)	9.0 (4.6,17.0)	7.9 (4.5,20.1)	7.5 (4.5,18.2)	13.6 (6.2, 22.4)†	
PAC (pmol/l)	186 (114,252)	166 (114,219)	133 (83,230)	360 (233, 557)†-	
	24h urina	ary steroid horm	one metabolite	excretion	
Total F metabolites (µg/24h)	5218 (2510,7370)	4938 (2992,7327)	6108 (3928,8663)	6024 (4040,8218	
5β-TH-DOC (µg/24h)	10.1 (7.0, 18.0)	12.0 (7.1,19.9)	14.4 (8.2,20.8)	10.4 (6.8,16.6)†-	
5α-TH-DOC (µg/24h)	3.1 (1.7,4.4)	3.1 (1.5,5.3)	2.8 (2.1,5.7)	2.7 (1.6,5.5)	
TH-Aldo (µg/24h)	16.8 (13.3,26.5)	18.3 (12.8, 23.3)	18.9 (10.6, 26.3)	27.3 (17.4, 42.3)	
	Steroid hormone metabolite ratios				
	1.12 (0.82,2.13)	1.16 (0.83, 2.06)	1.26 (0.91,1.74)	1.10 (0.80,1.76)†	
<i>11β-HSD1</i> (5αTHF+THF/THE)	1.1 (0.8,1.3)	1.1 (0.83,1.37)	1.0 (0.7, 1.4)	1.1 (0.8, 1.5)	
11β-HSD2 (F/E)	0.69 (0.59,0.87)	0.68 (0.55,0.94)	0.62 (0.51,0.84)	0.69 (0.54,0.83)	
I IB-IIVUIOXVIASE			1		

Table 2. Changes following placebo / spironolactone

Values are median (interquartile range). eGFR: estimated glomerular filtration rate; PRA: Plasma renin activity; PAC: Plasma aldosterone concentration; ACR: albumine creatinine ratio; TH-Aldo: tetrahydro-aldosterone; Andro: Androsterone; Etiochol:

Etiocholanolone; THF: tetrahydrocortisol; THE: tetrahydrocortisone; F: cortisol; E: cortisone; THS: tetrahydro-11-desoxycortisol.

Normally distributed values are presented as mean \pm SD; the remainder as mean (inter quartile range). To compare changes in the two groups repeated measures analysis of variance with the time point (week 0, week 40) as the 'within subjects' factor and the group (spironolactone and placebo) as the 'between subjects' factor were used. $\pm p<0.01$, $\pm p<0.01$ spironolactone vs. placebo at week 40

Figure Legends

Figure 1 A Correlation of 24h urinary 3α 5 β -tetrahydro-aldosterone (TH-Aldo) excretion with diastolic 24h ambulatory blood pressure (24h ABP); B Correlation of 24h urinary total cortisol (F) metabolite excretion with systolic blood pressure.

Figure 2 Plasma renin activity (PRA) is positively correlated with the (THF+5 α -THF/THE) ratio reflecting global 11β-hydroxysteroid dehydrogenase type I activity.

r fr (PRA, βobal 11β-hydr)

Figure 2

