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This paper presents an analysis of an asteroid deflection method based on multiple solar concentrators. A model of the deflection through the sublimation of the surface material of an asteroid is presented, with simulation results showing the achievable impact parameter with, and without, accounting for the effects of mirror contamination due to the ejected debris plume. A second model with simulation results is presented analyzing an enhancement of the Yarkovsky effect, which provides a significant deflection even when the surface temperature is not high enough to sublimate. Finally the dynamical model of solar concentrators in the proximity of an irregular celestial body are discussed, together with a Lyapunov-based controller to maintain the spacecraft concentrators at a required distance from the asteroid.

Introduction

Over the last few years, the possible scenario of an asteroid threatening to impact the Earth has stimulated intense debate among the scientific community about possible deviation methods. Small celestial bodies like Near Earth Objects (NEO) have become a common subject of study because of their importance in uncovering the mysteries of the formation, evolution and composition of the solar system. Among all asteroids, NEO's have stepped into prominence because of two important aspects: they are among the easiest celestial bodies to reach from Earth, in some cases, they can be reached with less demanding trajectories than a simple Earth-Moon trajectory and, even more meaningful, they may represent a threat to our planet.

As of January 2010, there are 1087 known Potentially Hazardous Asteroids (PHA) out of a current total of 8396 detected NEOs. Of the PHAs detected, 145 are estimated to be over 1 km in diameter (IAU Minor Planet Center 2010). For NEO's between 50 and 100 m in diameter (the lower limit of an object's atmospheric penetration), it is estimated there are over half a million NEO's with an impact frequency of one per 1000 years (Near-Earth Object Science Definition Team 2003). Each of these impacts permanently alters the characteristics of our planet to varying degrees. These events, and the risks they pose to our fragile ecosystem, have made the space community turn their attention to the issue of NEO's. Evidence of this new found interest is the prolific and successful asteroid exploration program of the last decade, with many completed missions such as NEAR [START_REF] Mcadams | Maneuver history for the NEAR mission-launch through Eros orbit insertion[END_REF], Deep Space 1 [START_REF] Rayman | Results from the deep space 1 technology validation mission[END_REF], Deep Impact [START_REF] Hampton | An overview of the instrument suite for the deep impact mission[END_REF] and Stardust [START_REF] Stephan | Assessing the elemental composition of comet 81P/Wild 2 by analyzing dust collected by stardust[END_REF], ongoing missions like Rosetta [START_REF] Glassmeier | The rosetta mission: Flying towards the origin of the solar system[END_REF], Hayabusa [START_REF] Nakamura | Asteroids and their collisional disruption[END_REF] and Dawn [START_REF] Russell | Dawn mission to Vesta and Ceres[END_REF]) and future missions such as Marco Polo [START_REF] Barucci | MARCO POLO: Near earth object sample return mission[END_REF].

In order to predict the effects of a deflection strategy, some studies have addressed the asteroid deviation problem either with an analytical approach (Colombo et al. 2009;[START_REF] Conway | Near-optimal deflection of earth-approaching asteroids[END_REF][START_REF] Izzo | On the deflection of potentially hazardous objects[END_REF][START_REF] Scheeres | The mechanics of moving asteroids[END_REF][START_REF] Vasile | Optimal impact strategies for asteroid deflection[END_REF] or by means of a numerical procedure based on a n-body model [START_REF] Carusi | Deflecting NEOs in route of collision with the earth[END_REF]. Other studies addressed the optimal design of transfer trajectories to asteroids [START_REF] Perozzi | Resonant fly-by missions to near earth asteroids[END_REF]Colombo et al. 2009).

A few authors have performed a partial comparative assessment of the numerous proposed mitigation strategies [START_REF] Hall | Dynamics and control problems in the deflection of Near-Earth Objects[END_REF]. In a recent work [START_REF] Sanchez Cuartielles | Multi-criteria comparison among several mitigation strategies for dangerous near earth objects[END_REF] a comprehensive set of deflection methods were compared according to the following criteria: mass into space, achievable deflection, warning time and technology readiness. No ideal scenario was considered but a large number of realistic mission options, including launch and transfer to the asteroid, were simulated.

From the comparison, the conclusion was that nuclear stand-off explosions were the most effective on the widest range of asteroids. The second best was solar sublimation with all the other methods order of magnitude less effective (according to the proposed comparison criteria). Although nuclear explosions were the most effective, a subsequent study by [START_REF] Sanchez | Consequences of asteroid fragmentation during impact hazard mitigation[END_REF] demonstrated that for both nuclear explosions and kinetic impacts, a resulting fragmentation of the asteroid could potentially increase the risk of impact(s) on the Earth.

This paper presents an analysis of the performance of a solar ablation-based technique for the deflection of NEO's. The paper starts with an introduction to the concept of solar sublimation, followed by a deflection model. The third section presents a model of the achievable deflection action due to a combination of the Yarkovsky effect [START_REF] Vokrouhlicky | On the observability of radiation forces acting on near-earth asteroids[END_REF] and solar radiation pressure. A fourth section follows with some results on the achievable deviation with and without considering the contamination of the solar concentrators and with the combined Yarkovsky and solar pressure effects. The paper concludes with the derivation of a Lyapunov controller to maintain the solar concentrators in the proximity of the asteroid, as dictated by the orbital dynamic model.

The solar sublimation concept

In 1992, Lunan and more extensively in 1993, [START_REF] Melosh | Solar asteroid diversion[END_REF], [START_REF] Melosh | Non-nuclear strategies for deflecting comets and asteroids[END_REF] proposed the use of a mirror (solar concentrator) to focus the solar energy onto a small portion of the surface of an asteroid. The resulting heat would sublimate the surface material creating a jet of gas and dust that would produce a continuous thrust. A conceptually similar idea is to use a laser beam, either powered by a nuclear reactor or solar arrays, to induce the required sublimation of the surface material [START_REF] Park | Deflection of earth-crossing asteroids/comets using rendezvous spacecraft and laser ablation[END_REF][START_REF] Yoo | Spacecraft formation flying for earth-crossing object deflections using a power limited laser ablating[END_REF].

In a more recent study [START_REF] Kahle | Physical limits of solar collectors in deflecting earth-threatening asteroids[END_REF] pointed out a number of technological limitations and considerations on the basic solar collector idea proposed by Melosh et al. In particular:

-If the light of the Sun is focused directly onto the surface of the asteroid, in order to have a high enough power density the mirror should be at relatively close distance from the asteroid, e.g. a separation distance of 1.25 km for a 630 m diameter mirror. As a consequence, the mirror should operate and manoeuvre under the effect of the irregular gravity field of the asteroid. Furthermore, at such a distance the contamination of the primary mirror, due to the ejected gasses, would be significant. A longer distance would imply a larger mirror with a consequent increased difficulty in the control of the attitude. -If a secondary steering mirror is used, the contamination of the primary can be reduced but the secondary would suffer the full contamination problem. Kahle et al. proposed some solutions to the contamination issue but all imply a significant increase in the complexity and mass of the system. -The deployment and control of a large mirror represents a significant technological challenge and, moreover, a single point failure for the entire mission. -The total light pressure on the primary mirror would induce a significant force on the spacecraft requiring constant orbit control. -The high level of solar power collected by the primary reflector would force the secondary reflector to operate at extremely high temperatures, in particular if the surface is contaminated. When this happens, absorptivity is increased, causing a further reduction in reflectivity.

The deflection model presented in this paper includes the effect of the contamination of the solar concentrators according to the contamination model proposed by [START_REF] Kahle | Physical limits of solar collectors in deflecting earth-threatening asteroids[END_REF].

Rather than considering a single large mirror, we will analyze the case of multiple smaller mirrors, each superimposing their beams on the same small spot on the surface of the asteroid.

Deflection model

The asteroid (99942) Apophis is chosen as a test case based on its degree of threat. Compared to other near Earth objects, Apophis has a relatively high probability of impacting the Earth in April 2036, although the actual cumulative impact probability is low, only 2.2 × 10 -5 [START_REF] Giorgini | Predicting the earth encounters of (99942) apophis[END_REF]). Whether the asteroid will impact the Earth is contingent upon the asteroid's fly-by of Earth in 2029. During that event Apophis could pass through a gravitational keyhole, a precise region in space no more than about 400 m across, which would set up resonances that would increase the probability of future impacts starting on 13 April 2036.

As with nearly all NEO's, the orbital data for Apophis has been gained from Earth-based observations, which are limited based on the visibility of the asteroid from the astronomy station, availability of the station, etc. [START_REF] Chesley | Potential impact detection for near-Earth asteroids: The case of 99942 Apophis (2004 MN 4 )[END_REF]. As a result, the present knowledge of the orbit of Apophis is not good enough to provide an accurate long term prediction of its evolution. This underlines the need for longer term measurements from a space-based platform [START_REF] Schweickart | A call to (considered) action: International space development conference[END_REF]. 1 give the orbital and physical data of the asteroid used in this study, and if known, their estimated uncertainty (NASA Near Earth Object program 2010). The dimensions for the asteroid shape are estimated using an ellipsoidal model,

a i = √ 2d a b i = d a c i = d a √ 2 (1) 
where a i ≥ b i ≥ c i are the three radii along the three orthogonal axes [START_REF] Delbò | Albedo and size determination of potentially hazardous asteroids: (99942)[END_REF], and d a is estimated average diameter based on the observed magnitude, given in Table 1.

Figure 1 shows the orbit of Apophis relative to nearby planets. The minimum orbital intersection distance (MOID) is the separation distance at the closest point between two orbits, e.g. Apophis and the Earth. The deviation distance is defined here as the difference in position between the original, undeviated orbit k a 0 and the deviated orbit k a dev at t moid (Colombo et al. 2009) (see Fig. 2). Figure 3 illustrates the definition and nomenclature for the references frames used here.

Non-linear equations were derived for determining the deviation vector r dev = r a devr a 0 as a function of the ephemeris in the Hill reference frame A centred on the asteroid [START_REF] Maddock | Design of optimal spacecraft-asteorid formations through a hybrid global optimization approach[END_REF]

, with k = k a dev -k a 0 = [ a, e, i,
, ω, M] t giving the difference in Keplerian parameters between the undeviated and deviated orbit.

r dev = r a dev - ⎡ ⎣ r a 0 0 0 ⎤ ⎦ (2) = ⎡ ⎣ ξ cos(θ a 0 + θ )+ sin(θ a 0 + θ ) sin θ a 0 -cos(i a 0 + i) sin cos θ a 0 -ζ cos(θ a 0 + θ )+ sin(θ a 0 + θ ) cos θ a 0 + cos(i a 0 + i) sin sin θ a 0 -cos(θ a 0 + θ ) sin sin i a 0 + sin(θ a 0 + θ ) ⎤ ⎦
where is the coordinate system transformation matrix, k = [a, e, i, , ω, ν] t are the set of standard Keplerian elements with the true anomaly ν, θ = ν + ω is the true latitude, and, 

= cos i a 0 sin(i a 0 + i) -cos cos(i a 0 + i) sin i a 0 (3a) = sin i a 0 sin(i a 0 + i) + cos cos(i a 0 + i) cos i a 0 (3b) ξ = cos cos θ a 0 + cos i a 0 sin sin θ a 0 (3c) ζ = cos sin θ a 0 -cos i a 0 sin cos θ a 0 (3d)
The change in the orbital parameters is calculated by numerically integrating the Gauss planetary equations using a thrust vector u dev =[u v u n u h ] t induced by the deflection method:

k = t i t 0 dk(u dev ) dt dt (4)
In the following we will assume that the deflection action is always aligned with the heliocentric velocity of the asteroid, therefore u n = 0 and u h = 0. The Gauss equations k are given by [START_REF] Battin | An Introduction to the Mathematics and Methods of Astrodynamics[END_REF],

da dt = 2a 2 υ μ a u v (5a) de dt = 1 υ 2 (e + cos ν) u v - r a sin ν a u n (5b) di dt = r a cos θ h u h (5c) d dt = r a sin θ h sin i u h (5d) dω dt = 1 eυ 2 sin ν u v + 2e + r a a cos ν u n - r a sin θ cos i h sin i u h (5e) dν dt = h r 2 - 1 eυ 2 sin ν u v + 2e + r a a cos ν u n (5f) d M dt = n a - √ a p eaυ 2 sin ν 1 + e 2 r a p u t + r a cos ν a u n (5g) with, p = a √ 1 + e υ = 2μ r a - μ a n a = μ a 3
where n a is the mean orbital motion of the asteroid, and μ is the gravitational constant of the Sun. Colombo et al. (2009) determined that the change in angular location, in this case given by the mean anomaly, calculated at the MOID is,

M = t i t 0 d M dt dt + n a 0 (t 0 -t moid ) + n a i (t moid -t i ) (6)
Equation ( 2) together with ( 5) and ( 6) give the deviation of the orbit of the asteroid at the time of the MOID, regardless of the actual position of the Earth, but not the close approach or the minimum orbit interception distance with respect to the Earth. [START_REF] Vasile | Optimal impact strategies for asteroid deflection[END_REF] demonstrated that a good estimation of the minimum interception distance can be obtained by projecting the deviation onto the b-plane of the Earth at the time of the MOID (assuming that the Earth is at the point of the MOID). In the test section, therefore, we will present the variation of the impact parameter (or b parameter) on the b-plane of the Earth. The thrust produced by the deflection method is a direct function of the rate of the expelled surface matter [START_REF] Sanchez Cuartielles | Multi-criteria comparison among several mitigation strategies for dangerous near earth objects[END_REF],

dm ex p dt = 2n sc v rot y max y 0 t out t in 1 H (P in -Q rad -Q cond ) dt dy (7)
where [t in , t out ] is the duration for which a point is illuminated, [y 0 , y max ] are the limits of the vertical illuminated surface area (i.e. orthogonal to the direction of rotation of the asteroid), H is the enthalpy of sublimation, v rot is the linear velocity of a point as it travels horizontally (i.e., orthogonal to y) through the illuminated spot area and n sc is the number of spacecraft in the formation.

The input power per unit area due to the solar concentrators is given by,

P in = σ sys C r (1 -ς a )S 0 r au r a 2 (8)
where ς a = 0.2 is the albedo of the asteroid, S 0 = 1367 W/m 2 is the solar flux at 1 AU and scaled to the Sun-asteroid distance r a , σ sys is the system efficiency, and C r is the concentration ratio (the ratio between the power density from the Sun on the mirror surface, and that of the spot area on the asteroid).

The heat loss due to black-body radiation and the conduction loss are defined, respectively, as,

Q rad = σ ε bb T 4 (9) Q cond = (T subl -T 0 ) c a k a ρ a πt ( 10 
)
where σ is the Stefan-Boltzmann constant, bb is the black body emissivity, T is the temperature and c a , ρ a and k a are, respectively, the heat capacity, density and thermal conductivity of the asteroid. For the asteroid Apophis, c a = 750 J/kg•K based on the average value for silicate materials, k a = 2 W/K/m and ρ a = 2600 kg/m 3 [START_REF] Remo | Classifying and modeling NEO material properties and interactions[END_REF]). The sublimation temperature assumed is that for forsterites, T subl = 1800 K [START_REF] Wang | Evaporation of single crystal forsterite: Evaporation kinetics, magnesium isotope fractionation, and implications of mass-dependent isotopic fractionation of a diffusion-controlled reservoir[END_REF]), with T 0 set to 278 K. The induced acceleration due to the sublimation process can then determined by [START_REF] Sanchez Cuartielles | Multi-criteria comparison among several mitigation strategies for dangerous near earth objects[END_REF],

u sub = v ṁexp m a va ( 11 
)
where va is direction of velocity vector of the NEO, 2 π is the scattering factor, v is the average velocity of the debris particles according to Maxwell's distribution of an ideal gas:

v = 8k b T subl πM Mg 2 Si O 4 (12)
where k b is the Boltzmann constant, and M Mg 2 Si O 4 is the molecular mass of fosterite. The scattering factor is computed as the average of all possible thrust directions assuming that the thrust can point randomly at any angle α t between 0 and π, therefore = 1 π π 0 cos α t dα t [START_REF] Sanchez Cuartielles | Multi-criteria comparison among several mitigation strategies for dangerous near earth objects[END_REF]). Note that some preliminary experiments demonstrate that the plume is actually more focused. However, assuming a uniform distribution of the thrust pointing direction over an angle of 180 • is a conservative choice.

The remaining mass of the asteroid m a is calculated by numerically integrating (7). This induced acceleration u dev is used with the Gauss equations in (5) in order to determine the change in the NEO orbit due to the solar sublimation.

Contamination model

The contamination of the mirror surfaces due to the debris plume is modeled based on the work by [START_REF] Kahle | Physical limits of solar collectors in deflecting earth-threatening asteroids[END_REF] The study is based on a number of initial assumptions regarding the expansion of the plume and sublimation process. The first assumption holds that the sublimation process is comparable to the generation of tails in comets. The asteroid is assumed to contain a reservoir of material underneath the surface, with the gas expanding both outwards as expected, and inwards through a throat into vacuum within the asteroid itself. This assumption holds true, for example, for a loose rubble-pile asteroid model. The second assumption is that the plume expansion is similar to the expansion of gas of a rocket engine outside the nozzle.

The density of the expelled gas ρ ex p is computed analytically,

ρ ex p (r s/sc , ϕ) = j c ṁexp v A spot d spot 2δr + d spot 2 (cos ) 2/(κ-1) (13)
where r s/sc is the distance from the spot on the surface of the asteroid and the spacecraft, and = πϕ/2ϕ max where ϕ is the angle between the spot-spacecraft vector and the y-axis of the Hill reference frame. The jet constant j c was set to 0.345, the maximum expansion angle ϕ max = 130.45 • , and adiabatic index κ = 1.4, based on the values for diatomic particles [START_REF] Legge | Modelling control thrust plume flow and impingement[END_REF].

The position vector r s/sc from the spot to the spacecraft is defined as:

r s/sc = ⎡ ⎣ x + r ell sin w a t cos(w a t + θ v a ) -r ell cos w a t sin(w a t + θ v a ) y -r ell cos w a t cos(w a t + θ v a ) -r ell sin w a t sin(w a t + θ v a ) z ⎤ ⎦ (14)
where the radius of the ellipse is given by,

r ell = a i b i b i cos(w a t + θ v a ) 2 + a i sin(w a t + θ v a ) 2 (15)
and, with reference to Fig. 3, the position of the spacecraft with respect to the center of the asteroid is δr = [x, y, z] T . We assume here that the asteroid is spinning around the z-axis with a rotational velocity w a . The direction of the velocity of the asteroid in the heliocentric reference frame projected onto the Hill reference frame A is θ v a . In other words, in order to have a deflection thrust aligned with the velocity of the asteroid, the spot is assumed to be at an elevation angle over the y-axis equal to θ v a .

The third assumption made is that all the particles impacting the surface of the mirror condense and stick to the mirror. The exhaust velocity is constant, therefore the thrust depends only on the mass flow. A higher thrust results in a higher mass flow and thus in a faster contamination. Following the approach used to compute the contamination of surfaces due to out-gassing, a view factor ψ v f was added equal to the angle between the normal to the mirror and the incident flow of gas. The resulting variation of the thickness of the material condensing on the mirror can be computed with:

dh cnd dt = 2 v ρ ex p ρ layer cos ψ v f (16)
The average debris velocity v is multiplied by a factor of 2 to account for the expansion of the gas in a vacuum. The layer density ρ layer is to set to 1 g/cm 3 . The power density on the asteroid surface is decreased based on the contamination of the mirrors. A degradation factor τ is applied to the power beamed to the asteroid surface, based on the Lambert-Beer-Bouguer law [START_REF] Kahle | Physical limits of solar collectors in deflecting earth-threatening asteroids[END_REF],

τ = exp -2ηh cnd ( 17 
)
where η = 10 4 /cm is the absorption coefficient for forsterite. Equation ( 16) is numerically integrated, along with the Gauss equations in (5), for the period of the mission.

Tugging effect

The spacecraft will librate at a distance δr from the asteroid, thus exerting a tugging effect on it [START_REF] Gong | Formation flying solar-sail gravity tractors in displaced orbit for towing near-earth asteroids[END_REF]). The tugging acceleration u tug is given by:

u tug = -n sc Gm sc δr 2 δ r ( 18 
)
where G is the universal gravity constant. The mass of the spacecraft m sc is dictated mainly by the overall mass of the mirror. It is assumed here that the mirror has an area density of 0.6 kg/m 2 , and the dry mass of the bus is 500 kg [START_REF] Vasile | Call for ideas: NEO Encounter 2029, NEO deflection through a multi-mirror system[END_REF]. A 30% margin is added both to the total mass of the mirror and the overall mass of the spacecraft (i.e., mirror plus bus) for contingency and orbit maintenance. The distance from the asteroid depends on the required concentration ratio C r . If the distance is constant the concentration ratio will change with the distance from the Sun. On the contrary, if the concentration ratio is kept constant then the spacecraft will have to move back and forth towards the asteroid according to:

δr = d spot 2ϑ r sc r au ⎡ ⎣ cos aep sin aep 0 ⎤ ⎦ ( 19 
)
where d spot is the desired diameter of the illuminated spot area and ϑ is the angular radius of the Sun (at one AU, ϑ = 4.53 mrad). The angle aep is the elevation over the y-axis.

Note that the movement should be librating inline the spot vector, but in this paper we adopt the simplified movement in (19).

As an example, if we assume a concentration ratio C r = 100 at aphelion with a 62 m diameter mirror, we need to place the mirrors 750 m from the surface of the asteroid which translates into a minimum distance of 890 m from its center (considering b i ). Thus, the tug acceleration at aphelion is u tug,a = 2.52×10 -13 m/s 2 and at perihelion is u tug, p = 4.83×10 -13 m/s 2 . If the concentration ratio is reduced to C r = 35 the minimum distance at perihelion can be brought up to about 1000 m and therefore the tug acceleration becomes u tug, p = 2.0 × 10 -13 m/s 2 at perihelion and u tug, p = 1.24 × 10 -13 m/s 2 at aphelion.

Enhanced Yarkovsky effect

If the power density is not high enough to sublimate the surface material, it may be sufficient to heat up the surface creating a low thrust by means of the Yarkovsky effect. Given the emissivity a of the asteroid, the force due to the light projected onto the asteroid is,

F light = 2(1 -ς a ) n sc light σ sys C r A spot S sr p r au r sc 2 + n sc ς a σ sys C r A spot S sr p r au r sc 2 = n sc σ sys A m S sr p r au r sc 2 2 light (1 -ς a ) + ς a (20)
where S sr p = 4.562×10 -6 N/m is the solar pressure at one astronomical unit, A spot is the 2D illuminated surface area on the asteroid, A m is the effective surface area of the primary mirror that is perpendicular to the Sun, C r = A m /A spot is the concentration ratio, light = 4/(3π) is the scattering factor and n spot is the number of illuminated spot areas. The first component is the reflected light and the second component is the absorbed light. The scattering factor is the average of the reflected force assuming that the reflection can have any direction angle α l between [0, π]. Therefore, the scattering factor here is defined as light = 1 π π 0 cos 3 α l dα l . The number of spots n spot is equal to the number of spacecraft if no sublimation is attempted, and equal to 1 if the spacecraft tries to induce a sublimation of the surface.

For an asteroid surface temperature T a , the emission of photons will add a force component F ir [START_REF] Brož | Yarkovsky Effect and the Dynamics of the Solar System[END_REF],

F ir = n spot a σ T 4 a c A spot ( 21 
)
where c is the speed of light. The temperature of the spot surface can be computed with the simple one-dimensional model [START_REF] Sanchez Cuartielles | Multi-criteria comparison among several mitigation strategies for dangerous near earth objects[END_REF]):

χ a ∂ 2 T ∂ x 2 = ∂ T ∂t (22)
where χ a is the thermal diffusivity of the material given by,

χ a = k a ρ a c A The boundary conditions are, -k a ∂ T a ∂ x spot + a σ T 4 a = ς a σ sys C r S 0 r au r sc 2 (23a) T (0, x) = T 0 (23b) T (t, L) = T 0 (23c)
The initial surface temperature T 0 is 278 K, which is assumed here to be constant from the surface down to a depth of L = 135 m inside the asteroid. Figure 4 shows the sum of the two force components F ir and F light as a function of the surface temperature for different spot sizes and concentration ratios.

The total deflection acceleration acting on the asteroid is therefore: 

u dev = u sub + u tug + F light + F ir m a va (24) 

Deflection results

Figure 5 shows the differences in required thrust time for a set of warning times between [4, 6]T a , or 1294-1941 days prior to the t moid = 64796.56736 MJD (13 April 2036). The thrust duration is plotted against both the true anomaly of the NEO at the start of the thrust segment (Fig. 5a) and the warning time (Fig. 5b). The two figures confirm a result found by Colombo et al. (2009): the deflection can be maximized by properly timing the beginning of the deviation operations.

Figure 6 shows the total expelled mass versus a fixed value of the 'system' concentration ratio, i.e. the number of spacecraft times the concentration ratio of each individual spacecraft. It is clearly shown in the plot, that for a larger number of spacecraft (e.g., 10) with a smaller individual concentration ratio (e.g., 50), a greater thrust and hence deflection can be achieved. Figure 6 also shows that below a given number of spacecraft and a given concentration ratio (lower left corner of the plot), the sublimation is not possible. The power density is too low and the sublimation process does not start.

Figures 7 and8 show the achieved impact parameter b at a hypothetical MOID with the Earth at t moid =13252.06736 MJD2000 versus the warning time (t warn ), for a variable number of spacecraft and a fixed aperture diameter of the primary mirror (d m ). The system power efficiency σ sys is set to 90%. The thrust leg is assumed to start at (t moidt warn ) and thrust continuously until (t moidt warn + t thrust ). For these tests the orbital parameters of the asteroids have been slightly modified so that the MOID is zero. Following [START_REF] Vasile | Optimal impact strategies for asteroid deflection[END_REF], the impact parameter b is the projection of the deflection on the b-plane of the Earth at the time of the MOID. In particular, given the velocity vector of the Earth v e and of the relative velocity of the asteroid U a we have:

ηu = U a U a χ = v e ∧ ηu v e ∧ ηu ι = χ ∧ ηu (25)
Therefore, the b parameter is defined as b = χ 2 + ι 2 . Figure 7 compares the achievable impact parameter b with and without contamination assuming a variable C r . This situation occurs when the mirrors are at a constant distance from the asteroid. In this case the focusing capability of the mirror changes with the distance from the Sun since the angular diameter of the Sun increases, or decreases, as the asteroid moves closer, or farther away. The mirrors are assumed to be at an angular distance of ϕ = 60 • with respect to the y-axis and at a distance δr = 694.62 m from the center of the asteroid. Although the mirrors are not directly in the plume, according to Kahle's model the contamination is still quite substantial and the power density quickly falls below the required limit to induce the sublimation. The mirrors will continue to heat up the asteroid but no sublimation will occur. Figure 8 compares the achievable impact parameter b with and without contamination assuming a constant C r . In this case the mirrors are moving toward the asteroid while the asteroid is moving toward the Sun, and vice versa, in order to maintain a constant C r . Although this increases the contamination, the performance still improves significantly with respect to the variable C r case. Figure 8b displays a remarkable change in behavior above and below 2 spacecraft. In fact, below 2 spacecraft there is no sublimation at any point along the orbit; the only forces acting on the asteroid are the gravity tug and those induced by solar light (reflection, absorption and Yarkovsky). The same effect can be seen in Fig. 7b below the 3 spacecraft line.

Figures 7a and8a demonstrate a periodic behavior that is inline with Fig. 5. Due to the contamination, the sublimation ceases very soon, therefore the point at which the deflection action starts can radically alter the performance.

One important thing to note is that increasing the concentration ratio does not improve the deviation. According to the thrust model in ( 7) and ( 11), the thrust magnitude depends on the input power and surface area illuminated by the beam. As the concentration ratio increases, the area for a fixed mirror size, decreases and therefore the thrust does not improve. On the other hand, superimposing the beams increases the power density and leaves the size of the spot area unchanged. Therefore, rather than increasing the concentration ratio, the ideal strategy would be to increase the number of beams each with a constant concentration ratio.

Figure 9 shows the impact parameter b that can be achieved with the simple combination of forces given in ( 20), ( 21) and ( 18), for a 62 m aperture diameter mirror. The distance of the mirrors is initially δr = 1389.2 m from the center of the asteroid. Non-homogenous asteroids with materials characterized by a lower sublimation point can represent a problem for this technique but at the same time would lead to a sublimation of the surface at a lower power density.

Mirror dynamics and control

In order to obtain the desired deviation, the mirrors need to be placed and controlled in the proximity of the asteroid. In particular, the location of the mirror must be such that the plume impingement is minimized and the power density is maximized. In the proximity of the asteroid, in a Hill rotating reference frame, the spacecraft are subject to the force due to solar pressure, the gravity of the asteroid, the gravity of the Sun, the centrifugal and Coriolis forces plus the forces induced by the impingement either with the plume or the re-emitted and reflected light from the asteroid. The mirrors can be designed such that the resultant of all these forces is minimal. An active control can then be added to maintain the spacecraft librating above the surface of the asteroid.

Following the ellipsoidal asteroid model, we assume that the semi-axis c i is aligned with the z-axis of the asteroid Hill frame A (see Fig. 3) and that the asteroid rotates around the z-axis with angular velocity w a . The gravity field of the asteroid is expressed as the sum of a spherical field plus a second-degree and second-order field [START_REF] Hu | Spacecraft motion about slowly rotating asteroids[END_REF][START_REF] Rossi | Orbital evolution around irregular bodies[END_REF],

U 20+22 = μ a δr 3 C 20 1 - 3 2 cos 2 γ + 3C 22 cos 2 γ cos 2λ ( 26 
)
where the harmonic coefficients C 20 and C 22 are a function of the semi-axes,

C 20 = - 1 10 (2c 2 i -a 2 i -b 2 i ) (27a) C 22 = 1 20 (a 2 i -b 2 i ) (27b)
and λ is defined as, λ = arctan y x + w a t with γ = 0 since only the in-plane motion is considered.

If we consider a Hill reference frame A centered in the barycenter of the asteroid (see Fig. 3), the motion of the spacecraft in the proximity of the asteroid is given by:

ẍ = -r A + 2 ν ẏ + ν2 (r a + x) + ν y - μ (r a + x) r 3 sc - μ a δr 3 x + F s x (x, y, z) m sc + ∂U 20+22 ∂ x (28a) ÿ = -2 ν ẋ -ν(r a + x) + ν2 y - μ r 3 sc y - μ a δr 3 y + F s y (x, y, z) m sc + ∂U 20+22 ∂ y (28b) z = - μ r 3 sc z - μ a δr 3 z + F s z (x, y, z) m sc + ∂U 20+22 ∂z (28c) with, ν = u dev y -2ṙ a r a ν r 2 a (29) ra = ν2 r a - μ r 2 a + u dev x ( 30 
)
The force term F s = [F s x F s y F s z ] t is made of three contributions: direct light pressure from the Sun F sr p , light pressure from the emitted and reflected light from the asteroid F light and the force due to the flow of gas and debris coming from the asteroid F plume .

In order to have equilibrium, F s should be aligned with the gravity vector and apparent forces, but in the opposite direction. Examining (28c), it is clear that z is zero when z = 0, therefore in the remainder of this section we will focus on the motion in the x-y plane.

For a direct reflection of the light onto the NEO surface, the focal point is along the mirror-asteroid direction with a magnitude roughly equal to the distance between the mirror and the asteroid. For such a long focal distance, the resulting mirror is almost flat. Assuming a perfect reflection, the force F sr p is:

F sr p = 2 A m S sr p r au r sc 2 cos 2 β ⎡ ⎣ cos β sin β 0 ⎤ ⎦ (31) 
The angle β is the half angle between the asteroid-mirror vector and the Sun-mirror vector (which is approximated by setting it equal to the Sun-asteroid vector).

β = 1 2 arctan r s/sc,y r s/sc,x (32) 
where r s/sc,y and r s/sc,x are respectively the y and x components of the vector r s/sc . The force due to the light coming from the asteroid can be expressed in the following form:

F light = 2n spot a σ T 4 a c + light (1 -ς a )σ sys C r S sr p r au r sc 2 A spot 2πr 2 s/sc A m cos 2 β ⎡ ⎣ cos β sin β 0 ⎤ ⎦ (33)
where n spot is the number of spot areas emitting and reflecting light. The assumption is made that the radiation is uniformly distributed over a hemisphere. Note that in the case of the enhanced Yarkovsky effect n spot = n sc while in the case of sublimation n spot = 1. The force due to the two contributions of light pressure is aligned with the asteroid-mirror direction. Moreover, the modulus of the light pressure is a function of the distance from the Sun.

If the flow rate per unit area at distance r s/sc is (2ρ ex p (r s/sc , ϕ)v) and all the particles stick to the surface of the mirror then the force F plume is:

F plume = 4ρ ex p (r s/sc , ϕ) v2 A m cos ψ vf rs/sc (34) 
and is aligned with the r s/sc . However, the flow rate depends on the power density and therefore on the distance from the Sun. Given these equations, the resultant of all the forces acting on the spacecraft is not zero and in particular the difference between gravity and F s is a function of time. Therefore, an active control is required to maintain the position of the spacecraft with respect to the asteroid. The force due to the light coming from the asteroid can be up to 1.6948 × 10 -5 N at perihelion for a C r = 35, r s/sc = 857 m and n sc = 1 and grows up to 2.0337 × 10 -4 N for n sc = 12. It is therefore two to three orders of magnitude lower than the force in (31), which, for similar operating conditions, is 2.636 × 10 -2 N. The force due to gas and debris instead is F plume = 3.533 × 10 -3 N for n sc = 4 and F plume = 3.727 × 10 -2 N for n sc = 9, with C r = 100, the mirrors at a distance r s/sc = 507 m and an elevation angle of 60 • . Therefore, the force due to the plume is not negligible for a high number of spacecraft.

If we assume that F light , centrifugal and Coriolis forces are negligible compared to solar pressure, gravity of the asteroid, and plume and that any non-spherical terms in the gravity field expansion result in only a small perturbation, then we can build a simple control law based on the Lyapunov control function:

V = 1 2 δv 2 + 1 2 K (x -x aep ) 2 + (y -y aep ) 2 + (z -z aep ) 2 (35) 
where δr aep = [x aep , y aep , z aep ] t are the coordinates of the artificial equilibrium point at which we want to place the mirror (in the Hill frame). Now if there exist a control u such that dV /dt < 0 then we can maintain the mirror in the proximity of the artificial equilibrium point. A possible control is given by:

u = -- μ a δr 3 δr + F sr p m sc + F plume m sc -K (δr -δr aep ) -c d δv (36)
The total derivative of the function V is:

dV dt = δv T δ v + K (δr -δr aep ) T δv (37a) = δv T - μ a δr 3 δr + F sr p m sc + F plume m sc -- μ a δr 3 δr + F sr p m sc + F plume m sc -K (δr -δr aep ) -c d δv + K (δr -δr aep ) T δv (37b) = -c d δv T δv < 0 (37c)
where δv = [ ẋ, ẏ, ż] t is the relative velocity of the spacecraft in the asteroid Hill reference frame A.

We can now introduce the control (36) into the full dynamic model in ( 28) and test the validity of the assumption that the perturbations given by centrifugal, Coriolis forces, light coming from the asteroid and aspherical gravity field are indeed small. The result is represented in Figs. 10a and11a for the case in which the AEP is maintained at a fixed distance from the asteroid. Figures 10b and11b represent, instead, the result of the application of the Lyapunov controller when a different AEP is selected along the the asteroid-mirror direction at different instants of time during the year.

The elastic coefficient K for both cases was chosen to be 10 -6 while the dissipative coefficient c d was set to 10 -5 . The latter strategy maintains a constant concentration ratio while the asteroid moves closer and farther from the Sun. In order to maintain a constant C r , the focal length has to be modified according to the angular diameter of the Sun seen from the mirror.

Figure 10b shows that the the controller is able to maintain the mirror in close proximity to the radial direction, effectively chasing the position of the 597.5 the modulus of the thrust and the mass consumption for a 1 year of operation of a 3005 kg spacecraft, carrying a mirror with an aperture diameter of 62 m. The required peak thrust is above 40 mN, with a total mass consumption of about 15.0 kg, assuming an engine I sp of 4500 s, for maintaining a fixed position. For chasing the position of the AEP's, instead, the required peak thrust is about 35 mN, with a total mass consumption of about 12.0 kg a year. These figures demonstrate that with a very small electric propulsion system, the mirror position can be maintained at the desired proximity to the asteroid. Note that the thrust is acting towards the asteroid mainly to compensate for the force due to solar pressure.

Final remarks

This paper presented an analysis of the performance of an asteroid deflection method based on the sublimation of surface matter through a concentrated solar beam. According to the available model for the sublimation process, the obtainable deflection is limited by the contamination of the reflector even if the reflector is not directly in the plume of expelled gas. Using multiple spacecraft improves the deflection but does not solve the contamination problem. On the other hand, this study showed that even when the power density is not enough to ignite the sublimation process, the increase in the Yarkovsky effect combined with the enhanced light pressure generates a reasonable deflection comparable to the solution generated with the sublimation of the surface in the case of contamination of the mirrors. This study also demonstrated that a constant concentration ratio solution, with variable distance of the mirrors from the target, is more effective than a constant position solution. A Lyapunov controller was developed to allow the control of the position of the mirrors at a very low propellant cost.

The results in this paper demonstrate that the solar sublimation system is severely penalized by the contamination of the reflector. Although, the system is always able to generate a deflection of several 100 km, the total mass into space can make the system non-competitive against other deflection methods. A more accurate contamination model is necessary to assess the actual applicability of this deflection approach. A solution to the contamination problem would make this deflection approach extremely effective for medium size asteroids. On the other hand, a contained system with a small number of spacecraft enhancing the Yarkovsky effect can provide a deflection comparable to a gravity tractor for the same class of asteroids.
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 123 Fig. 1 Orbit of the NEO Apophis, compared to the orbits of the Mars, Earth and Venus, a View of the ecliptic plane, b Inclination difference between the orbits
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 8 Fig. 8 Impact parameter for different warning times, variable number of spacecraft and variable C r . Aperture of the mirror d m = 62 m, a With contamination, b With no contamination
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 9 Fig. 9 Enhanced Yarkovsy effect. Impact parameter for different warning times, variable number of spacecraft and variable C r , a Solar collector with a 62 m aperture diameter and variable C r , b Solar collector with a 62 m aperture diameter and fixed C r
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 1011 Fig. 10 Variation in position over one orbit shown in the local mirror reference frame, for Lyapunov controlled AEPs: a fixed AEP maintenance, b AEP position tracking
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  Fig. 12 Mass consumption for Lyapunov controlled AEPs

Table 1

 1 Estimated and observed orbital and physical properties of (99942) Apophis (NASA Near Earth Object program 2010)

	Element		Measured value	Uncertainty, 1σ
	Semi-major axis	a	0.922438 AU	2.3613×10 -8
	Eccentricity	e	0.191204	7.6074×10 -8
	Inclination	i	3.331420 deg	2.0238×10 -6
	Right ascension of the ascending node		204.442505 deg	0.00010721
	Argument of periapsis	ω	126.404227 deg	0.00010632
	Period	T a	323.596917 d	1.2426×10 -5
	Mean motion	n a	1.112495 deg/d	4.2718×10 -8
	Diameter	d a	270 m	60 m
	Mass	m a	2.7×10 10 kg	
	Gravitational constant	μ a	1.801599×10 -9 km 3 /s 2	
	Rotational velocity	w a	5.8177×10 -5 rad/s	
	Table			
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