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The Radio Science Experiment is one of the on board experiments of the Mercury ESA mission BepiColombo that will be launched in 2014. The goals of the experiment are to determine the gravity field of Mercury and its rotation state, to determine the orbit of Mercury, to constrain the possible theories of gravitation (for example by determining the post-Newtonian parameters), to provide the spacecraft position for geodesy experiments and to contribute to planetary ephemerides improvement. This is possible thanks to a new technology which allows to reach great accuracies in the observables range and range rate; it is well known that a similar level of accuracy requires studying a suitable model taking into account numerous relativistic effects. In this paper we deal with the modelling of the spacetime coordinate transformations needed for the light-time computations and the numerical methods adopted to avoid rounding-off errors in such computations.

Introduction

BepiColombo is an European Space Agency mission to be launched in 2014, with the goal of an in-depth exploration of the planet Mercury; it has been identified as one of the most challenging long-term planetary projects. Only two NASA missions had Mercury as target in the past, the Mariner 10, which flew by three times in [1974][1975] and Messenger, which carried The BepiColombo mission is composed by two spacecraft to be put in orbit around Mercury. The Radio Science Experiment is one of the on board experiments, which would coordinate a gravimetry, a rotation and a relativity experiment, using a very accurate range and range rate tracking. These measurements will be performed by a full 5-way link to the Mercury orbiter; by exploiting the frequency dependence of the refraction index, the differences between the Doppler measurements (done in Ka and X band) and the delay give information on the plasma content along the radio wave path [START_REF] Iess | Advanced radio science instrumentation for the mission BepiColombo to Mercury[END_REF]. In this way most of the measurements errors introduced can be reduced by about two orders of magnitude with respect to the past technologies. The accuracies that can be achieved are 10 cm in range and 3 × 10 -4 cm/s in range rate.

How do we compute these observables? For example, a first approximation of the range could be given by the formula

r = |r| = |(x sat + x M ) -(x EM + x E + x ant )|, ( 1 
)
which models a very simple geometrical situation (Fig. 1). The vector x sat is the mercurycentric position of the orbiter, the vector x M is the position of the center of mass of Mercury (M) in a reference system with origin at the Solar System Barycenter (SSB), the vector x EM is the position of the Earth-Moon center of mass in the same reference system, x E is the vector from the Earth-Moon Barycenter (EMB) to the center of mass of the Earth (E), the vector x ant is the position of the reference point of the ground antenna with respect to the center of mass of the Earth.

Using (1) means to model the space as a flat arena (r is an Euclidean distance) and the time as an absolute parameter. This is obviously not possible because it is clear that, beyond some threshold of accuracy, space and time have to be formulated within the framework of Einstein's theory of gravity (general relativity theory, GRT). Moreover we have to take into account the different times at which the events have to be computed: the transmission of the signal at the transmit time (t t ), the signal at the Mercury orbiter at the time of bounce (t b ) and the reception of the signal at the receive time (t r ).

Formula ( 1) is used as a starting point to construct a correct relativistic formulation; with the word "correct" we do not mean all the possible relativistic effects, but the effects that can be measured by the experiment. This paper deals with the corrections to apply to this formula to obtain a consistent relativistic model for the computations of the observables and the practical implementation of such computations.

In Sect. 2 we discuss the relativistic four-dimensional reference systems used and the transformations adopted to make the sums in (1) consistent; according to [START_REF] Soffel | The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement[END_REF], with "reference system" we mean a purely mathematical construction, while a "reference frame" is a some physical realization of a reference system. The relativistic contribution to the time delay due to the Sun's gravitational field, the Shapiro effect, is described in Sect. 3. Section 4 deals with the theoretical procedure to compute the light-time (range) and the Doppler shift (range rate). In Sect. 5 we discuss the practical implementation of the algorithms showing how we solve the rounding-off problems.

The equations of motion for the planets Mercury and Earth, including all the relativistic effects (and potential violations of GRT) required to the accuracy of the BepiColombo Radio Science Experiment have already been discussed in Milani et al. (2010), thus this paper focuses on the computation of the observables.

Space-time reference frames and transformations

The five vectors involved in formula (1) have to be computed at their own time, the epoch of different events: e.g., x ant , x EM and x E are computed at both the antenna transmit time t t and receive time t r of the signal. x M and x sat are computed at the bounce time t b (when the signal has arrived to the orbiter and is sent back, with correction for the delay of the transponder). In order to be able to perform the vector sums and differences, these vectors have to be converted to a common space-time reference system, the only possible choice being some realization of the BCRS (Barycentric Celestial Reference System). We adopt for now a realization of the BCRS that we call SSB (Solar System Barycentric) reference frame and in which the time is a re-definition of the TDB (Barycentric Dynamic Time), according to the IAU 2006 Resolution B31 ; other possible choices, such as TCB (Barycentric Coordinate Time), only can differ by linear scaling. The TDB choice of the SSB time scale entails also the appropriate linear scaling of space-coordinates and planetary masses as described for instance in [START_REF] Klioner | Relativistic scaling of astronomical quantities and the system of astronomical units[END_REF] or [START_REF] Klioner | Units of relativistic time scales and associated quantities[END_REF].

The vectors x M , x E , and x EM are already in SSB as provided by numerical integration and external ephemerides; thus the vectors x ant and x sat have to be converted to SSB from the geocentric and mercurycentric systems, respectively. Of course the conversion of reference system implies also the conversion of the time coordinate. There are three different time coordinates to be considered. The currently published planetary ephemerides are provided in TDB. The observations are based on averages of clock and frequency measurements on the Earth surface: this defines another time coordinate called TT (Terrestrial Time). Thus for each observation the times of transmission t t and reception t r need to be converted from TT to TDB to find the corresponding positions of the planets, e.g., the Earth and the Moon, by combining information from the pre-computed ephemerides and the output of the numerical integration for Mercury and for the Earth-Moon barycenter. This time conversion step is necessary for the accurate processing of each set of interplanetary tracking data; the main term in the difference TT-TDB is periodic, with period 1 year and amplitude 1.6 × 10 -3 s, while there is essentially no linear trend, as a result of a suitable definition of the TDB.

The equation of motion of a mercurycentric orbiter can be approximated, to the required level of accuracy, by a Newtonian equation provided the independent variable is the proper time of Mercury. Thus, for the BepiColombo Radio Science Experiment, it is necessary to define a new time coordinate TDM (Mercury Dynamic Time), as described in Milani et al. (2010), containing terms of 1-PN order depending mostly upon the distance from the Sun and velocity of Mercury.

From now on, in accordance with [START_REF] Klioner | Units of relativistic time scales and associated quantities[END_REF], we shall call the quantities related to the SSB frame "TDB-compatible", the quantities related to the geocentric frame "TT-compatible", the quantities related to the mercurycentric frame "TDM-compatible" and label them TB, TT and TM, respectively.

The differential equation giving the local time T as a function of the SSB time t, which we are currently assuming to be TDB, is the following:

dT dt = 1 - 1 c 2 U + v 2 2 -L , ( 2 
)
where U is the gravitational potential (the list of contributing bodies depends upon the accuracy required: in our implementation we use Sun, Mercury to Neptune, Moon) at the planet center and v is the SSB velocity of the same planet. The constant term L is used to perform the conventional rescaling motivated by removal of secular terms, e.g., for the Earth we use L C [START_REF] Soffel | The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement[END_REF].

The space-time transformations to perform involve essentially the position of the antenna and the position of the orbiter. The geocentric coordinates of the antenna should be transformed into TDB-compatible coordinates; the transformation is expressed by the formula

x T B ant = x T T ant 1 - U c 2 -L C - 1 2 v T B E • x T T ant c 2 v T B E ,
where U is the gravitational potential at the geocenter (excluding the Earth mass), L C = 1.48082686741 × 10 -8 is a scaling factor given as definition, supposed to be a good approximation for removing secular terms from the transformation and v T B E is the barycentric velocity of the Earth. The next formula contains the effect on the velocities of the time coordinate change, which should be consistently used together with the coordinate change:

v T B ant = v T T ant 1 - U c 2 -L C - 1 2 v T B E • v T T ant c 2 v T B E dT dt .
Note that the previous formula contains the factor dT /dt (expressed by ( 2)) that deals with a time transformation: T is the local time for Earth, that is TT, and t is the corresponding TDB time.

The mercurycentric coordinates of the orbiter have to be transformed into TDB-compatible coordinates through the formula

x T B sat = x T M sat 1 - U c 2 -L C M - 1 2 v T B M • x T M sat c 2 v T B M ,
where U is the gravitational potential at the center of mass of Mercury (excluding the Mercury mass) and L C M could be used to remove the secular term in the time transformation (thus defining a TM scale, implying a rescaling of the mass of Mercury). We believe this is not necessary: the secular drift of TDM with respect to other time scales is significant, see Fig. 5 in Milani et al. (2010), but a simple iterative scheme is very efficient in providing the inverse time transformation. Thus we set L C M = 0, assuming the reference frame is TDM-compatible. As for the antenna we have a formula expressing the velocity transformation that contains the derivative of time T for Mercury, that is TDM, with respect to time t, that is TDB:

v T B sat = v T M sat 1 - U c 2 -L C M - 1 2 v T B M • v T M sat c 2 v T B M dT dt .
For these coordinate changes, in every formula we neglected the terms of the SSB acceleration of the planet center [START_REF] Damour | General-relativistic celestial mechanics. IV. Theory of satellite motion[END_REF], because they contain beside 1/c 2 the additional small parameter (distance from planet center)/(planet distance to the Sun), which is of the order of 10 -4 even for a Mercury orbiter.

To assess the relevance of the relativistic corrections of this section to the accuracy of the BepiColombo Radio Science Experiment, we computed the observables range and range rate with and without these corrections. As shown in Fig. 2, the differences are significant, time, days from arc beginning Range-rate, cm/s at a signal-to-noise ratio S/N 1 for range, much more for range rate, with an especially strong signature from the orbital velocity of the mercurycentric orbit (with S/N > 50).

Shapiro effect

The correct modelling of space-time transformations is not sufficient to have a precise computation of the signal delay: we have to take into account the general relativistic contribution to the time delay due to the space-time curvature under the effect of the Sun's gravitational field, the Shapiro effect [START_REF] Shapiro | Fourth test of general relativity[END_REF]. The Shapiro time delay t at the 1-PN level, according to [START_REF] Will | Theory and Experiment in Gravitational Physics[END_REF] and [START_REF] Moyer | Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation[END_REF], is

t = (1 + γ )μ 0 c 3 ln r t + r r + r r t + r r -r , S(γ ) = c t
where r t = |r t | and r r = |r r | are the heliocentric distances of the transmitter and the receiver at the corresponding time instants of photon transmission and reception, μ 0 is the gravitational mass of the Sun (μ 0 = G m 0 ) and r = |r rr t |. The planetary terms, similar to the solar one, can also be included but they are smaller than the accuracy needed for our measurements. Parameter γ is the only post-Newtonian parameter used for the light-time effect and, in fact, it could be best constrained during superior conjunction [START_REF] Milani | Testing general relativity with the BepiColombo Radio Science Experiment[END_REF]. The total amount of the Shapiro effect in range is shown in Fig. 3. The question arises whether the very high signal to noise in the range requires other terms in the solar gravity influence, due to either (i) motion of the source, or (ii) higher-order corrections when the radio waves are passing near the Sun, at just a few solar radii (and thus the denominator in the log-function of the Shapiro formula is small). The corrections (i) are of the post-Newtonian order 1.5 (containing a factor 1/c 3 ), but it has been shown in Milani et al. (2010) that they are too small to affect our accuracy. The corrections (ii) are of order 2, (containing a factor 1/c 4 ), but they can be actually larger for an experiment involving Mercury. The relevant correction is most easily obtained by adding 1/c 4 terms in the Shapiro formula, due to the bending of the light path: 

S(γ ) = (1 + γ )μ 0 c 2 ln r t + r r + r + (1+γ )μ 0 c 2 r t + r r -r + (1+γ )μ 0 c 2 .
This formulation has been proposed by [START_REF] Moyer | Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation[END_REF] and it has been justified in the small impact parameter regime by much more theoretically rooted derivations by Klioner and Zschocke (2007), [START_REF] Teyssandier | General post-Minkowskian expansion of time transfer functions[END_REF] and [START_REF] Ashby | Accurate light-time correction due to a gravitating mass[END_REF]. Figure 4 shows that the order 2 correction is relevant for our experiment, especially when there is a superior conjunction with a small impact parameter of the radio wave path passing near the Sun. In practice there is a lower bound to the impact parameter because of the turbulence of the solar corona: below 10 solar radii the measurement accuracy is degraded, thus this effect is marginally significant, but is not entirely negligible. Note that the 1/c 4 correction (∼10 cm) in the Shapiro formula effectively corresponds to ∼ 3 × 10 -5 correction in the value of the post-Newtonian parameter γ . The Shapiro correction for the computation of the range rate will be shown in Sect. 4.

Light-time iterations

Since radar measurements are usually referred to the receive time t r the observables are seen as functions of this time, and the computation sequence works backward in time: starting from t r , the bounce time t b is computed iteratively, and, using this information the transmit time t t is computed.

The vectors x T B M and x T B EM are obtained integrating the post-Newtonian equations of motion. The vectors x T M sat are obtained by integrating the orbit in the mercurycentric TDM-compatible frame. The vector x T T ant is obtained from a standard IERS model of Earth rotation, given accurate station coordinates, and x T T E from lunar ephemerides [START_REF] Milani | Theory of Orbit Determination[END_REF]. In the following subsections we shall describe the procedure to compute the range (Sect. 4.1) and the range rate (Sect. 4.2).

Range

Once the five vectors are available at the appropriate times and in a consistent SSB system, there are two different light-times, the up-leg t up = t bt t for the signal from the antenna to the orbiter, and the down-leg t down = t rt b for the return signal. They are defined implicitly by the distances down-leg and up-leg

r do (t r ) = x sat (t b (t r )) + x M (t b (t r )) -x EM (t r ) -x E (t r ) -x ant (t r ), r do (t r ) = |r do (t r )|, c(t r -t b ) = r do (t r ) + S do (γ ),
(3)

r up (t r ) = x sat (t b (t r )) + x M (t b (t r )) -x EM (t t (t r )) -x E (t t (t r )) -x ant (t t (t r )), r up (t r ) = |r up (t r )|, c(t b -t t ) = r up (t r ) + S up (γ ), (4) 
respectively, with somewhat different Shapiro effects:

S do (γ ) = (1 + γ ) μ 0 c 2 ln r t (t b ) + r r (t r ) + |r r (t r ) -r t (t b )| + (1+γ ) μ 0 c 2 r t (t b ) + r r (t r ) -|r r (t r ) -r t (t b )| + (1+γ ) μ 0 c 2 , S up (γ ) = (1 + γ ) μ 0 c 2 ln r t (t t ) + r r (t b ) + |r r (t b ) -r t (t t )| + (1+γ ) μ 0 c 2 r t (t t ) + r r (t b ) -|r r (t b ) -r t (t t )| + (1+γ ) μ 0 c 2 .
Note that, for the down-leg, the vector r t refers to the heliocentric position of the spacecraft and it is computed at the bounce time, while, for the up-leg, the same vector refers to the heliocentric position of the antenna and it is computed at the transmit time. This difference occurs also for the vector r r : in the down-leg it refers to the position of the antenna at the receive time, while in the up-leg to the position of the spacecraft at the bounce time. Then t rt b and t bt t are the two portions of the light-time, in the time attached to the SSB, that is TDB; this provides the computation of t t . Then these times are to be converted back in the time system applicable at the receiving station, where the time measurement is performed, which is TT (or some other form of local time, such as the standard UTC). The time t r is already available in the local time scale, from the original measurement, while t t needs to be converted back from TDB to TT. The difference between these two TT times is t tot , from which we can conventionally define r (t r ) = c t tot /2. Note that the difference t tot in TT is significantly different from t rt t in TDB, by an amount of the order of 10 -7 s, while the sensitivity of the BepiColombo Radio Science Experiment is of the order of 10 -9 s, thus these conversions change the computed observable in a significant way (Fig. 5).

Fig. 5

The difference in the observables range and range rate using a light-time in TT and a light time in TDB: the difference in range is very high, more than 13 meters in one day, while the difference in range rate is less than the accuracy of the experiment The practical method for solving t b (t r ) and t t (t r ) in ( 3) and ( 4) is as follows. Since the measurement is labeled with the receive time t r , the iterative procedure needs to start from (3) by computing the states x EM , x E and x ant at epoch t r , then selecting a rough guess t 0 b for the bounce time (e.g., t 0 b = t r ). Then the states x sat and x M are computed at t 0 b and a successive guess t 1 b is given by ( 3). This is repeated computing t 2 b , and so on until convergence, that is, until

t k b -t k-1 b
is smaller than the required accuracy. This fixed point iteration to solve the implicit equation for t b is convergent because the motion of the satellite and of Mercury, in the time t rt b , is a small fraction of the total difference vector. After accepting the last value of t b we start with the states x sat and x M at t b and with a rough guess t 0 t for the transmit time (e.g., t 0 t = t b ). Then x EM , x E and x ant are computed at epoch t 0 t and t 1 t is given by ( 4), and the same procedure is iterated to convergence, that is to achieve a small enough t k tt k-1 t . This double iterative procedure to compute range is consistent with what has been used for a long time in planetary radar, as described in [START_REF] Yeomans | Asteroid and comet orbits using radar data[END_REF]. We conventionally define r = (r do + S do + r up + S up )/2.

Range rate

After the two iterations providing at convergence t b and t t are complete, we can proceed to compute the range rate. We shall use the following notation: -d dt r stands for the total derivative with respect to the receive time t r ; -∂ ∂t b stands for the partial derivative with respect to the receive time t b ; -∂ ∂t t stands for the partial derivative with respect to the receive time t t . We rewrite the expression for the Euclidean range (down-leg and up-leg) as a scalar product:

r 2 do (t r ) = [x Ms (t b ) -x Ea (t r )] • [x Ms (t b ) -x Ea (t r )] , r 2 up (t r ) = [x Ms (t b ) -x Ea (t t )] • [x Ms (t b ) -x Ea (t t )]
, where x Ms = x M + x sat and x Ea = x EM + x E + x ant . The light-time equation contains also the Shapiro terms, thus the range rate observable contains also additive terms d S do /dt r and 123 d S up /dt r , with significant effects (a few cm/s during superior conjunctions). Since the equations giving t b and t t are still (3) and (4), in computing the time derivatives, we need to take into account that t b = t b (t r ) and t t = t t (t r ), with non-unit derivatives. By computing the derivative with respect to the receive time t r we obtain

d dt r [r do (t r ) + S do (t r )] = rdo • ∂x Ms (t b ) ∂t b dt b dt r - dx Ea (t r ) dt r + d S do dt r (5) 
where

rdo = x Ms (t b ) -x Ea (t r ) r do (t r ) , dt b dt r = 1 - dr do (t r )/dt r + d S do /dt r c
and

d dt r [r up (t r ) + S up (t r )] = rup • ∂x Ms (t b ) ∂t b dt b dt r - ∂x Ea (t t ) ∂t t dt t dt r + d S up dt r (6) 
where

rup = x Ms (t b ) -x Ea (t t ) r up (t r ) , dt t dt r = 1 - dr do (t r )/dt r + d S do /dt r c - dr up (t r )/dt r + d S up /dt r c .
The derivatives of the Shapiro effect are

d S do dt r = 2 (1 + γ )μ 0 c 2 r t (t b ) + r r (t r ) + (1 + γ )μ 0 c 2 2 -|r r (t r )-r t (t b )| 2 -1 × -|r r (t r ) -r t (t b )| ∂r t ∂t b dt b dt r + dr r dt r + r r (t r )-r t (t b ) |r r (t r )-r t (t b )| • dr r dt r - ∂r t ∂t b dt b dt r × r t (t b ) +r r (t r ) + (1 + γ )μ 0 c 2 , ( 7 
) d S up dt r = 2 (1 + γ )μ 0 c 2 r t (t t ) + r r (t b ) + (1 + γ )μ 0 c 2 2 -|r r (t b )-r t (t t )| 2 -1 × -|r r (t b ) -r t (t t )| ∂r t ∂t t dt t dt r + ∂r r ∂t b dt b dt r + r r (t b )-r t (t t ) |r r (t t )-r t (t b )| • ∂r r ∂t b dt b dt r - ∂r t ∂t t dt t dt r r t (t t ) +r r (t b ) + (1 + γ )μ 0 c 2 . ( 8 
)
Note that, because of different definitions of r t and r r in the down-leg and up-leg (Sect. 4.1), the term ∂r t /∂t b in the second row of ( 7) is exactly the same thing as ∂r r /∂t b in the second row of (8). However, the contribution of the time derivatives of the Shapiro effect to the dt b /dt r and dt t /dt r corrective factors is small, of the order of 10 -10 , which is marginally significant for the BepiColombo Radio Science Experiment. We conventionally define the range rate dr/dt r = c(1dt t /dt r )/2 = (dr do /dt r + d S do /dt r + dr up /dt r + d S up /dt r )/2. These equations are compatible with the equations in [START_REF] Yeomans | Asteroid and comet orbits using radar data[END_REF], taking into account that they use a single iteration. Equations ( 7) and ( 8) are almost never found in the literature and has not been much used in the processing of the past Radio Science Experiments [START_REF] Bertotti | A test of general relativity using radio links with the Cassini spacecraft[END_REF] because the observable range rate is typically computed as difference of ranges divided by time; however, for reasons explained in Sect. 5, these formulas are now necessary.

Since the time derivatives of the Shapiro effects contain dt b /dt r and dt t /dt r , the Eqs. ( 5) and ( 6) are implicit, thus we can again use a fixed point iteration. It is also possible to use a very good approximation which solves explicitly for dr do /dt r and then for dr up /dt r , neglecting the very small contribution of Shapiro terms:

dr do dt r = rdo • ∂x Ms (t b ) ∂t b 1 - d S do /dt r c - dx Ea (t r ) dt r 1 + 1 c ∂x Ms (t b ) ∂t b • rdo -1
, All the above computations are in SSB with TDB; however, the frequency measurements, at both t t and t r , are done on Earth, that is with a time which is TT. This introduces a change in the measured frequencies at both ends, and because this change is not the same (the Earth having moved by about 3 × 10 -4 of its orbit) there is a correction needed to be performed. The quantity we are measuring is essentially the derivative of t t with respect to t r , but in two different time systems (for readability, we use T for TT, t for TDB):

where
dT t dT r = dT t dt t dt t dt r dt r dT r ,
where the derivatives of the time coordinate changes are the same as the right hand side of the differential equation giving T as a function of t in the first factor and the inverse of the same for the last factor. However, the accuracy required is such that the main term with the gravitational mass of the Sun μ 0 and the position of the Sun x 0 is enough:

dT t dT r = 1 - μ 0 |x E (t t ) -x 0 (t t )| c 2 - 1 2 c 2 dx E (t t ) dt t 2 dt t dt r × 1 - μ 0 |x E (t r ) -x 0 (t r )| c 2 - 1 2 c 2 dx E (t r ) dt r 2 -1 . ( 9 
)
Note that we do not need the L C constant term discussed in Sect. 2 because it cancels in the first and last term in the right hand side of (9). The correction of the above formula is required for consistency, but the correction has an order of magnitude of 10 -7 cm/s and is negligible for the sensitivity of the BepiColombo Radio Science Experiment (Fig. 5).

dr(t r )/dt r = (dr do (t r )/dt r + d S do /dt r + dr up (t r )/dt r + d S up /dt r )/2. In fact, the measurement is not instantaneous: an accurate measure of a Doppler effect requires to fit the difference of phase between carrier waves, the one generated at the station and the one returned from space, accumulated over some integration time , typically between 10 and 1000 s. Thus the observable is really a difference of ranges

r (t b + /2) -r (t b -/2) (10)
or, equivalently, an averaged value of range rate over the integration interval 1

t b + /2 t b -/2 dr(s) dt r ds. ( 11 
)
In order to understand the computational difficulty we need to take also into account the orders of magnitude. As said in the introduction, for state of the art of tracking systems, such as those using a multi-frequency link in the X and Ka bands, the accuracy of the range measurements can be 10 cm and the one of range-rate 3 × 10 -4 cm/s (over an integration time of 1,000 s). Let us take an integration time = 30 s, which is adequate for measuring the gravity field of Mercury: in fact, if the orbital period of the spacecraft around Mercury is 8,000 s, the harmonics of order m = 26 have periods as short as 150 s. The accuracy over 30 s of the range rate measurement can be, by Gaussian statistics, 3 × 10 -4 √ 1000/30 17 × 10 -4 cm/s, and the required accuracy in the computation of the difference r (t b + /2)r (t b -/2) is 0.05 cm. The distances can be as large as 2 × 10 13 cm, thus the relative accuracy in the difference needs to be 2.5 × 10 -15 . This implies that rounding off is a problem with current computers, with relative rounding off error of ε = 2 -52 = 2.2 × 10 -16 (Fig. 6); extended precision is supported in software, but it has many limitations. The practical consequences are that the computer program processing the tracking observables, at this level of precision and over interplanetary distances, needs to be a mixture of ordinary and extended precision variables. Any imperfection may result time, seconds from arc beginning Range-rate, cm/s in "banding", that is residuals showing a discrete set of values, implying that some information corresponding to the real accuracy of the measurements has been lost in the digital processing.

As an alternative, the use of a quadrature formula for the integral in (11) can provide a numerically more stable result, because the S/N of the range rate measurement is 1/ε. Figure 7 shows that a very small model change, generating a range rate signal ≤ 2 micron/s over one pass, can be computed smoothly by using a 7 nodes Gauss quadrature formula.

Conclusions

By combining the results of Milani et al. (2010) and of this paper, we have completed the task of showing that it is possible to build a consistent relativistic model of the dynamics and of the observations for a Mercury orbiter tracked from the Earth, at a level of accuracy and self-consistency compatible with the very demanding requirements of the BepiColombo Radio Science Experiment. In particular, in this paper we have defined the algorithms for the computation of the observables range and range rate, including the reference system effects and the Shapiro effect. We have shown which computations can be performed explicitly and which ones need to be obtained from an iterative procedure. We have also shown how to push these computations, when implemented in a realistic computer with rounding-off, to the needed accuracy level, even without the cumbersome usage of quadruple precision. The list of "relativistic corrections", assuming that we can distinguish their effects separately, is long, and we have shown that many subtle effects are relevant to the required accuracy. However, in the end what is required is just to be fully consistent with a post-Newtonian formulation to some order, to be adjusted when necessary. Interestingly, the high accuracy of BepiColombo radio system may require implementation of the second post-Newtonian effects in range.

previous one, Milani et al. (2010), have been performed within the scope of the contract ASI/2007/I/082/06/0 with the Italian Space Agency. BepiColombo is a scientific space mission of the Science Directorate of the European Space Agency. The work of DV was partially supported by the Czech Grant Agency (grant 202/09/0772) and the Research Program MSM0021620860 of the Czech Ministry of Education.

Fig. 1

 1 Fig.1Geometric sketch of the vectors involved in the computation of the range. SSB is the Solar System Barycenter, M is the center of Mercury, EMB is the Earth-Moon Barycenter, E is the center of the Earth

Fig. 2

 2 Fig.2The difference in the observables range and range rate for one pass of Mercury above the horizon for a ground station, by using an hybrid model in which the position and velocity of the orbiter have not transformed to TDB-compatible quantities and a correct model in which all quantities are TDB-compatible. Interruptions of the signal are due to spacecraft passage behind Mercury as seen for the Earth station. Top for an hybrid model with the satellite position and velocity not transformed to TDB-compatible. Bottom for an hybrid model with the position and velocity of the antenna not transformed to TDB-compatible

Fig. 3 Fig. 4

 34 Fig.3Total amount of the Shapiro effect in range over 2-years simulation. The sharp peaks correspond to superior conjunctions, when Mercury is "behind the Sun" as seen from Earth, with values as large as 24 km for radio waves passing at 3 solar radii from the center of the Sun. Interruptions of the signal are due to spacecraft visibility from the Earth station (in this simulation we assume just one station)

  from arc beginning Range-rate, cm/s

Fig. 6 Fig. 7

 67 Fig. 6Range and range rate differences due to a change by 10 -11 of the C 22 harmonic coefficient: the range rate computed as range difference divided by the integration time of 30 s is obscured by the rounding off

  the right hand side is weakly dependent upon dr do /dt r only through d S do /dt r , thus a moderately accurate approximation could be used in the computation of d S do /dt r , followed by a single iteration. For the other leg

	dr up dt r	= rup •	∂x Ms (t b ) ∂t b	1 -	dr do (t r )/dt r + d S do /dt r c	-	∂x Ea (t t ) ∂t t
		× 1 -	dr do (t r )/dt r + d S do /dt r + d S up /dt r c	1 -	1 c	∂t t ∂x Ea (t t )	• rup	-1

See the Resolution at http://www.iau.org/administration/resolutions/ga2006/.

Change in the observable time, days from arc beginning Range, cm

The computation of the observables, as presented in the previous section, is already complex, but still the list of subtle technicalities is not complete. A problem well known in radio science is that, for top accuracy, the range rate measurement cannot be the value
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