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Introduction

Various approaches for thresholding and non-linear shrinkage of wavelet coefficients have been shown to perform well under the IID noise assumption; see for example Donoho andJohnstone (1994, 1995), Donoho et al. (1995).

Bayesian wavelet shrinkage and thresholding approaches have become increasingly popular and have been shown to perform well in practice: for term-by-term Bayesian shrinkage approaches, see for example [START_REF] Chipman | Adaptive Bayesian wavelet shrinkage[END_REF] tionary and correlated, then the variance of the wavelet coefficients will depend on the level in the wavelet decomposition but will be constant at each level.

With this in mind, they proposed a level-dependent thresholding approach in which the noise variance at each level is estimated from the data. This is a quick and convenient way to cope with the problem of correlated noise which does not involve full estimation of the correlation structure. However, from the results in §4 we can see that the level-dependent methods do not always work so well with rougher signals (e.g. Bumps). We believe that it is of interest to develop methods for estimating the correlation structure.

From a theoretical perspective, quite a lot is known about how correlated noise affects theoretical performance in nonparametric regression; see Opsomer et al. The main aim of this paper is to propose two procedures for estimating the correlation structure of the noise. Once the correlation structure is determined, any one of several wavelet block shrinkage methods may be used to reconstruct the unknown function, taking advantage of the information provided by the estimated covariance structure. Here we employ the empirical Bayes block (EBB) shrinkage method proposed by Wang and Wood (2006); other possibilities involving Bayes block shrinkage are to use the approach of either [START_REF] Abramovich | Empirical Bayes approach to block wavelet function estimation[END_REF] or De [START_REF] De Canditiis | Wavelet Bayesian block shrinkage via mixtures of normal-inverse gamma priors[END_REF].

Correlation structure of wavelet coefficients has been considered in some published papers (e.g. Abramovich et al., 2002, Vannucci and[START_REF] Vannucci | Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective[END_REF], but with a somewhat different emphasis. To the best of our knowledge, this is the first paper which considers full estimation of the correlation structure in the The outline of this paper is as follows. In §2, the basic model considered in this paper is specified and a preliminary study of the correlation structure of the wavelet coefficients demonstrates the potential importance of accounting for correlation of the noise. In §3 we propose two procedures for estimating correlation structure in the noise. The results of a simulation study are presented in §4. Relevant details of EBB method of Wang and Wood (2006) are sketched in the Appendix.

General Model Setup 2.1 A Model with Correlated Noise

The model to be considered in this paper is

y i = f (x i ) + i i = 1, • • • , n (1) 
where f is the unknown function to be estimated, {y i } is a set of observations,

x i = i/n, { i } is a stationary Gaussian sequence with E( i ) = 0 and stationary covariance function γ(•) given by

γ(i -j) = cov( i , j ) = E( i j ). (2) 
For simplicity, we assume that n is an integer power of 2. In our simulation study, described later, we mainly focus on the cases in which { i } is an autoregressive process (AR) of order p or a moving average process (MA) of order q, 

AR(p) t = α 1 t-1 + • • • + α p t-p + η t , (3) 
and

M A(q) t = β 1 η t-1 + • • • + β q η t-q + η t , (4) 
where the η t are independent N (0, σ 2 η ).

Variance Analysis

Since the properties of the discrete wavelet transform show that wavelets are "almost eigenfunctions" of many operators (see [START_REF] Frazier | Littlewood-Paley theory and the study of function spaces[END_REF][START_REF] Meyer | Wavelets and Operators[END_REF], which means that the autocorrelation of the wavelet coefficients of a noisy signal within each level often dies away rapidly, and little or no correlation between the wavelet coefficients at different levels exists (see [START_REF] Johnstone | Wavelet threshold estimators for data with correlated noise[END_REF], it is of interest to know how well standard methods (i.e. methods designed for denoising the IID noise) perform in the correlated noise model [START_REF] Abramovich | Adaptive thresholding of wavelet coefficients[END_REF]. Here, as a preliminary, we look at the differences between the covariance structure of wavelet coefficients in the presence of IID noise and correlated noise.

If = ( 1 , . . . , n ) T ∼ N n (0, σ 2 I n )
, where I n is the n × n identity matrix, then W , the discrete wavelet transform (DWT) of , is also distributed as N n (0, σ 2 I n ), because the DWT matrix W is orthogonal. In the case of a general correlation structure, ∼ N n (0, V ), where V is the covariance matrix of the noise, in which case W ∼ N n (0, Σ), where Σ = WV W T .

Using the recursive algorithm proposed by [START_REF] Vannucci | Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective[END_REF], which calculates the covariance of wavelet coefficients within and across levels, two plots are obtained to show the difference in the above situations. We now propose a four-step procedure for estimating an unknown function in the presence of correlated noise. Each step is discussed in more detail below.

Step 1: identify a parametric model for the correlation structure.

Step 2: estimate the correlation parameters for the model obtained in Step 1.

Step 3: using the model identified in Step 1 with estimated parameters obtained in Step 2, calculate estimates for the variances and covariances of the wavelet coefficients in each block.

Step 4: estimate the signal f , making use of the estimated variances and covariances obtained in Step 3.

If the parametric structure of the covariance matrix V (θ), where θ is the parameter vector involved in determining the specific noise process, is assumed known, there is no need for Step 1. However, in many situations, V (θ) will be unknown, in which case we suggest implementing Step 1 as follows. Starting with the model y = f + , obtain a preliminary estimate f of f using a suitable estimation procedure, such as the level-dependent universal threshold method due to [START_REF] Johnstone | Wavelet threshold estimators for data with correlated noise[END_REF] Using the same steps as in Example 1, we obtain ˆ . By applying the innovations algorithm to fit successively higher order moving average processes to ˆ , we obtain the estimated coefficient values βmj and noise variances vm . Table 1 shows βmj , j = 1, . . . , 8 and vm , m = 1, . . . , 10, 50, 100. This table suggests that MA [START_REF] Abramovich | Adaptive thresholding of wavelet coefficients[END_REF] is the appropriate model for the noise since the estimated coefficients for the orders higher than 1 are close to zero.

A wavelet domain procedure for Step 2

We now consider a wavelet domain procedure for Step 2 which uses the finestlevel wavelet coefficients only; the rationale is that the finest-level coefficients tend to be less affected than coefficients at other levels by the smooth part of the signal. the n/2 × n matrix W J , a submatrix of the DWT W, i.e. W J maps y to the finest-level wavelet coefficients according to dJ = W J y. Under the model ( 1), Step 2W(a) Shrink (or threshold) the finest-level wavelet coefficients, dJ say, to obtain dsignal ;

dJ has distribution N n/2 (d signal , Σ J ), where Σ J = W J V W T J .
Step 2W(b) Estimate the portion of the finest-level wavelet coefficients attributable to the noise by dnoise = dJdsignal ;

Step 2W(c) Use maximum likelihood, or if more convenient, a pseudo-likelihood procedure, with estimated data dnoise , to estimate the unknown covariance parameters of V (θ). 

l(θ) = log{f (d|θ)} = - n 2 log(2π) - 1 2 log{det(Σ J )} - 1 2 d T Σ -1 J d, (5) 
and approximate maximum likelihood estimation of θ may be carried out by maximizing (5) over the valid parameter space. For example, in the case of AR(1) defined in (3), we have σ 2 > 0, 0 < α < 1. However, when the dimension of d increases, it becomes more difficult to calculate the inverse and determinant of Σ J . For this reason, we have also investigated various pseudo-likelihood approaches [START_REF] Besag | Statistical analysis of non-lattice data[END_REF][START_REF] Besag | Efficiency of pseudolikelihood estimation for simple Gaussian fields[END_REF]. To implement this approach we split the data into a small number of large blocks, i.e. we split the vector d into k subvectors of equal dimension, where k is relatively small. For simplicity, we assume that h = n/(2k) is an integer. Then each subvector has h elements, denoted as

d i = (d i1 , d i2 , ..., d ih ) T ∼ N h (0, Σ Ji ), i = 1, . . . , k.
For each block i, we may write log-likelihood as

l i (θ) = log{f (d i |θ)} = const - 1 2 log{det(Σ Ji )} - 1 2 d T i Σ -1 Ji d i (6)
and the pseudo log-likelihood, k i=1 l i (θ), is the sum of these component loglikelihoods to be maximised. It is worth noting that this pseudo-likelihood approach ignores correlations between blocks. However, when the blocks are 4 Simulation Study

Specific Covariance Matrices

In this section, we present the results of some simulations to illustrate the procedures proposed above. Three types of correlated noise considered here are AR(1), AR(2) and MA [START_REF] Abramovich | Adaptive thresholding of wavelet coefficients[END_REF]. If the noise model is known, we can write down the covariance matrix, see e.g. [START_REF] Cox | The Theory of Stochastic Processes[END_REF]. For an AR(1) process,

t = α t-1 + η t , with independent η t ∼ N (0, σ 2 η ), t = 1, . . . , n, the n × n covari- ance matrix of , with parameters α and σ 2 = σ 2 η /(1 -α 2 ), is given by σ 2 V (α), where V (α) = [V ij (α)] n i,j=1 has entries V ij (α) = α |i-j| .
For an AR(2) process t = α 1 t-1 + α 2 t-2 + η t , where η t ∼ N (0, σ 2 η ) independently, if the process is stationary (i.e. α 1 + α 2 < 1, α 2 -α 1 < 1 and -1 < α 2 < 1 ), the covariance matrix of is given by σ 2 V (α 1 , α 2 ), where

σ 2 = 1 -α 2 (1 + α 2 )[(1 -α 2 ) 2 -α 2 1 ]
σ 2 η and the autocorrelation matrix

V (α 1 , α 2 ) = [V i,j (α 1 , α 2 )] n i,j=1 with entries V i,j (α 1 , α 2 ) = γ |i-j| where γ 0 = 1, γ 1 = α 1 (1 -α 2 ) -1 , γ 2 = α 2 + α 2 2 (1 -α 1 ) -1 and γ i = α 1 γ i-1 + α 2 γ i-2 for i > 2.
For the MA(1) process, the covariance matrix of is given by σ 2 V (β) with parameters β and σ 2 = σ 2 η , and For higher-order AR(p) processes (p > 2), it becomes more difficult to write down the explicit form of the covariance matrix V (θ) . However, we can obtain the inverse of the covariance matrix, V -1 (θ), in the way proposed by [START_REF] Siddiqui | On the inversion of the sample covariance matrix in a stationary autoregressive process[END_REF], and then we can calculate Σ -1 = WV (θ) -1 W T .

V (β) = [V ij (β)] n i,j=1 , where V ii (β) = 1 + β 2 , V i-1,i (β) = V i,i+1 (β) = β, and V ij (β) = 0 whenever |i -j| > 1.
In order to gain insight into the behavior at low, medium and high signal-tonoise ratio (SNR), we normalise the noise by using norm = std( ) [START_REF] Cai | A data-driven block thresholing approach to wavelet estimation[END_REF] and rescale the signal by using

f scaled = f × ( SN R std(f ) ), ( 8 
)
where std is the standard deviation of the test function or noise and the value of SNR indicates signal to noise ratio, which can be controlled in the simulation study.

A preliminary simulation study not reported here was undertaken to compare the performance of the proposed methods for the SNR ranging from 3 to 10 and the sample size ranging from 256 to 1024. The performance of the proposed methods was stable and consistent for these different SNRs and sample sizes.

For this reason we restrict attention to the choices SNR=7 and sample size 1024 in the simulation study described below.

Simulation Results

To compare the performance of existing methods with the proposed methods in this paper, we use four signals, "HeaviSine", "Blocks", "Bumps" and "Doppler", first proposed in Donoho andJohnstone (1994, 1995) as test func- In 2), AR [START_REF] Cai | On the block thresholding in wavelet regression: adaptivity, block size, and threshold level[END_REF] and MA [START_REF] Abramovich | Adaptive thresholding of wavelet coefficients[END_REF], and different block sizes [START_REF] Abramovich | Adaptive thresholding of wavelet coefficients[END_REF][START_REF] Abramovich | Empirical Bayes approach to block wavelet function estimation[END_REF][START_REF] Besag | Efficiency of pseudolikelihood estimation for simple Gaussian fields[END_REF][START_REF] Chipman | Adaptive Bayesian wavelet shrinkage[END_REF][START_REF] Hall | On the nonparametric estimation of covariance functions[END_REF], with sample size 1024 and SNR = 7 are presented in Table 4.2. Table 4.2 suggests that a small block size, [START_REF] Abramovich | Adaptive thresholding of wavelet coefficients[END_REF][START_REF] Abramovich | Empirical Bayes approach to block wavelet function estimation[END_REF][START_REF] Besag | Efficiency of pseudolikelihood estimation for simple Gaussian fields[END_REF], is appropriate for the given examples. It is interesting to note that the best choice of block size for each signal contaminated by the four types of noise agrees with the corresponding results for IID Gaussion noise given by Wang and Wood (2006).

Remark 3: True noise structures known. It should be noted that, in the simulation study, the correct ARMA model was assumed when implementing the TD and WD approaches. Thus, the TD and WD methods had an advantage that they would not have in a real data example, where a parametric model for the correlation structure would be unknown. Before showing a real data example which suggests that satisfactory results may be expected even when the covariance structure is unknown, we consider the effect of incorrectly specifying the noise process. Table 4 shows the simulation results under the following four situations: the noise processes were known to be AR(2) with α(1) = 0.7 and α(2) = -0.2 and MA(1) with β = 0.5, the estimations were assuming an AR [START_REF] Abramovich | Adaptive thresholding of wavelet coefficients[END_REF] model while the noises were AR(2) and MA [START_REF] Abramovich | Adaptive thresholding of wavelet coefficients[END_REF]. The first and third rows in the table showed the best denoising results we can hope to obtain since we know the correct noise processes. The second and fourth rows gave the results when we incorrectly specify the noise process. Compare these values with associated values in Table 2, we can see that it is not a disaster if we incorrectly specify the noise process although it does influence the denoising results.

Remark 4: Iteration of the estimation procedure. A referee has suggested the interesting possibility of iterating the estimation procedure described in §3.1. Some simulation results for cases in which the wavelet domain procedure was iterated two times are presented in assumed known. In the cases considered in Table 5, there is little different in the performance of the iterated and non-iterated procedures. However, the possibility of iterating the procedure deserves further study as there may be situations where iteration leads to an improvement in performance, especially when the true correlation structure is unknown. 

Conclusions

In this paper we have considered two procedures for wavelet estimation of a signal in the presence of correlated noise, a time domain procedure and a wavelet domain procedure. Both procedures involve explicit estimation of the correlation structure of the noise. The results in §4 indicate that both of our proposals do better than the original level-dependent thresholding method of Johnstone and Silverman (1997), but when the level-dependent thresholding approach is used in combination with the empirical Bayes procedures of Johnstone and Silverman (2005a), the resulting performance is rather similar to that of our proposals. In Table 2, it is only in the case of the Bumps signal that there is a noticeable difference (with our proposals doing better). However, even though level-dependent procedures are simpler to implement than those procedures in 

Appendix: empirical Bayes block shrinkage approach

In Bayesian wavelet shrinkage methods, a prior distribution is specified on the wavelet coefficients which is designed to capture the sparseness of the wavelet expansions that is common to most applications. The function can then be estimated by applying a suitable Bayes rule to the resulting posterior distribution of wavelet coefficients.

A popular prior model for each wavelet coefficient d jk , where j is the resolution level and k is the location, is a mixture of a normal distribution and a point mass at zero. The normal distribution with positive variance, N (0, λ 2 j ), represents the possibility of a non-zero coefficient while a point mass at zero, δ(0), represents a negligible coefficient. A hierarchical model can be expressed as d jk |r j ∼ r j N (0, λ 2 j ) + (1 -r j )δ(0), [START_REF] Clyde | Multiple shrinkage and subset selection in wavelets[END_REF] with r j ∼ Bernoulli(p j ) for different resolution levels j. The binary random variable r j determines whether the relevant wavelet coefficient is nonzero (r j = 1) and comes from a normal distribution, or zero (r j = 0), and arises from a point mass at zero. Suitable Bayesian wavelet shrinkage and thresholding estimators are the posterior mean and the posterior median. A shrinkage procedure can be derived by imposing a suitable prior on ρ. In this paper, we follow the EBB shrinkage method with the "power" prior (see section where r is the prior probability that ρ = 0, and β is the scale parameter has the distribution function

F (β|σ 2 , λ) = βσ 2 1 + βσ 2 λ+1 .
The likelihood of z|ρ is given by a noncentral chi-squared distribution, χ 2 m (z|ρ, σ 2 ), and the mean and median of the resulting posterior distribution for ρ may be calculated numerically. The mean or median of this posterior distribution are chosen to be the estimators of the "true" wavelet coefficients. For full details of the EBB shrinkage method, see Wang and Wood (2006). 
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  2001) for a review of how kernel, spline and wavelet approaches to nonparametric function estimation are affected by correlated noise. However, it is unclear to what extent the known theoretical results reflect and capture what happens in practical situations with correlated noise.
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 116 Figure 1: (a): covariance structure of DWT of AR(1) noise with α = 0.7. The horizontal line from right to left and vertical line from bottom to top show from the finest level to the coarsest level. The darker the colour of the squares the higher the wavelet coefficients. (b): covariance structure of DWT of IID noise.
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 2 Figure 2: The first 40 numbers of the sample pac.f for the estimated data ˆ i with the bounds ±1.96n -1/2 .

  Consider the decomposition dJ = d signal + d noise , where d signal = W J f , and d noise = W J , where d noise ∼ N n/2 (0, Σ J ). The wavelet domain procedure for Step 2, referred to as Step 2W with sub-steps (a)-(c), estimates θ using an estimate dnoise of d noise obtained as follows.
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 1012 of 30 URL: http://mc.manuscriptcentral.com/lssp E-mail: comstat@univmail.cis.mcmaster.ca Communications in Statistics -Simulation and Computation The reason for including Step 2W parts (a) and (b) is as follows: if the signal has a few discontinuities, then the finest-level coefficients may have a few very large values due to discontinuities in the signal rather than due to the noise. The purpose of Step 2W(a) and (b) is to remove the large coefficients due to the signal and identify the wavelet coefficients which come from the noise. Once dnoise has been obtained, we may implement Step 2W(c) as follows. To simplify the presentation, we write d rather than dnoise . The approximate log-likelihood based on d is given by
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 1113 of 30 URL: http://mc.manuscriptcentral.com/lssp E-mail: comstat@univmail.cis.mcmaster.ca Communications in Statistics -Simulation and Computation -block correlations should have a negligible impact on the estimate of θ provided long-range dependence is not present. In the simulation study presented in §4, the log-likelihood (6) is used in the corresponding simulations, where k = 4 was chosen in all cases.
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  estimators. In what follows we used the notation WDmean-m and WDmed-m to denote the wavelet domain (WD) procedure outlines in §3.2, with Step 4 implemented using the posterior mean and posterior median version of the EBB procedure of Wang and Wood (2006), respectively; see the Appendix. The quantity m denotes the block size used. Similarly, TDmean-m and TDmed-m denote the corresponding time domain (TD) procedures, in which the parameter estimates are obtained as a by-product of Step 1 of the general procedure described in §3.1. Also, JS denotes the level-dependent universal thresholding method by Johnstone and Silverman (1997), ETLmean, ETLmed, ETCmean and ETCmed denote, respectively, the posterior mean and posterior median of the level-dependent "EbayesThresh"(ET) method with Laplace (L), where better results are obtained by only estimating the scale parameters empirically from the data, and Cauchy (C) prior proposed by Johnstone and Silverman (2005a, b).
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 3 Figure 3: Bumps signal with AR(1), α = 0.7, based on sample size n = 1024 and SN R = 7. The reconstructions are obtained using 9 methods (see details in text).
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  ://mc.manuscriptcentral.com/lssp E-mail: comstat@univmail.cis.mcmaster.different SNRs. The numerical results for different models, namely AR(1), AR(
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 204321 Fig.4(a).Johnstone and Silverman (2005b) presented two versions of this dataset, smoothed in two different ways. One way assumed that the original signal was observed with IID noise, where the ET method with the same noise estimate for all levels was used. The other way assumed stationary correlated noise and used the level-dependent ET method. Fig. 4(b) shows the smoothed version of the ipd data with IID noise assumption, and Fig. 4(c) with the stationary correlated noise assumption. From these two plots we can see that the reconstruction by assuming the stationary correlated noise, plot (c), removes some moderately high frequency effects which still exist in the reconstruction (b), for example, in the interval [1000, 2000]. To find the smoothed version of the data by the new methods proposed in this paper, we first try to find the noise model, and the Durbin-Levinson algorithm is used to fit successively higher order autoregressive processes to the estimation of . We then obtain the sample pac.f αjj . The first 50 numbers of sample pac.f with the bounds ±1.96n -1/2 are shown in Fig. 5. The AR(2) model for the noise here with α 1 = 0.38 and α 2 = 0.27 will be used to balance the accuracy and simplicity. The smoothed versions of the ipd data by TDmean and TDmed are plotted in Fig. 4(d), (e). These plots show that the proposed methods are able to remove the noise effectively. Especially, in the interval [1000, 2000], the proposed methods remove the local variability better but still keep the peaks well.
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 45 Figure 4: (a): the original ipd data; (b): the reconstruction obtained by ETCmean method with IID noise assumption; (c): the reconstruction obtained by ETCmean with stationary correlated noise assumption; (d): the reconstruction by TDmean-2; (e): the reconstruction by TDmed-2.
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 2325 of 30 URL: http://mc.manuscriptcentral.com/lssp E-mail: comstat@univmail.cis.mcmaster.structure is estimated, it is nevertheless worthwhile to develop estimation procedures of the latter type. Our numerical results indicate that the two procedures of the latter type proposed here may be expected to perform well in practice.

  Wang, X. and Wood, A. T. A (2006) Empirical Bayes block shrinkage of wavelet coefficients via the non-central χ 2 distribution. Biometrika 93: 705-722.
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 27 Bayesian wavelet shrinkage method used in Step 4 of the procedure in §3.1 is the empirical Bayes block (EBB) shrinkage method proposed by Wang and Wood (2006). The EBB method, which performs the shrinkage based on the sum of squares of wavelet coefficients in each single block, takes account of the coefficients. In a correlated noise situation, the wavelet coefficients typically are highly correlated with their near neighbours. Thus a shrinkage procedure based on a quadratic form in the wavelet coefficients which takes account of these correlations makes good sense. After performing the DWT on the noisy observations y in (1), we obtain the empirical wavelet coefficients djk , which are candidates for shrinkage. Let B represent a single block where, typically, a block would consist of neighboring coefficients at the same resolution level j. Define djB = { djk : k ∈ B} and let n(B) denote the number of elements (i.e. labels) in B. Following the discussion in §2.2, we have djB ∼ N n(B) (d jB , Σ n(B) ), (10) where d jB is the noiseless version of djB and Σ n(B) is the relevant n(B) × n(B) submatrix of Σ = WV (θ)W T , obtained in Step 3 of the procedure described in §3.1. Define z = dT jB Σ -1 n(B) djB and ρ = d T jB Σ -1 n(B) d jB .
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 2 Wang and Wood, 2006).The prior can be expressed as a mixture of a unit point mass δ(0) on ρ = 0 and a certain scaled central chi-squared distributionρ|r, β ∼ rδ(0) + (1 -r)χ 2 m (ρ|0, β -1
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  Thus we only use a part of the wavelet transform, represented by

					βmj				ŝm
	m \ j 1	2	3	4	5	6	7	8
	1	0.437							1.021
	2	0.513 0.051						0.919
	3	0.527 0.059	0.013					0.904
	4	0.532 0.053	0.025	-0.017				0.902
	5	0.532 0.055	0.021	-0.005 -0.029			0.900
	6	0.532 0.054	0.023	-0.009 -0.020 -0.029		0.900
	7 8 F 0.533 0.054 0.534 0.051 9 0.544 0.051 10 0.550 0.050 o 50 0.526 -0.002 -0.024 -0.053 -0.039 -0.067 0.008 0.023 -0.008 -0.021 -0.028 -0.015 0.023 -0.015 -0.012 -0.048 0.032 0.024 -0.015 -0.011 -0.050 0.037 0.024 -0.016 -0.011 -0.051 0.037 r 100 0.534 0.007 -0.034 -0.053 -0.031 -0.067 0.007	0.900 -0.095 0.899 -0.101 0.893 -0.102 0.889 -0.115 0.842 -0.129 0.804
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						w	
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								y
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Table 1 :

 1 

The estimated coefficients βmj , j = 1, • • • , 8 and noise standard deviation ŝm , m = 1, • • • , 10, 50, 100 for the estimated error vector ˆ .

Table 2

 2 For the Bumps signal the MSEs of the TD and WD methods are less than one tenth of that of the JS method for three signals. For

	the remaining signals (HeaviSine and blocks), the results of the new methods
	are very close (larger than 0.8 of the relative MSE ) to the results of the best
	of the published methods, and WDmean-2 is the best for HeaviSine signal. The
	14

, the new methods are compared with a number of existing methods designed for the same situation. The MSE of 9 methods using 100 simulation runs with n=1024, SNR=7, and signals HeaviSine, Block, and Bumps and Doppler are listed. The figure in brackets indicates the relative MSE. For each signal, the relative MSE of the j-th estimator is defined as min k (MSE k )/MSE j .

The table shows the new methods 1 -4 are quite competitive with the existing methods, especially for the rough signals (e.g Bumps). In two of the four cases with three noise situations (Bumps and Doppler), all the new procedures 1 -4 do better than 5 -9.

gives the right direction of denoising. Even though the TD and WD methods use the JS method as a preliminary, they still can give the excellent denoising results; this is confirmed by the simulations (see Table

2

).

Some further comments now follow.

Remark 1: Boundary correction. One possibility we have not discussed so far is the use of boundary correction, based on symmetric reflection of the function f beyond the boundaries of the domain; see for example

[START_REF] Abramovich | Adaptive thresholding of wavelet coefficients[END_REF]

. A simulation study, not reported here, was undertaken to compare the performance of the proposed methods with and without boundary correction when applying the DWT to the signals. The overall performance of boundary correction did not show clear superiority over implementation without boundary correction. For this reason, we did not include boundary correction methods in the results reported here.

Table 2 :

 2 The comparison of MSE of 9 methods using 100 simulation runs with n= 1024, SNR= 7, signals HeaviSine, Blocks, Bumps and Doppler contaminated with noises AR(1) with α = 0.7, AR(2) with α(1) = 0.7 and α(2) = -0.2 and MA(1) with β = 0.5. The figures in brackets are the relative MSEs, which indicate the ratios of the MSE with the minimum MSE achieved for each example.

Table 5

 5 

	, with the true correlated structure
	18

Table 3 :

 3 Simulation results for WDmean and WDmed (TDmean and TDmed for AR(6) case) comparing different block sizes m based on 100 simulation runs. The number in each cell is MSE and an asterisk is used to identify the optimum block size within a row.

	19

Table 4 :

 4 Simulation study for WDmean and WDmed comparing the noise process known and the noise process incorrectly specified. The numbers in the second and fourth rows are MSEs when the noise processes were known as AR(2) with α(1) = 0.7 and α(2) = -0.2 and MA(1) with β = 0.5. The numbers in the third and fifth rows are MSEs when the noise processes were AR(2) and MA(1) but incorrectly identified as AR(1) model.

	Methods	iteration HeaviSine Blocks Bumps Doppler
	WDmean no	0.3035	0.3656 0.5515 0.2941
	WDmed	no	0.3270	0.3596 0.5669 0.3121
	WDmean yes	0.2855	0.3537 0.5481 0.3154
	WDmed	yes	0.3260	0.3348 0.6170 0.3107

Table 5 :

 5 Comparison of WDmean and WDmed methods with iteration two times and without iteration. MSEs for the AR(1) model with sample size 1024, SNR=7 and simulation runs 20 are presented.
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