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Abstract We study a particular kind of chaotic dynamics for the planar 3-centre problem
on small negative energy level sets. We know that chaotic motions exist, if we make the
assumption that one of the centres is far away from the other two (see Bolotin and Negrini,
J Differ Equ 190:539–558, 2003): this result has been obtained by the use of the Poincaré-
Melnikov theory. Here we change the assumption on the third centre: we do not make any
hypothesis on its position, and we obtain a perturbation of the 2-centre problem by assuming
its intensity to be very small. Then, for a dense subset of possible positions of the perturbing
centre in R

2, we prove the existence of uniformly hyperbolic invariant sets of periodic and
chaotic almost collision orbits by the use of a general result of Bolotin and MacKay (Celest
Mech Dyn Astron 77:49–75, 2000; Celest Mech Dyn Astron 94(4):433–449, 2006). To apply
it, we must preliminarily construct chains of collision arcs in a proper way. We succeed in
doing that by the classical regularisation of the 2-centre problem and the use of the periodic
orbits of the regularised problem passing through the third centre.

Keywords 3-centre problem · Regularisation · Collisions · Chaotic motion

1 Introduction

We consider the motion of a particle in the plane, under the gravitational action of three point
masses at fixed positions (the planar restricted 3-centre problem). We fix a Cartesian refer-
ence system Oxy on the plane and choose suitable dimensionless coordinates such that the
two centres with greater masses occupy the positions C1 = (1, 0),C2 = (−1, 0). Following
the common terminology, we refer to these as primaries. We suppose for simplicity that the
primaries have equal intensities a1 = a2 = a > 0 (symmetric problem), and we always
consider all the three centres having positive intensities.
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428 L. Dimare

Let C = (x0, y0) ∈ R
2 \ {C1,C2} be the position of the third centre and ε > 0 be its

intensity. We assume ε to be very small and consider the limit ε → 0: this means that ε is a
perturbation parameter. In other words, we make the hypothesis that the conditions are such
that we can consider the problem as a one-parameter perturbation of an integrable one: the
2-centre problem.

Let M be the smooth Riemannian manifold M = R
2 \ {C1,C2}, with the induced Euclid-

ean metric on the tangent bundle T M . The configuration space for the motion of a particle
in the potential field generated by the centres C1,C2,C , is M \ {C}. Let P = (x, y) denote
the position of the particle on M \ {C}. Then the system has smooth Lagrangian function on
T (M \ {C}) given by

Lε = L0 + ε
√
(x − x0)2 + (y − y0)2

,

with L0 the Lagrangian of the 2-centre problem

L0 = ẋ2 + ẏ2

2
+ a

√
(x + 1)2 + y2

+ a
√
(x − 1)2 + y2

.

Here we use the Newtonian notation for derivatives with respect to time: ẋ = dx/dt, ẏ =
dy/dt . Note that L0 is a smooth function on M , while Lε has a Newtonian singularity at
the point C . To simplify notation, let us denote by W (x, y) and εV (x, y) the potentials due
respectively to the primaries and the third centre C , so that

W (x, y) = − a
√
(x + 1)2 + y2

− a
√
(x − 1)2 + y2

,

V (x, y) = − 1
√
(x − x0)2 + (y − y0)2

.

The Lagrangian and the Hamiltonian of the problem have the form

Lε = L0 − εV , Hε = H0 + εV ,

with L0, H0 the Lagrangian and Hamiltonian of the 2-centre problem

L0 = ẋ2 + ẏ2

2
− W, H0 = p2

x + p2
y

2
+ W.

For negative values of the energy Hε = E < 0, with E → 0, we prove the existence of
chaotic motions passing arbitrarily close to the perturbing centre C . This is made by the use
of the shadowing result proved in Bolotin and MacKay (2000).

For E > 0 non-integrability has been established in Bolotin (1984): he proves that for
the n-centre problem on the plane R

2, with n > 2, it does not exist an analytic integral of
motion which is non-constant on the energy shell H−1(E), with E > 0. In Bolotin (1985)
the same author extends this result to a wider class of Lagrangian systems defined on any
2-dimensional manifold M , with n Newtonian singularities on M : he shows non-integrability
when n is greater than two times the Euler characteristic of the manifold, n > 2χ(M), and
the energy is over a suitably defined threshold, E > Eth . In particular, we have analytic
non-integrability for the restricted circular many-body problem, in which a particle moves
in a rotating plane, under the action of the gravitational attraction of n centres fixed on this
plane, when n > 2. Nevertheless, this generalisation does not add any additional information
about the n-centre problem on a fixed plane, in which case it reduces to the result given
in Bolotin (1984).
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Chaotic quasi-collision trajectories in the 3-centre problem 429

More recent outcomes exist in literature, valid for positive energy values E > 0:
see Bolotin and Negrini (2001), Knauf and Taimanov (2005). In Bolotin and Negrini (2001)
the authors study the n-centre problem in R

3, showing that if n ≥ 3 and E ≥ 0, then the
topological entropy is positive. In Knauf and Taimanov (2005), it is proved that no analytic
independent integral exist for the n-centre problem in the space, if n ≥ 3 and the energy is
greater than some threshold E > Eth . Moreover, for both the planar and the spatial problem,
smooth integrals are found on energy levels with E > Eth , where Eth = 0 in the planar case.

The case E < 0 has been investigated in Bolotin and Negrini (2003). The authors study the
restricted 3-centre problem on the plane, when the third centre is very far from the other two
and consider small negative energies E , in the limit E → 0. Then they have a two-parameter
perturbation of the 2-centre problem on the zero-energy level. They succeed in applying the
Poincaré-Melnikov theory, thus proving the existence of chaotic motions.

We too study the case of small negative energies, but our point of view is different, in
that the position of the third centre does not go to infinity. This allows us to study the orbits
which undergo close encounters with the perturbing centre C .

As in Bolotin and Negrini (2003) the unperturbed system is the 2-centre problem with
Lagrangian L0. After the classical regularisation of singularities, obtained by the use of ellip-
tic coordinates (ξ, φ) ∈ R × S1 and a reparametrisation of time, the system separates: we
have the motion of the standard pendulum for the variable φ and a two-well potential for ξ ,
with a hyperbolic equilibrium for ξ = 0. We are interested in the motions which go very close
to the centre C , then we consider trajectories of the unperturbed problem that pass through
C . The perturbing term of the Hamiltonian is not ε-small in the vicinity of a collision with C
and this results in a lost of control on the stable and unstable manifolds, so that a perturbative
study of their intersection is not possible.

Anyway, we will see that for ε small enough a hyperbolic invariant set with chaotic
dynamics exists, for a dense set of possible positions of the third centre in R

2. Moreover, the
obtained trajectories shadow chains of collision orbits through the third centre C .

We will apply a general result of Bolotin and MacKay (see Bolotin and MacKay 2000),
valid for Lagrangian systems with Newtonian singularities on a d-dimensional Riemannian
manifold, with d = 2, 3: they show that if the singular part of the Lagrangian is a perturbing
term, then for each chain formed by arcs of the unperturbed problem which start and end at a
singular point (collision arcs), there is a unique orbit with the same energy which shadows it.
Indeed, after local regularisation of the perturbing singularities, the corresponding equilibria
are hyperbolic and, by the use of the strong λ-lemma, shadowing arcs are obtained locally in
small neighbourhoods of the singularities. It is then proved that these arcs can be joined to
gain the entire shadowing orbits. In fact, the latter correspond to nondegenerate critical points
of a formal functional defined on small spherical neighbourhoods (circular in the 2-dimen-
sional case) of the singularities. This functional can be seen as the energy functional of a
Frenkel-Kontorova model. There is a correspondence between the equilibrium states of Fren-
kel-Kontorova models and the orbits of symplectic twist maps, and in this correspondence
nondegeneracy of the equilibrium states of the energy functional corresponds to hyperbolic-
ity, as shown in Aubry et al. (1992). With this approach the existence and hyperbolicity of
the shadowing orbits is proved and, by proper estimates on the mixed second derivatives of
the formal functional, it is also derived that the Lyapunov exponents of the corresponding
Poincaré map are of order log ε−1(see Bolotin and MacKay 2006).

The result of Bolotin and MacKay (2000) has been applied by the two authors to the
planar circular restricted problem of three bodies, in which a massless particle moves under
the gravitational attraction of the other two bodies, the primaries, and the latters are supposed
on a circular orbit about their centre of mass. The second primary is supposed to have small

123



430 L. Dimare

mass ε. The result is the existence of periodic and chaotic orbits which undergo consecutive
close encounters with the smaller primary and which approach, as ε → 0, arcs of Kepler
ellipses around the first primary, starting and ending at collision with the second.

A similar existence result has been obtained also in Font et al. (2002) by a completely
different method. A direct study of the orbits which have close encounters with the small
primary is carried out and the proof in this case is constructive. Indeed, an approximation
of the first return map, defined on a region of the phase space whose projection is a small
circle around the second primary, is explicitly computed. It is shown that the first return map
is horseshoe like and it allows to conclude about the existence of orbits with consecutive
infinite close approaches with the small primary. A complete numerical study of these orbits
is carried out in Font et al. (2009).

As previously outlined, in this paper we follow the variational approach of Bolotin and
MacKay applied to the 3-centre problem: in this manner we don’t get an horseshoe map, but
we still have a symbolic dynamics on the set of quasi-collision orbits found.

In our case the unperturbed system is simply the 2-centre problem with Lagrangian L0

and the perturbing term is given by the potential due to the third centre C . Fixed a small
negative value of the energy E < 0, by the classical regularisation of the 2-centre problem
the system separates and we can easily find periodic orbits with energy E passing through
C . We prove by the implicit function theorem that for almost all the possible positions of
the perturbing centre C on the plane, these orbits do not collide with the primaries C1,C2, if
|E | is chosen sufficiently small. Then they are periodic orbits of the not-regularised 2-centre
problem and we can use them to define a finite set of collision arcs, starting and ending at
C , and take as collision chains the infinite sequences formed with the chosen arcs. We can
verify that the considered orbits of the unperturbed problem are nondegenerate (see Sect. 2
for the definition) and then the theorem of Bolotin and MacKay can be applied to obtain a
hyperbolic invariant set formed by the orbits that shadow the collision chains. Finally, taking
as alphabet the finite set of collision arcs chosen, a symbolic dynamics is naturally defined
on the set of shadowing orbits by considering the shift on the collision chains. We can also
get easily the positivity of entropy.

In Sect. 2, we will recall the results of Bolotin and MacKay (2000, 2006) for the case
at hand, starting from some basic definitions, and state our main result. In Sect. 3 we will
perform the classical regularisation of the 2-centre problem and compute the periods of the
resulting separated problem. This will allow us to get infinite classes of periodic orbits with
fixed energy E , passing through the centre C (Sect. 4): this is the core of the paper. The
delicate point here is to show that the periodic orbits of the regularised problem previously
found do not meet the primaries for any small enough value of the energy. In Sect. 5 we will
verify that these trajectories satisfy the conditions which allow to apply the results of Bolotin
and MacKay (2000, 2006) and conclude our proof.

2 Basic definitions and theorems

Consider the unperturbed system with Lagrangian L0. A solution γ : [0, T ] → M of fixed
energy E for this system will be called a collision arc if γ (0) = γ (T ) = C , and γ (t) �= C
for any t ∈ (0, T ). In particular, the latter condition means that there are no early collisions.

Fix an energy value E < 0, such that C belongs to the set D ={(x, y) ∈ M | W (x, y)< E}.
Denote by� the set of W 1,2 curves lying in D, starting and ending at collision in C . A colli-
sion arc γ of energy E is a critical point of the Maupertuis-Jacobi functional JE defined on
� by
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Chaotic quasi-collision trajectories in the 3-centre problem 431

JE (γ ) =
T∫

0

gE (γ (t), γ̇ (t))dt ,

with

gE (x, y, ẋ, ẏ) =
√

2(E − W (x, y))(ẋ2 + ẏ2).

The arc γ is said to be nondegenerate if it is a nondegenerate critical point of the functional
JE on �.

This definition of nondegeneracy is the most natural, but it is quite complicated to be
used for verifications in concrete examples. There are at least four equivalent definitions of
nondegeneracy, for which we refer the reader to Bolotin and MacKay (2000). In particular,
a sufficient condition for nondegeneracy is the following. Denote the general solution of the
system (L0) by q(t) = f (q0, v0, t), where q0 ∈ M, v0 ∈ T Mq0 are the initial position and
velocity. Then a collision arc γ with energy E corresponds to a solution (v0, T ) of the system
of three equations

f (C, v0, T ) = C, H0(C, v0) = E .

If the Jacobian of the system at this solution is nonzero, then γ is nondegenerate. Actually
this is the characterisation of nondegeneracy which will be used in Sect. 5.

Suppose that the system (L0) has a finite set of nondegenerate collision arcs through the
centre C, γk : [0, Tk] → D, k ∈ K , with the same energy E , where K denote a finite set of
labels. A sequence (γki )i∈Z, ki ∈ K , is called a collision chain if it satisfies the condition of
direction change:

γ̇ki (Tki ) �= ±γ̇ki+1(0) , for any i ∈ Z.

Collision chains correspond to paths in the graph 	 with the set of vertices K and the set of
edges

	 = {(k, k′) ∈ K 2| γ̇k(Tk) �= ±γ̇k′(0)}. (1)

We are going to use the following results:

Theorem 1 (Bolotin-MacKay, 2000) Given a finite set K of nondegenerate collision arcs
with the same energy E, there exists ε0 > 0 such that for all ε ∈ (0, ε0] and any collision
chain (γki )i∈Z, ki ∈ K , there exists a unique (up to a time shift) trajectory γ : R → D \ {C}
of energy E of system (Lε), which shadows the chain (γki )i∈Z within order ε. More pre-
cisely, there exist constants B, B ′ > 0, independent of ε and the collision chain, and a
sequence of times (ti )i∈Z, such that |ti+1 − ti − Tki | ≤ Bε, dist(γ (t), γki ([0, Tki ])) ≤ Bε,
for ti ≤ t ≤ ti+1, and dist(γ (t),C) ≥ B ′ε.

From Theorem 1 it follows that there is an invariant subset
ε on the energy shell {Hε = E}
on which the system (Lε) is a suspension of a subshift of finite type. The subshift is given
by the shift on the set of paths of the graph 	, that is on the set of all the possible collision
chains, and the set 
ε is formed by the orbits which shadow them.

The important fact about the invariant set 
ε is that it is uniformly hyperbolic.

Theorem 2 (Bolotin-MacKay, 2006) There exists a cross-section N ⊂ {Hε = E}, such that
the corresponding invariant set Mε = 
ε ∩ N of the Poincaré map is uniformly hyperbolic
with Lyapunov exponents of order log ε−1.

In particular, the set
ε is uniformly hyperbolic as a suspension of a hyperbolic invariant
set with bounded transition times.
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432 L. Dimare

The reader can see Bolotin and MacKay (2006) for the construction of the cross-section N
and the definition of the Poincaré map: we omit these technical details here, because it would
require some machinery, which is not necessary for the sequel.

We will show that the assumptions of Theorem 1 are all satisfied for the case at hand, for
almost all the possible positions of the third centre C in M . More precisely, we will prove
that, fixed any of these admissible positions of C , for any small enough negative energy value,
there exist non-degenerate collision arcs, with which we can construct collision chains. In
particular, our collision arcs are pieces of periodic orbits of the 2-centre problem (L0), which
pass through the centre C . We will then derive the following

Theorem 3 Let I ⊂ Q
+ be a finite set of positive rationals. There exists a dense open subset

X I ⊂ M of possible positions for the third centre C, such that, fixed C ∈ X I , the following is
true. There is a small value E0 > 0, depending on C and I , such that, fixed an energy value
E ∈ (−E0, 0), we have that there is ε0 > 0, such that for any ε ∈ (0, ε0) and any sequence
(qk)k∈Z, qk ∈ I , there exists a trajectory of the planar restricted 3-centre problem (Lε) on
the energy shell {Hε = E}, which avoids collision with the third centre C by order ε and is
within order ε a concatenation of pieces of periodic orbits for the planar restricted 2-centre
problem (L0), passing through C and of classes qk, k ∈ Z (see Sect. 3.3 for notation).

The resulting invariant set formed by these orbits is uniformly hyperbolic.

In particular, as it follows from Theorem 2, fixed a small enough energy value E < 0
and ε > 0, there is a cross section in the energy shell {Hε = E}, such that the associ-
ated Poincaré map has a chaotic invariant set with Lyapunov exponents of order log ε−1

and it contains infinitely many periodic orbits, corresponding to periodic collision chains.
The topological entropy of the Poincaré map is O(ε)-close to that of the topological
Markov chain associated to the graph 	, defined by (1). It’s easy to verify that the finite
set of collision arcs that we construct in the proof of Theorem 3 determine positive topolog-
ical entropy (see “Appendix”).

Theorem 3 is still true if we substitute in the statement the set X I with a set X , which is
dense in M and is independent of the set of rationals I . In this case, we do not know if the
set X is open or not, the only thing that we can say about it is that it is dense (see Remark 6).

3 Periodic orbits for the regularised problem

In order to apply Theorem 1, we must find collision arcs with fixed energy E < 0 for the
unperturbed system (L0). A natural choice is to look for periodic orbits through the third
centre C . As a first step, we recall the classical regularisation of singularities of Euler. A deep
analysis of the 2-centre problem was made in the first volume of Charlier (1902). Following
his ideas we get the existence of infinite classes of periodic orbits for the separated problem
obtained after regularisation.1

3.1 Regularisation

We introduce the elliptic coordinates, defined by the map x + iy = cosh(ξ + iφ) from the
cylinder R × S1 to R

2. This transformation has two ramification points at the two primaries
C1 = (0, 0),C2 = (0, π). In elliptic coordinates the Lagrangian Lε becomes

1 A classification of the periodic orbits of the 2-centre problem based on the variation of the energy parameters
can be found in Duan and Yuan (1999) and Duan et al. (1995). We will not need this classification: according
to it our orbits are all of the same kind, because of the constraints that we impose on the parameters.
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Chaotic quasi-collision trajectories in the 3-centre problem 433

Lε = ξ̇2 + φ̇2

2
(cosh2 ξ − cos2 φ)− W (ξ, φ)− εV (ξ, φ) ,

where the potentials W, V have the form

W (ξ, φ) = − 2a cosh ξ

cosh2 ξ − cos2 φ
,

V (ξ, φ) = − 1
√

cosh2 ξ − sin2 φ + (x2
0 + y2

0 )− 2(x0 cosh ξ cosφ + y0 sinh ξ sin φ)
.

Consider the problem on the energy level set {Hε = E}. The Hamiltonian in elliptic coordi-
nates is

Hε − E = 1

cosh2 ξ − cos2 φ
Hε ,

with

Hε = pξ 2 + pφ2

2
− 2a cosh ξ − [E − εV (ξ, φ)] (cosh2 ξ − cos2 φ) ,

where the symbols pξ , pφ denote the conjugate momenta.
The orbits of the problem with Hamiltonian Hε on the energy level {Hε = E} are, up to

time parametrisation, orbits of the system with Hamiltonian Hε on the energy level {Hε = 0}.
The regularised Hamiltonian Hε has no singularities at C1,C2: this means that an orbit for
Hε is an orbit for Hε only if it does not pass through the primaries. The new time parameter
τ is given by

τ =
t∫

0

1

cosh2 ξ(s)− cos2 φ(s)
ds , (2)

and this formula allows us to pass from a solution for the system (Hε), on the zero energy
level, to a solution for (Hε) with energy E .

The Lagrangian corresponding to Hε is

Lε = (ξ ′)2 + (φ′)2

2
+ 2a cosh ξ + [E − εV (ξ, φ)] (cosh2 ξ − cos2 φ) ,

where the prime sign denote derivation with respect to the new time parameter: ξ ′ =
dξ/dτ, φ′ = dφ/dτ .

3.2 The separated problem

We have to find orbits of the 2-centre problem (L0) with fixed energy E < 0, then we put
ε = 0 and study the regularised system on the energy level {H0 = 0}. The Lagrangian is

L0 = (ξ ′)2 + (φ′)2

2
+ 2a cosh ξ + E(cosh2 ξ − cos2 φ).

The system separates and we have the two one-dimensional problems
{
(ξ ′)2

2 − 2a cosh ξ + |E | cosh2 ξ = −E1
(φ′)2

2 − |E | cos2 φ = E1
(3)
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434 L. Dimare

Fig. 1 Potential energy for the
variable ξ when a = 1 and
E = −0.5 .
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Fig. 2 Potential energy for the
variable φ when a = 1 and
E = −0.5
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where we have taken into account that E < 0. If we assume |E | < a, then the potential in the
variable ξ has a local maximum when ξ = 0, with negative maximum value |E |−2a, and two
minima ±ξm , defined by cosh(±ξm) = a/|E |, where the potential takes the value −a2/|E |.
Furthermore, it goes to infinity for ξ → ±∞. Finally, if we choose −E1 > |E | − 2a, i.e. we
consider a level over the separatrix, the motion in ξ is periodic with two inversion points at
ξ− and ξ+, defined by the relation

cosh(ξ±) = − a

E

(

1 +
√

1 + E E1

a2

)

.

The motion in φ is simply the motion of the standard pendulum. Then, in the domain E1 > 0,
we have rotational closed orbits for φ and there exist action-angle variables. The graphs of
the potential energies for ξ and φ separately are plotted in Figs. 1 and 2, when a = 1 and
E = −0.5.

After these considerations, we make the following assumptions:

|E | < a , E1 > 0 , |E | + E1 < 2a. (4)

123



Chaotic quasi-collision trajectories in the 3-centre problem 435

For future convenience, we scale the energy parameter E1 and define

A1 := E1/2a , β := |E |/E1.

In this manner the conditions (4) becomes

A1, β > 0 , 2βA1 < 1 , A1 <
1

1 + β
, (5)

and the regularised system (3) takes the form

⎧
⎨

⎩

(ξ ′)2
4a = cosh ξ − βA1 cosh2 ξ − A1

(φ′)2
4a = βA1 cos2 φ + A1

(6)

With the assumptions (5) on β, A1, both the one-dimensional motions are periodic, with
periods T1, T2 respectively for ξ, φ, which depend only on the values of β, A1. If the periods
T1, T2 have rational ratio T1/T2 ∈ Q, then the corresponding orbit on the cylinder R × S1 is
periodic. To find a periodic orbit for the system (L0), corresponding to a fixed value of the
energy parameter β, we have to show that there is at least a value of A1 for which T1, T2 have
rational ratio. Before doing that we must compute the analytical expressions of the periods.

Lemma 1 Consider the system (6), with the assumptions (5). Then the one-dimensional
motions are both periodic with periods T1, T2, for the coordinates ξ, φ respectively, given by

T1 = 2
√

2a−1

4
√

1 − 4βA2
1

K(κ1) , T2 = 2
√

a−1
√

A1(1 + β)
K(κ2) , (7)

where

κ2
1 =

A1(1 − β)+
√

1 − 4βA2
1

2
√

1 − 4βA2
1

, κ2
2 = β

1 + β
, κ1, κ2 > 0 ,

and K(κ) is the elliptic integral of the first type:

K(κ) = cn−1(0, κ) =
1∫

0

dv
√
(1 − v2)(1 − κ2v2)

.

Proof It is a straightforward computation, starting from the integral expressions of
τ(ξ), τ (φ). �


Remark 1 Observe that limκ→1− K(κ) = +∞ and

κ1 = 1 ⇐⇒
{
β < 1
A1 = 1

1+β
.
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436 L. Dimare

In particular, the second condition means that the motion of ξ takes place on the separatrix
energy level. Then, if β < 1 the period T1 goes to infinity as A1 → 1

1+β :

lim
A1→ 1

1+β
T1 = +∞.

Correspondingly, for T2 we have:

lim
A1→0

T2 = +∞.

We are interested to the limit E → 0, then we can suppose that the parameter E1 is greater
than |E |. It corresponds to make the hypothesis that β < 1. Our definitive assumptions are:

β ∈ (0, 1) , 0 < A1 <
1

1 + β
.

3.3 Periodic orbits

The expressions of the periods T1, T2 given in Lemma 1 and the Remark 1 give the limits

lim
A1→ 1

1+β
T1 = +∞, lim

A1→0
T2 = +∞,

lim
A1→0

T1 = 4√
2a

K( 1√
2
), lim

A1→ 1
1+β

T2 = 2√
a

K(
√

β
1+β ).

(8)

Moreover, from the definition of K(κ), we easily conclude that, fixed β ∈ (0, 1), T2 is a
strictly decreasing function of A1 ∈ (0, 1

1+β ), while T1 is strictly increasing. Indeed, K (κ) is

a strictly increasing function of κ2, κ2 does not depend on A1 and κ2
1 has positive derivative

with respect to A1 given by

∂κ2
1

∂A1
= 1 − β

2
(1 − 4βA2

1)
− 3

2 > 0.

By these observations, the following is shown.

Proposition 1 Let β ∈ (0, 1) be fixed. For any positive rational q ∈ Q
+, there exists a

unique value Â1(β, q) ∈ (0, 1
1+β ) for A1, such that

qT1(β, Â1) = T2(β, Â1). (9)

In particular, the system (6) has a periodic solution in correspondence of the value Â1, with
energy E = −2aβ Â1.

We have seen that for any β ∈ (0, 1) and any positive rational q ∈ Q
+, there is a periodic

orbit for the regularised system (L0) with energy given by the relation E = −2aβ Â1. We
can classify these periodic orbits, identifying each class with the rational number q . Then for
any fixed value of the parameter β ∈ (0, 1), we have exactly one value of Â1 for each class
q ∈ Q

+. Orbits of different classes do not have the same energy E ; more precisely we have

Proposition 2 Let β ∈ (0, 1) be fixed. The function Â1(β, ·) : Q
+ → (0, 1

1+β ), defined by
the equality (9), is strictly decreasing. Moreover, there exist the limits

lim
q→0+ Â1(β, q) = 1

1 + β
, lim

q→+∞ Â1(β, q) = 0.
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Proof If q > q ′ then qT1(β, A1) > q ′T1(β, A1) and we have

T2(β, Â1(β, q)) = qT1(β, Â1(β, q)) > q ′T1(β, Â1(β, q))).

T2 is strictly decreasing with respect to A1, while T1 is strictly increasing, then Â1(β, q) <
Â1(β, q ′).

The monotony of Â1(β, ·) assures the existence of the limits

L1 = lim
q→0+ Â1(β, q) , L2 = lim

q→+∞ Â1(β, q).

Clearly L1, L2 ∈
[
0, 1

1+β
]

and from the knowledge of the limits (8), we easily obtain the

desired values for L1, L2. �


It follows that periodic orbits with many “loops” in ξ and few in the variable φ tend to the
separatrix level for φ; viceversa, orbits with many loops in φ tend to the separatrix level for ξ .
In other words, if we increase only for a single variable the number of loops before the orbit
closes, we will obtain a limit orbit which does not close anymore in finite time. For example,
take q = m/n, with m, n ∈ N. Increasing the number of loops in ξ corresponds to make m
larger and consequently Â1 smaller. The periodic orbit increases the number of “oscillations”
in ξ , while making the same number of revolutions in the variable φ. As m goes to infinity
we have that the corresponding orbit makes an infinite number of times the same trajectory
in ξ , tending to close, but without being able to reach the limit values φ = ±π/2 in a finite
time interval, in the future and in the past respectively: in particular, it does not complete
even a single revolution for φ. Furthermore, the energy E = −2aβ Â1 tends to zero.

We conclude that to form easily a finite set of collision arcs with the same energy, we
should fix q ∈ Q

+ and look for collision arcs only in the set of periodic orbits of the same
class q .

4 Construction of collision arcs

In the previous section we have found infinite classes of periodic orbits for the regularised
problem L0. We would like to use them to construct collision arcs.

The next step is then to show that, among the periodic orbits of the regularised system
(L0), there is at least one which passes through the third centre C . Actually this is true if the
parameter β is sufficiently small. We must also verify that the obtained orbits are solutions
of the not regularised problem (L0), that is they do not pass through the primaries: this is
the most delicate point of the proof of Theorem 3. Moreover, in Sect. 4.3 we will face the
problem of early collisions.

4.1 Periodic orbits through the third centre

Let (ξ0, φ0) ∈ R × S1 \ {(0, 0), (0, π)} be fixed elliptic coordinates for the position of the
third centre C . Then, among the orbits corresponding to the value Â1(β, q), surely there
is one which pass through the centre C , if ξ0 ∈ (ξ−(β, Â1), ξ+(β, Â1)), where ξ± are the
inversion points. Note that in Cartesian coordinates this corresponds to say that the centre C
lies in the region internal to the ellipse defined by the equation ξ = ξ+. By construction, for
each β ∈ (0, 1), we have Â1 ∈ (0, 1

1+β ), then limβ→0 β Â1 = 0 and
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lim
β→0

cosh(ξ±) = lim
β→0

1 +
√

1 − 4β Â2
1

2β Â1
= +∞.

Thus we conclude that

Proposition 3 Fixed a class q ∈ Q
+, there exists β0 > 0, such that for any β ∈ (0, β0) there

is a periodic orbit of system (L0), associated with the value Â1(β, q), which passes through
C, and the coordinate ξ0 is not an inversion point of the corresponding one-dimensional
motion in ξ . �


Note that the periodic orbits associated with the same value of Â1 differ only for the sign
of the velocities ξ ′

0, φ
′
0 at the centre C . Thus we have exactly two orbits on the configuration

space R×S1: if one has velocity (ξ ′
0, φ

′
0) at C , the other has velocity (−ξ ′

0, φ
′
0). The remaining

two possibilities give the same orbits, but with the opposite direction of motion. Moreover
ξ ′

0 �= 0, because ξ0 is not an inversion point. Then the two trajectories corresponding to Â1

meet transversely at C on the cylinder R × S1.
We remark that there is the possibility that the two orbits coincide: it can happen when the

trajectory has an autointersection at (ξ0, φ0) before closing. This is a case of early collision
and it will be treated in Proposition 6.

The obtained solutions are not yet the collision arcs that we desire. In fact, they are orbits
for the regularised system (L0): to be orbits of the 2-centre problem with Lagrangian L0, it’s
enough they do not pass through the primaries C1,C2. This is a delicate problem and to face
it we will need a general result about the regularity of Â1 as function of β, in a neighbourhood
of β = 0.

4.2 Avoiding collision with the primaries

In this subsection we will obtain the central result of the paper: we will show that for almost
all the possible positions of the third centre in R × S1, the periodic orbits through C corre-
sponding to Â1 don’t collide with the primaries for any sufficiently small value of β. It means
that they are solutions of the not-regularised system (L0) and allows us to proceed with the
final verifications, in order to apply Theorem 1.

First of all we would like to recall a useful property which characterises the periodic orbits
of the regularised 2-centre problem passing through one of the primaries. Note that periodic
orbits through the primaries always exist because a primary has ξ = 0.

Proposition 4 Letβ ∈ (0, 1)arbitrarily fixed. Given q ∈ Q
+, let m, n ∈ N such that q = m/n

and (m, n) = 1. Let γ be a periodic orbit of the system (L0) associated with Â1(β, q) and
suppose that it passes through one of the centres C1,C2, which have elliptic coordinates
(0, 0), (0, π) respectively.

If n is odd, then the orbit goes through both the primaries in a period, and the collisions
happens at a time distance of half the period from each other.

If n is even, then the orbit passes through only one of the primaries and it happens two
times in a period, at a time distance of half the period. In the configuration space R × S1 the
orbit has a transverse self-intersection at the position of the centre.

Proof The system (L0) has the form (6). Without loss of generality we can suppose that the
orbit γ (τ) = (ξ(τ ), φ(τ)) passes through one of the centres C1,C2 at time τ = 0. The orbit
γ collides with a primary at time τ �= 0 if and only if ξ(τ ) = 0 and φ(τ) ∈ {0, π}. Then we
must have τ = k T1

2 = j T2
2 , with k, j ∈ Z\{0}. Then k

j = m
n = q and this implies that there
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is i ∈ Z such that k = im and j = in, because (m, n) = 1. It follows that γ (τ) is a primary
if and only if τ = im T1

2 = in T2
2 = i T

2 , where T = mT1 = nT2 is the period of the orbit.
This concludes the proof. �


If we assume q = 1, then, using the above Proposition, we can exclude at once the collision
with the primaries for some simple cases. To simplify notation we place Â1(β) = Â1(β, 1).

Proposition 5 Let γ be a periodic orbit through the third centre C, corresponding to the
value Â1(β), with β < β0, as in Proposition 3. Let (ξ0, φ0) be fixed elliptic coordinates
for the centre C. If φ0 = k π2 , k ∈ Z, or ξ0 = 0, then the orbit γ cannot pass through the
primaries.

Remark 2 Note that the positions with φ0 = k π2 , k ∈ Z, and the ones with ξ0 = 0 correspond
in Cartesian coordinates (x, y) to points on the coordinate axes. In particular, if ξ0 = 0 then
the three centres are collinear on the x-axis, and C lies between the primaries. Ifφ0 = kπ then
the three centres are still aligned on the x-axis, but C is external. Finally, if φ0 = (2k + 1) π2 ,
then the centre C lies on the y-axis and the configuration of the centres is symmetric with
respect to this axis.

In particular, Proposition 5 says that, for q = 1, the periodic orbits through the primaries
intersect the coordinate axes only at the primaries and for ξ = ξ±.

Proof We are in the case q = 1, then from Proposition 4 we know that the orbit γ passes
through a primary if and only if for any time τ such that ξ(τ ) = 0, we haveφ(τ) = kπ, k ∈ Z,
and viceversa. The centre C does not coincide with a primary, then it cannot happen that
φ0 = kπ, k ∈ Z, and ξ0 = 0 at the same time and in these cases the statement is obvious.
Now suppose φ0 = (2k + 1) π2 . The time intervals from C to a position with φ = iπ, i ∈ Z,
are (2 j + 1) T

4 , j ∈ Z, where T = T1 = T2 is the period of γ . Look at the variable ξ : the
only positions which have a time distance of (2 j + 1) T

4 from ξ = 0 are the inversion points
ξ±, but ξ0 �= ξ±. �


Remark 3 Note that the proof of Proposition 5 cannot be generalised to arbitrary fixed values
of q ∈ Q

+. For example, if q = 1/2, then, if a periodic orbit passes through C1, it certainly
passes through a point with elliptic coordinates (ξ, π/2), with ξ ∈ (0, ξ+): in fact the time
passed from the last passage through C1 to this point is T2/4 = T1/8. Nevertheless, it’s easy
to see that even for this case the passage through the primaries is excluded when ξ0 = 0 or
φ0 = kπ : indeed, the time between two positions with ξ = 0 is T1/2 = T2, and the points
with φ0 = kπ along an orbit which passes through a primary must have ξ0 = 0, ξ±.

Our next step is to study the regularity of the function Â1(β, q) with respect to the real
parameter β, to be used for proving the central result of the subsection: in particular, we are
interested in the behaviour near β = 0.

Lemma 2 Let q ∈ Q
+ be fixed. Then Â1 is a smooth function of β ∈ (0, 1) and it can be

smoothly extended to β = 0. In particular, there exists the limit

Â1(0, q) := lim
β→0

Â1(β, q) ∈ (0, 1) ,

the periods T1 and T2 are smooth for β = 0 and

qT1(0, Â1(0, q)) = T2(0, Â1(0, q)).
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Proof Denote by F the function

F(β, A1) := [qT1 − T2](β, A1) ,

defined on the domain D =
{
(β, A1) ∈ R

2| β ∈ (0, 1) , 0 < A1 <
1

1+β
}

.

We observe that κ1, κ2 are C∞ functions of (β, A1) ∈ D , and κ1, κ2 ∈ (0, 1); then, by
derivation under the integral sign, we conclude that F is C∞ on the same domain. Further-
more ∂F

∂A1
� 0, then from the implicit function theorem we can assert the regularity of Â1 on

(0, 1).
We want to extend the definition of the function Â1 to β = 0. First of all we prove that the

function F can be smoothly extended to β = 0. We study T1 and T2 separately. We start from
T1. If β ∈ [0, 1) and A1 <

1
1+β , then (1 − 4βA2

1) � 0. It follows that k2
1 is well defined and

C∞ for β = 0 and that k2
1 ∈ ( 1

2 , 1). Then T1 is C∞ for β = 0. Now see T2. For β ∈ [0, 1),
we have κ2

2 ∈ [0, 1
2 ) and it is a C∞ function of β. To assert the regularity of T2, it was enough

to show κ2
2 < 1, then we surely have T2 defined and smooth for β = 0.

The next step is to verify that for β = 0 there is a unique value Â1(0, q) ∈ (0, 1), such
that F(0, Â1(0, q)) = 0 and that for this value ∂F

∂A1
(0, Â1(0, q)) � 0. From the definition,

we easily see that limκ→0 K(κ) = π
2 , while limκ→1− K(κ) = +∞. Moreover

qT1(0, A1) = 4q√
2a

K

(√
A1 + 1

2

)

, T2(0, A1) = π√
a A1

.

T1(0, A1) is a strictly increasing function of A1, while T2(0, A1) is strictly decreasing, and

lim
A1→0

F(0, A1) = −∞ ,

lim
A1→1− F(0, A1) = 1√

2a

[

lim
A1→1− 4qK

(√
A1 + 1

2

)

− √
2π

]

= +∞.

We conclude that Â1(0, q) is uniquely determined from the equality F(0, Â1(0, q)) = 0,
and Â1(0, q) ∈ (0, 1). Moreover ∂F

∂A1
(0, Â1(0, q)) � 0, then the regularity of the function

Â1 in β = 0 follows from the implicit function theorem. �


Now we are ready to state and show the main result.

Theorem 4 Let q ∈ Q
+ a fixed positive rational number. There is a dense open subset

X ′
q ⊂ R × S1, such that fixed (ξ0, φ0) ∈ X ′

q , there is β0 > 0, such that for each β ∈ (0, β0),

the periodic orbits through (ξ0, φ0), associated with Â1(β, q), do not pass through the prima-
ries C1,C2. In particular, after scaling time, they are orbits of the not-regularised 2-centre
problem with Lagrangian L0, and they have energy E = −2aβ Â1.

Proof Let (ξ0, φ0) ∈ R × S1 be the position of the centre C in elliptic coordinates and
let γ (τ) = (ξ(τ ), φ(τ)) be a periodic orbit associated with Â1(β, q), which pass through
(ξ0, φ0) with velocity (ξ ′

0, φ
′
0). Without loss of generality we can assume φ′

0 > 0 (see
Sect. 4.1). Suppose that the orbit γ passes through a primary C1 or C2: at that instant we
have ξ = 0 and φ ∈ {0, π}. Let q = m

n , with m, n ∈ Z positive integers and (m, n) = 1.
Let �τ be the shortest time interval to go from a primary to the centre C along the orbit γ .
Thanks to Proposition 4, we must have �τ < T

2 , where T = mT1 = nT2 is the period of γ .
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We have two possibilities, corresponding to start from C1 or from C2. The orbit solves
the separated system (6). Then, in the first case

�τ = 1

2
√

a

φ0∫

0

1
√
β Â1 cos2 φ + Â1

dφ + iT2 ,

while in the second case

�τ = 1

2
√

a

φ0∫

0

1
√
β Â1 cos2 φ + Â1

dφ ± T2

2
+ i ′T2 ,

with i, i ′ ∈ Z, i, i ′ ≥ 0, and in the second case with sign ± respectively when φ0 < π, φ0 ≥
π .

The condition�τ < T
2 = nT2

2 implies that i < n
2 and i ′ < n+1

2 . Look now at the variable
ξ . In both cases we must have

�τ = ± 1

2
√

a

ξ0∫

0

1
√

cosh ξ − β Â1 cosh2 ξ − Â1

dξ + j
T1

2
.

with j ∈ Z, j ≥ 0, and the condition �τ < T
2 = mT1

2 implies that j ≤ m.
We denote by P(φ0, β) and Q(ξ0, β) the functions

P(φ0, β) = 1

2
√

a

φ0∫

0

1
√
β Â1 cos2 φ + Â1

dφ ,

Q(ξ0, β) = 1

2
√

a

ξ0∫

0

1
√

cosh ξ − β Â1 cosh2 ξ − Â1

dξ.

From Lemma 2 and the fact that ξ0 is not an inversion point, we deduce that these functions
are smooth in a neighbourhood of β = 0. The condition to pass through a primary for the
first case is

�τ = P(φ0, β)+ iT2 = ±Q(ξ0, β)+ j
T1

2
,

while for the second case it is

�τ = P(φ0, β)± T2

2
+ i ′T2 = ±Q(ξ0, β)+ j

T1

2
.

We have a finite set of possible values for the integers i, i ′, j and the equality qT1 = m
n T1 = T2

holds, then we can summarise all the conditions with the following one: if the orbit γ passes
through a primary, then G+(ξ0, φ0, β) ∈ S or G−(ξ0, φ0, β) ∈ S, where S ⊂ Q is a finite
subset of rationals, depending only on the fixed parameter q ∈ Q

+, and the functions G+,G−
are defined by

G±(ξ0, φ0, β) = P(φ0, β)± Q(ξ0, β)

T1(β, Â1(β, q))
.
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The functions G± are smooth in all the variables: in particular, if G±(ξ0, φ0, 0) /∈ S, there
is β0 > 0, such that G±(ξ0, φ0, β) /∈ S for any β ∈ (0, β0). Then, to exclude the collision
with the primaries for small values of β, it is enough that the centre C belongs to the set

X ′
q = {

(ξ0, φ0) ∈ R × S1| G±(ξ0, φ0, 0) /∈ S
}
.

The set S is finite, then it is clear that X ′
q is open and dense in R × S1. Indeed, we easily see

from the definitions of the functions G± that their partial derivatives with respect to φ0 are
different from zero; then X ′

q is a finite intersection of open dense subset of R× S1. Moreover,
the complement of X ′

q has zero Lebesgue measure. �

Remark 4 When q = 1, it follows easily from Proposition 4 that at least one of the two peri-
odic orbits through C corresponding to the same Â1(β) does not collide with the primaries.
Indeed, without loss of generality we can assume φ′

0 > 0 (see the end of Sect. 4.1). Suppose
φ0 ∈ (0, π2 ): then the time to pass from the centre C1 to the centre C must be less than T

4 ,
where T = T1 = T2 is the period. If ξ0 > 0 the only possibility to collide with the primaries
is that ξ ′

0 > 0, while if ξ0 < 0 we must have ξ ′
0 < 0. For the other possible intervals of values

of φ0 a similar reasoning works.
For our purposes, the fact of having at least one orbit through C that does not collide with

the primaries is not enough: indeed, after we have obtained the collision arcs, we want to
construct collision chains with them, and to do it we need at least two orbits of the system
(L0) with the same energy E , which pass through C with not-parallel tangent fields. The
latter condition will be investigated in the next section.

Remark 5 Theorem 4 would be improved if we showed one of the following:

(i) the partial derivatives ∂G±
∂β
(ξ0, φ0, 0) are zero only for isolated values of (ξ0, φ0);

(ii) the partial derivatives ∂G±
∂β
(ξ0, φ0, 0) do not vanish for every ξ0 ∈ R, φ0 ∈ S1, with

(ξ0, φ0) not a primary.

For case (i) we would have that the collision with the primaries is possible only for isolated
positions (ξ0, φ0) ∈ R × S1, while for case (ii) the collision would be excluded for any
position of the centre C .

At present, we don’t have any of these improvements.

Corollary 1 Let I ⊂ Q
+ be a finite set of positive rationals. There is a dense open sub-

set X ′
I ⊂ R × S1, such that for each (ξ0, φ0) ∈ X ′

I , there is β0 > 0, such that for any

β ∈ (0, β0), the periodic orbits through (ξ0, φ0) corresponding to Â1(β, q), with q ∈ I , do
not pass through the primaries. In particular, they are periodic orbits for the system (L0).

Proof It is an immediate consequence of the construction of the subset X ′
q ⊂ R × S1 in

the proof of Theorem 4: we can apply this theorem for any q ∈ I , then take the intersection
of the sets X ′

q thus obtained, and the resulting set maintains the same properties of the sets
X ′

q . �


Remark 6 Denote byψ : R×S1 → R
2 the map to pass from elliptic to Cartesian coordinates,

ψ(ξ, φ) = cosh(ξ + iφ) = x + iy. The map ψ is open and surjective then, fixed a finite
subset I ⊂ Q

+, the image X I = ψ(X ′
I ) is an open dense subset of R

2. Then we can say
that the thesis of Corollary 1 holds for any position of the centre C in an open dense subset
X I ⊂ M .
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Consider now the set X ′ = ∩q∈Q+ X ′
q : by the classical Baire’s Category Theorem the set

X ′ is dense in R × S1. Then, the set X = ψ(X ′) is dense in R
2 and for any finite subset

I ⊂ Q
+, it is contained in X I . Then we can say that the thesis of Corollary 1 holds for

any position C ∈ X ⊂ M . In this manner the only information that we have lost is that we
don’t know if the set X is open, while we have gained the independence of the dense set X
of positions of C from the set of rationals I . Note that the choice of a sufficiently small β
cannot be independent of I , instead.

4.3 Early collisions

We defined a collision arc in Sect. 2 to be a critical point of the Maupertuis-Jacobi functional
which starts and ends at collision with the centre C and does not meet this centre at interme-
diate times. If we take one of the periodic orbits through C found in the preceding section,
and we pass to Cartesian coordinates, then we cannot be sure that the orbit does not pass
newly through C before a period has passed. This can happen in two ways: when the orbit,
considered in elliptic coordinates, meets the point (ξ0, φ0) and when it meets (−ξ0,−φ0).

When a periodic orbit starting from the centre C passes newly through C in a time shorter
than its period, then we talk of early collision. To understand when an early collision occurs
we need to study the behaviour of periodic orbits a little deeper.

An easy example is given by the case q = 1: in this case any periodic orbit crosses the
y-axis, is symmetric with respect to this axis and, if it does not collide with the primaries,
it has a transverse autointersection at the point of crossing. The symmetry comes from the
fact that in a time interval of half the orbit’s period we have the passage from a point (ξ, φ)
to a point (−ξ, φ + π), that is from a point (x, y) = (cosh(ξ) cos(φ), sinh(ξ) sin(φ)), to its
symmetric (−x, y). The intersections with the y-axis occur when φ = ±π/2 and from one
intersection to the next there is a time interval of half the period. In elliptic coordinates the
orbit passes through a point (ξ, π/2) and after half a period it arrives at (−ξ,−π/2), but
these two points coincide in Cartesian coordinates and are on the y-axis. Then each orbit
autointersects at a point on the y-axis. The transformation of the velocities when we pass
from elliptic to Cartesian coordinates is given by:

v = U (ξ, φ) ·
(
ξ ′
φ′

)
, U (ξ, φ) =

(
sinh ξ cosφ − cosh ξ sin φ
cosh ξ sin φ sinh ξ cosφ

)
, (10)

where U (ξ, φ) is an invertible matrix, except when (ξ, φ) ∈ {(0, 0), (0, π)}. We observe
that U (−ξ,−φ) = −U (ξ, φ). If at the point of intersection with the y-axis ξ = ±ξ+, then
ξ ′ = 0 and the velocity has zero y-component: then the two crossings are not transverse. But
this is the case in which the orbit collides with the primaries, reversing its direction at the
collisions. If ξ �= ±ξ+ instead, the velocities at the point of intersection with the y-axis have
both the components different from zero, then they are transverse, because by symmetry they
differ only in the sign of their x-component.

An illustration of this situation is given in Fig. 3, where we have drawn 19 periodic orbits
corresponding to the value of β = 1/7, included the two orbits that collide with the primaries:
these latter orbits are in green, while the primaries are marked with red asterisks. We have
also drawn the periodic orbit ξ = ξ+: we cannot use it to construct collision arcs, because it
has different energy, but this orbit is interesting in itself because it encloses all the trajectories
with the same values of the parameters (and then the same energy), and it is tangent to all.
The behaviour of a couple of periodic orbits through the same point can be seen in Fig. 4,
where the starting point is marked with a black asterisk.
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Fig. 3 Periodic orbits in
Cartesian coordinates when
a = 1, q = 1, β = 1/7 and the
orbits through the primaries
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Fig. 4 Periodic orbits through
(ξ0, φ0) = ( 2

3 ξ+, 0) in Cartesian
coordinates, when
a = 1, q = 1, β = 1/7
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Then, if q = 1, we can say that there is an early collision at C if and only if C lies on the
y-axis: in this case there is a unique, up to reversing the direction of motion, periodic orbit
through C .

In particular, we see that the period does not change in the passage from elliptic to Carte-
sian coordinates. Actually, this holds for any value of the parameter q ∈ Q

+. In fact, if we
take a periodic orbit that starts from a point (ξ0, φ0), which is not a primary, we see that the
matrix U (ξ0, φ0) given by (10) is invertible and U (−ξ0,−φ0) = −U (ξ0, φ0). Then the only
possibility to have a shorter period when we pass to Cartesian coordinates is that the orbit
passes through (−ξ0,−φ0), with velocity (−ξ ′

0,−φ′
0). This is clearly impossible because the

sign of φ′ never changes along the orbit.
Anyway, the situation complicates if q �= 1 and we cannot get a global view easily: as

an example, in Fig. 5 we have drawn the orbits through the point (ξ0, φ0) = ( 2
3 ξ+, 0), when

a = 1, β = 1/7 and q = 2. To better see the autointersections we have put an enlargement
in Fig. 6.

We note the following remarkable fact:

Proposition 6 Let (ξ0, φ0) ∈ R × S1 be fixed and consider a periodic orbit (ξ(τ ), φ(τ))
through this point, corresponding to some fixed values of β, q. If (ξ(τ ), φ(τ)) passes newly
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Fig. 5 Periodic orbits through
(ξ0, φ0) = ( 2

3 ξ+, 0) in Cartesian
coordinates, when
a = 1, q = 2, β = 1/7
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Fig. 6 An enlargement of Fig. 5,
where the autointersections of the
two orbits are visible
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through (ξ0, φ0) before closing, then it is the unique periodic orbit through (ξ0, φ0) corre-
sponding to the same fixed values of β, q, up to reverse the direction of motion. Moreover, if
ξ0 is not an inversion point, the orbit has a transverse autointersection at (ξ0, φ0).

Proof If the initial velocity at (ξ0, φ0) is (ξ ′
0, φ

′
0), then the only other possible velocity through

the same point along the same orbit is (−ξ ′
0, φ

′
0). If the orbit arrives at (ξ0, φ0) before that a

period is passed, then it must happen with velocity (−ξ ′
0, φ

′
0), and this implies that the two

possible periodic orbits through (ξ0, φ0) coincide. �

At this stage, we know completely early collisions only for the case q = 1. In general, we

can only say that early collisions cannot be excluded: we don’t have any knowledge about
the conditions that determine them. Anyway, it is not a problem for the proof of Theorem 3.
When an early collision occurs, we will take as collision arc the partial arc of the periodic
orbit through C , which starts from C and ends at the first next passage through C . The final
time T of the collision arc in this case will not be the period, but it will be the time of the
first return to C .

Finally, we want to stress that a collision arc must end at C with one of the four possi-
ble velocities determined by the choice of the parameters, which in elliptic coordinates are
{±(ξ ′

0, φ
′
0),±(−ξ ′

0, φ
′
0)}, where (ξ ′

0, φ
′
0) is the initial velocity of the arc.

123



446 L. Dimare

5 Nondegeneracy and direction change

In this section we will verify that the collision arcs obtained from Corollary 1 satisfy the non-
degeneracy condition and moreover they meet transversely at the centre C : this will allow us
to apply Theorem 1 and derive our final result, Theorem 3.

5.1 Nondegeneracy

Let q ∈ Q
+ be fixed and m, n ∈ Z be positive coprime integers such that q = m/n. Denote

by (ξ0, φ0) ∈ R × S1 the position of the centre C in elliptic coordinates. Suppose that
(ξ0, φ0) ∈ X ′

q , where the set X ′
q ⊂ R × S1 is the one given by Theorem 4. Take β small

enough, so that the periodic orbits of system (L0) corresponding to Â1(β, q) and passing
through C do not pass through the primaries. Let γ (t) be one of the resulting collision arcs
for the system (L0), which starts from the centre C with velocity v0 and whose energy is
E = −2aβ Â1(β, q). Then γ (t) solves the system

f (C, v0, T ) = C , H0(C, v0) = E . (11)

As reminded in Sect. 2, to show the nondegeneracy of γ it is sufficient to verify that the
Jacobian of system (11) is nonzero. Actually we will verify a slight variant of this condition.

It is convenient to consider as variables the parameters (β, A1) instead of the coordinates
of the initial velocity v0. This procedure is right only if there is a local diffeomorphism which
allows to pass from v0 to (β, A1). The transformation of the velocities in the passage from
elliptic to Cartesian coordinates is given by the invertible matrix U (ξ0, φ0) defined by (10).
We know that the orbit γ corresponds to a solution of the separated system (6), and in elliptic
coordinates we have (ξ̇0, φ̇0) = dτ

dt (0)(ξ
′
0, φ

′
0), with dτ

dt (0) = (cosh2(ξ0) − cos2(φ0))
−1.

Then v0 is a C∞ function of (ξ ′
0, φ

′
0). From the system (6) we see that (ξ ′

0, φ
′
0) is a C∞

function of (β, A1) and then v0 is. By the same reasoning we see that (β, A1) is locally a
C∞ function of the velocity (ξ ′

0, φ
′
0) and then of v0.

For all nearby trajectories from the same initial point C , we evaluate the m-th positive
instant of time at which they meet the ellipse ξ = ξ0, with the velocity ξ̇ equal to the initial
velocity ξ̇0 �= 0; then we consider the time distance from the n-th passage through φ0, which
is given by nF(β, A1), where

F(β, A1) = [qT1 − T2](β, A1).

This is equivalent to consider the value of the angle coordinate φ at the instant at which we
have the m-th oriented crossing of the line ξ = ξ0.

Note that in this manner the time variable T is fixed as function of (β, A1), T =
mT1(β, A1), so that we have reduced the order of system (11) of a unit. The orbit γ sat-
isfies

F(β, A1) = 0 , −2aβA1 = E ,

and it is nondegenerate if the Jacobian determinant of this system at the solution (β, Â1(β, q)),
corresponding to the orbit γ , is different from zero.

The Jacobian matrix is

J =
(

∂F
∂β

∂F
∂A1−2a A1 −2aβ

)
.
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As observed in Sect. 3.3, we have ∂F/∂A1 � 0. Furthermore, we have that Â1(β, q) ∈
(0, 1

1+β ). These properties remain true for β = 0, as proved in Lemma 2, and moreover

T1, T2 are C∞ functions of (β, A1). It follows that when β = 0 and A1 = Â1(0, q), the deter-
minant is well defined and different from zero, and by regularity the same is true also for
values β, Â1(β, q), with β > 0 sufficiently small.

We conclude that the collision arc γ is nondegenerate for β small enough.

5.2 Direction change

Let q ∈ Q
+ be fixed and m, n ∈ Z be positive coprime integers such that q = m/n. In order

to construct collision chains to which apply Theorem 1, we should have at least two collision
arcs which start and arrive at the centre C with transverse tangent fields.

From the results of Sect. 4, if in elliptic coordinates our centre (ξ0, φ0) belongs to the
dense open subset X ′

q ⊂ R × S1, then for small enough values of β, after reparametrisation

of time and change of coordinates, the orbits associated to Â1(β, q) do not collide with the
primaries and they are periodic orbits for the not-regularised two-centre problem (L0). As
observed in Sect. 4.1, there are exactly two orbits corresponding to Â1(β, q), which pass
through the centre (ξ0, φ0) with velocities (ξ ′

0, φ
′
0), (−ξ ′

0, φ
′
0) respectively. Changing sign to

φ′
0, we obtain simply the same orbits, with reversed direction of motion. Moreover, the two

transverse orbits coincide in the case of an autointersection at (ξ0, φ0), as we have seen in
Proposition 6.

Now consider the two orbits associated with Â1(β, q): suppose they pass through the
centre (ξ0, φ0) at time τ = 0 and that their velocities are (ξ ′

0, φ
′
0), (−ξ ′

0, φ
′
0). They are obvi-

ously transverse at the point (ξ0, φ0) in the cylinder R × S1, because we have chosen β
small enough to have ξ ′

0 �= 0 (see Proposition 3). We must verify that this transversality is
conserved after time reparametrisation and changing from elliptic to Cartesian coordinates.
The reparametrisation of time is given by formula (2): it maintains the directions, because
the centre (ξ0, φ0) is not a primary. As seen in Sect. 4.3, the passage to Cartesian coordinates
is given by an invertible matrix U (see (10)), then the transversality is conserved.

Look now at the other possible elliptic coordinates for C : they are (−ξ0,−φ0), then the
possible velocities at this point are the same as the ones at (ξ0, φ0). It follows that there are
no more orbits through C that we can consider, for the same values of β, q . We conclude that
there are two transverse directions for the collision arcs starting from C . In correspondence
of the same values of the parameters β, q we obtain four collision arcs, divided in pairs of
arcs with transverse initial velocities.

Finally, we observe that, in correspondence of some fixed values of β, q , if an early col-
lision occurs at C , then there is a unique (up to reverse the direction of motion) periodic
orbit through C with transverse autointersection at C . Indeed, since the passage through the
primaries is excluded, the matrix U is invertible and we cannot have inversion points along
the orbit, because φ′ �= 0.

We summarise the results of this and the preceding subsection in the following

Proposition 7 Let I ⊂ Q
+ be a finite set of positive rationals. Suppose that the centre C

has elliptic coordinates (ξ0, φ0) ∈ X ′
I , where X ′

I ⊂ R × S1 is the dense subset given by
Corollary 1. Then, there is β0 > 0 such that for each β ∈ (0, β0) and for each q ∈ I , there
are exactly four collision arcs at C for the system (L0), associated with the value Â1(β, q),
which are nondegenerate. Moreover, the four collision arcs divide into two pairs, according
to their initial velocities at C: any couple is formed by two arcs with opposite initial velocities
at C, and each arc in one pair has transverse initial velocity to each arc in the other.
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5.3 Proof of Theorem 3

We’re going to conclude the proof of Theorem 3.
Let I ⊂ Q

+ be a finite set of positive rationals and X I = ψ(X ′
I ) ⊂ M as in Remark 6.

The energy of the collision arcs at C is given as function of the parameters (β, q), q ∈ I , by
the relation

E = −2aβ Â1(β, q).

Thanks to the regularity of the function Â1(β, q) for β ∈ [0, 1) and to the fact that Â1(0, q) ∈
(0, 1) (Lemma 2), to require β small enough is equivalent to ask for the absolute value of the
energy E to be small enough. In particular, if β < β0, with β0 sufficiently small, then the
energy E(β, q) is a strictly decreasing function of β:

E(·, q) : (0, β0) → (−E0, 0) ,

with E(0, q) = 0, E(β0, q) = −E0 < 0. It follows that all the previous results can be stated
using the energy parameter E instead of β.

If we choose the energy E < 0 sufficiently close to zero, then for each q ∈ I , there are four
nondegenerate collision arcs of energy E through the centre C : they are pieces of periodic
trajectories on the configuration space M = R

2\{C1,C2}.
For β fixed, the energy increase with the class q (see Proposition 2). This means that we

cannot state a general result valid for a fixed energy E and any q ∈ Q
+. On the other hand,

we don’t need such a result, because to apply Theorem 1 we only want a finite number of
collision arcs. What is certainly true is that for any finite set of classes I ⊂ Q

+ of cardinality
i , we can choose a small enough energy value E < 0 to form a set of 4i collision arcs of
energy E , by taking for each q ∈ I the four arcs obtained by our procedure.

By the monotony of the function Â1(q, β)with respect to q and its relation with the energy
E , we are sure that the arcs with the same energy E , but different classes, cannot have the
same value of Â1. Then the velocities ξ ′

0, φ
′
0 cannot coincide (see system (6)). However, we

can’t state that collision arcs of different classes determine a different set of directions at the
point C . What we can certainly assure is that if we fix an arc of class q ∈ I , then for each
class q ′ ∈ I , not necessarily different from q , we can always choose a pair of arcs of class
q ′, which start at C with directions transverse to the velocity with which the arc of class q
has arrived at C .

Thus, for any fixed sequence {qk}k∈Z, qk ∈ I , we can construct infinite collision chains
{γk}k∈Z, such that any γk is a piece of a periodic orbit of the 2-centre problem (L0) of
class qk .

The assumptions of Theorem 1 are all satisfied and we can apply this theorem and then
Theorem 2 to get our main result Theorem 3, which is now definitely proved.

Acknowledgments I wish to thank P. Negrini for having introduced me to the subject.

Appendix: Positivity of entropy

In this appendix we give a proof of the positivity of the topological entropy of the Poincaré
map for the case at hand. We do it by computing the exponential growth rate of the number
of periodic orbits.

By local uniqueness, if (γki )i∈Z is a periodic collision chain, then the shadowing orbit is
also periodic. We compute for each positive integer n the number Pn of periodic collision
chains with period n and take the limit
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p = lim sup
n→∞

log(Pn)

n
.

Let q be fixed and consider only the collision arcs of class q . They are exactly four,
corresponding to the two possible transverse directions at the centre C . We distinguish two
cases:

(i) there are exactly two transverse periodic orbits of the unperturbed problem through C
(up to reverse the direction of motion), and the arcs are given by the entire periodic
orbits;

(ii) there is only one periodic orbit of the unperturbed problem through C (up to reverse the
direction of motion), with a transverse autointersection at C , and the arcs correspond
to parts of the periodic orbit between two successive passages through C .

In case (i), for a sequence (γki )i∈Z, to be a collision chain we must have that γ̇ki (0) =
γ̇ki (Tki ) �= ±γ̇ki+1(0). Then we cannot have periodic orbits with odd period n = 2m +1,m ∈
Z

+ and P2m+1 = 0 for each m ∈ Z
+. The number of periodic orbits with even period is

P2m = 22m+1 instead, then p = log 2.
In case (ii), for (γki )i∈Z to be a collision chain , we must have that γ̇ki (0) = ±γ̇ki+1(0),

because there are only four possible velocities at C , divided in two pairs each containing the
parallel ones, and any arc γki arrives at C with velocity γ̇ki (Tki ) transverse to the initial one
γ̇ki (0). Then Pn = 2n+1, for any n ∈ Z

+, and again p = log 2.
We conclude that the entropy corresponding to any choice of I ⊂ Q

+ is htop ≥ log 2.
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