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Abstract Solar sails are a proposed form of spacecraft propulsion using large membrane
mirrors to propel a satellite taking advantage of the solar radiation pressure. To model the
dynamics of a solar sail we have considered the Earth–Sun Restricted Three Body Problem
including the Solar radiation pressure (RTBPS). This model has a 2D surface of equilibrium
points parametrised by the two angles that define the sail orientation. In this paper we study
the non-linear dynamics close to an equilibrium point, with special interest in the bounded
motion. We focus on the region of equilibria close to SL1, a collinear equilibrium point that
lies between the Earth and the Sun when the sail is perpendicular to the Sun–sail direction.
For different fixed sail orientations we find families of planar, vertical and Halo-type orbits.
We have also computed the centre manifold around different equilibria and used it to describe
the quasi-periodic motion around them. We also show how the geometry of the phase space
varies with the sail orientation. These kind of studies can be very useful for future mission
applications.

Keywords Centre manifold · Graph transform · Invariant tori · Low–thrust ·
Artificially generated equilibrium points

1 Introduction

Solar Sails are a proposed form of spacecraft propulsion that takes advantage of the solar
radiation pressure to propel a spacecraft by means of a large membrane mirror. The impact
of the photons emitted by the Sun on the surface of the sail and its further reflection accel-
erates the spacecraft. Although the acceleration produced by the solar radiation pressure is
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234 A. Farrés, À. Jorba

smaller than the one achieved by the traditional propulsion systems, this one is continuous
and unlimited. This makes long term missions more accessible (McInnes 1999). It also opens
a wide new range of possible mission applications that cannot be achieved by a traditional
spacecraft, e.g. Geostorm Warning Mission, Polar Observer and the GeoSail (Macdonald and
McInnes 2004).

The acceleration given by the sail depends on the orientation of the sail and its efficiency.
In this paper we consider a flat and perfectly reflecting sail, so the force due to the solar
radiation pressure is normal to its surface. The orientation of the sail is parametrised by two
angles α and δ and its efficiency is given in terms of the sail lightness number β. To model
the dynamics of a solar sail we have taken the Sun–Earth Restricted Three Body Problem
(RTBP) and added the solar radiation pressure.

The Restricted Three Body Problem for a Solar sail (RTBPS) can be seen as a perturba-
tion of the RTBP. If the radiation pressure is discarded (β = 0 or the sail is aligned with
the Sun–sail direction) the system has five equilibrium points. If we add the solar radiation
pressure and the sail is oriented perpendicular to the Sun–sail line, the system has the same
qualitative behaviour as the RTBP (McInnes 2000). For this particular case, we also find 5
equilibrium points, related to the classical Lagrangian points, L1,...,5 that we call SL1,...,5.
When we consider the whole set of possible sail orientations, the system has, for a fixed sail
lightness number β �= 0, a 2D families of equilibrium points parametrised by the two angles
defining the orientation of the sail (α, δ) (McInnes 1999; McInnes et al. 1994).

These artificially generated equilibrium points offer the possibility of considering very
interesting mission applications, two examples would be the Geostorm Warning Mission
(Macdonald and McInnes 2004; Yen 2004) and the Polar Observer Mission (Macdonald and
McInnes 2004). The Geostorm is a mission concept where a modest sail is placed sunwards
of the classical Earth–Sun L1 point. Then with a magnetometer we can detect the solar wind
polarity and give enhanced warning of the geomagnetic storms, doubling the time of alert of
a conventional L1 Halo orbiter such as SOHO. The aim of the Polar observer mission is to
place a solar sail around an equilibrium point displaced above the ecliptic plane, above one
of the Earth’s poles. This would provide constant viewing of the polar regions and could be
useful to imaging the polar regions or carrying out studies on the climate evolution on the
Arctic zone.

Both missions require to keep a solar sail close to an unstable equilibrium point. Hence
we need to derive a station keeping strategy to maintain a solar sail around it. Several authors
have already discussed the controllability of these regions and studied different possibilities
for the station keeping of a solar sail around unstable equilibrium points (Rios-Reyes and
Scheeres 2005; Lisano 2005; Bookless and McInnes 2005; Farrés and Jorba 2008a).

In Farrés and Jorba (2008a,b) we describe how to use the information of the linear dynam-
ics close to an equilibrium point to derive station keeping strategies. The main idea is to know
how the fixed points and their stable and unstable manifolds vary when the sail orientation
is changed. A change on sail orientation implies a change on the phase space portrait. If we
understand how these changes affect the trajectory of the sail, we can try to change the sail
orientation in an appropriate way to make the phase space act in our favour. Using this idea,
we can find a sequence of changes for the sail orientation, so that the trajectory of the sail
remains close to the equilibrium point. The idea is to maintain the sail orientation fixed for a
certain time, and when needed change its orientation. The variations on the sail orientation
are small and also is the time needed to change from one orientation to the other, hence
as a first approach we can consider these changes to be instantaneous. Other authors, using
feedback control find a continuous change on the sail orientation that manages to maintain
the sail close to the equilibrium point.
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Periodic and quasi-periodic motions of a solar sail 235

In this paper we want to study and understand the non-linear dynamics around equilibria.
We want to know what other invariant objects exist in the phase space and how they change
when we consider different sail orientations. In particular we will describe the families of
periodic and quasi-periodic orbits. Some of these invariant objects can offer interesting pos-
sibilities for other mission applications. In the near future we want to use this information,
to derive strategies in the philosophy of Farrés and Jorba (2008a,b), to maintain a solar sail
close to some of THESE invariant objects.

We will focus on the particular case of α = 0 (i.e. we just allow the sail orientation to
vary vertically with respect to the Sun–sail line), when the system is time reversible. This
will ensure that, under certain constraints on the nature of the equilibrium points, there exists
families of periodic and quasi-periodic orbits around equilibria.

In Sect. 3 we describe the families of periodic orbits that emanate from different equi-
librium points. We find planar and vertical families of periodic orbits, as well as Halo-type
orbits. In Sect. 4 we describe the quasi-periodic motion around the equilibrium point, finding
new families of periodic orbits and invariant tori around equilibria due to the interaction
between the two frequencies defining the centre motions.

We will see that if α = δ = 0, i.e. the sail is perpendicular to the Sun–sail line, the
qualitative behaviour of the system around the equilibrium point is similar to the behaviour
around the collinear point L1 of the RTBP. There are families of planar, vertical and Halo
periodic orbits, as well as families of invariant tori. In McInnes (2000) we find a study on
the behaviour of this family of Halo orbits for different values of β. We will show how the
loss of symmetry of the system when δ �= 0 affects this phase space portrait.

As the equilibrium points are unstable, we need to be careful with the numerical tools that
we use. We have developed our own algorithms to avoid problems during the integration due
to the instability of the region. To the computation of the periodic orbits we have used a par-
allel shooting method. To study the quasi-periodic motion we have performed the reduction
to the centre manifold. In Sect. 4.1 we give some of the main details on how to deal in an
efficient way with the computation of this last invariant object.

2 Solar sails in the RTBP

To describe the motion of a solar sail in the Earth–Sun system, we take the Restricted Three
Body Problem for a Solar sail (RTBPS). We assume that the Earth and Sun are point masses
moving in a circular orbit around their common centre of mass, and that the sail is a massless
particle that is affected by the gravitational attraction of both bodies and the solar radiation
pressure. The units of mass, distance and time are normalised so that the total mass of the
system is 1, the Earth–Sun distance is 1 and the period of its orbit is 2π . We use a rotation
reference system so that Earth and Sun are fixed on the x-axis, z is perpendicular to the
ecliptic plane and y defines an orthogonal positive oriented reference system (Fig. 1 left).

We consider the solar sail to be flat and perfectly reflecting. This means that the force due
to the solar radiation pressure is in the normal direction to the surface of the sail. In such
case, the force due to the sail is given by,

Fsail = β
1 − μ

r2
P S

〈rs, n〉2n,

where β represents the sail lightness number, rs is the Sun–line direction and n is the normal
direction to the surface of the sail (both vectors have norm 1). The sail orientation is para-
metrised by two angles, say α and δ: α is the angle between the projection of the Sun–sail
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236 A. Farrés, À. Jorba

Fig. 1 Left: Schematic representation of the position of the two primaries and the solar sail in the synodical
reference system. Right: Graphic description of the two angles defining the sail orientation

line and the normal vector to the surface of the sail n on the ecliptic plane; δ is the difference
between: a) the angle between the projection of the Sun–sail line with the ecliptic plane; and
b) the angle of the normal vector n with the ecliptic plane (see Fig. 1 right). There are other
possibilities to define these angles, see (McInnes 1999; Rios-Reyes and Scheeres 2005).

The equations of motion are,

Ẍ = 2Ẏ + X − (1 − μ)

r3
P S

(X − μ) − μ

r3
P E

(X − μ + 1) − β
(1 − μ)

r3
P S

〈rs, n〉2 NX ,

Ÿ = −2Ẋ + Y −
(

(1 − μ)

r3
P S

+ μ

r3
P E

)
Y − β

(1 − μ)

r3
P S

〈rs, n〉2 NY , (1)

Z̈ = −
(

(1 − μ)

r3
P S

+ μ

r3
P E

)
Z + β

(1 − μ)

r3
P S

〈rs, n〉2 NZ ,

where, rP S = √
(X − μ)2 + Y 2 + Z2, and rP E = √

(X − μ + 1)2 + Y 2 + Z2, are the
Sun–sail and Earth-sail distances, respectively, rs = (X − μ, Y, Z)/rP S is the normalised
Sun–sail direction and n = (NX , NY , NZ ) is the normal direction to the surface of the sail.
Using the above definition for the sail orientation,

NX = X − μ

rP S
cos α cos δ − Z(X − μ)

rP Sr2
cos α sin δ − Y

rP S
sin α cos δ + Y Z

rP Sr2
sin α sin δ,

NY = Y

rP S
cos α cos δ − Y Z

rP Sr2
cos α sin δ + X − μ

rP S
sin α cos δ − Z(X − μ)

rP Sr2
sin α sin δ,

NZ = Z

rP S
cos δ + r2

rP S
sin δ,

where r2 = √
(X − μ)2 + Y 2. As n cannot point towards the Sun there are some restrictions

on the normal direction, namely 〈rs, n〉 ≥ 0. Notice that if β = 0 or 〈rs, n〉 = 0 the solar
radiation pressure is discarded and we have the RTBP.

As we know, the RTBP can be expressed as a Hamiltonian system by introducing the
momenta: PX = Ẋ − Y, PY = Ẏ + X, PZ = Ż . Unfortunately, when we introduce the solar
radiation pressure the Hamiltonian character of the system only holds for a small set of sail
orientations: when the sail is aligned with the Sun–sail line (i.e. 〈rs, n〉 = 0 so there is no sail
effect) and when the sail is perpendicular to the Sun–sail line (i.e. 〈rs, n〉 = 1). For the other
cases, the system is not Hamiltonian, but it is still conservative (it is easy to check that, for
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Fig. 2 Families of equilibrium points for β1 = 0.01, β2 = 0.05, β3 = 0.1, β4 = 0.15 and β5 = 0.2. From
left to right: the F L1, F L2 and F L3 families of equilibria
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Fig. 3 F L4 family of equilibrium points for β1 = 0.01, β2 = 0.05, β3 = 0.1, β4 = 0.15 and β5 = 0.2.
From left to right: XY projection and X Z projection

a fixed sail orientation, the divergence of the vector field is zero, hence the volume in phase
space is preserved by the flow).

There is another particular case that offers interesting properties: when α = 0 and
δ∈[−π/2 : π/2]. This means that we only allow vertical variations on the sail orientation
with respect to the Sun–line. Here the system is time reversible by the symmetry

R : (X, Y, Z , Ẋ , Ẏ , Ż) → (X,−Y, Z ,−Ẋ , Ẏ ,−Ż).

Hence, under certain constraints on the nature of the equilibrium points the system behaves
locally as a Hamiltonian (Sevryuk 1986). In this paper we will focus on this particular case.

It is well known that the RTBP has 5 equilibrium points L1,...,5 (Szebehely 1967). When
the effect of the solar radiation pressure is added these 5 equilibrium points are replaced by
a 2D family of equilibrium points parametrised by the two angles α and δ. If we take α = 0
there are five 1D families of equilibria, that we call F L1,...,5, parametrised by the angle δ.
Each of families contains one of the classical Lagrangian equilibrium points L1,...,5 and the
displaced equilibrium point SL1,...,5.1 In Figs. 2 and 3 we can see these families for different
values of β. Notice that as β increases these families get “larger”, having fixed points higher
above the ecliptic plane and closer to the Sun.

In Fig. 2 we have the families F L1 (left), F L2 (centre) and F L3 (right) for different
values of β, all of them are contained on the Y = 0 plane. For small values of β, all of these
equilibrium points are unstable and their spectrum is of the form {±λ,±iω1,±iω2}. In
Fig. 4 we show the spectrum of the fixed points for β = 0.051689. For large β the spectrum

1 SL1,...,5 are the equilibrium points of the system when the sail is oriented perpendicular with respect to the
Sun–sail line. They are placed near the classical Lagrangian points L1,...,5 but closer to the Sun (Farrés and
Jorba 2009).
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Fig. 5 Spectrum of the equilibrium points on the F L4 and F L5 families for β = 0.051689

of some of the equilibrium points is of the form {±λ1,±λ2,±iω1} (Waters and McInnes
2007, 2008).

In Fig. 3 we have the F L4 family for different values of β, it is no longer on the Y = 0
plane. The F L5 family is symmetric to F L4 with respect to Y = 0. The spectrum for all
these points is {γ1 ± iω1, γ2 ± iω2, γ3 ± iω3}, where γi �= 0 with γ1 > 0, γ2 < 0 and γ3

positive on F L4 and negative on F L5. In Fig. 5 we see the spectrum for β = 0.051689 for
F L4 and F L5. Notice that although γi �= 0, it is very small. Hence, the equilibrium points
on these two families present a very mild instability.

Our aim is to understand the dynamics of the system around different unstable equilibria
of these families. We will consider the sail orientation to be fixed along time and study the
dynamics for different sail orientations. In Sect. 3 we will describe the families of periodic
orbits that appear around different equilibrium points. In Sect. 4 we will perform the reduc-
tion to the centre manifold around the equilibrium points and use it to describe the bounded
motion around them.

In what follows we focus on the F L1 family for β = 0.051689 and δ close to zero. The
equilibrium points on the F L1 family for δ small are placed between the Earth and the Sun
close to the displaced collinear equilibrium point SL1. We consider this region to be relevant
for possible mission applications. Taking β = 0.051689 corresponds to a sail with a char-
acteristic acceleration of 0.3 mm/s2 or a sail loading of 30 g/m2. This sail lightness number
has been considered for the Geostorm Mission and is thought to be a reasonable value for
a near term mission application (McInnes 1999; Macdonald and McInnes 2004; Waters and
McInnes 2007). Although we only focus on a neighbourhood of equilibria of the family F L1,
the same numerical tools that we have used here can be applied to study the motion around
the equilibrium points on the F L2,3 families.
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Periodic and quasi-periodic motions of a solar sail 239

3 Periodic motion

It is well known that if we have a fixed point p0 on a Hamiltonian system, with ±iω as
an eigenvalue, then under suitable non-resonance conditions with respect to the remaining
eigenvalues λi , the Lyapunov Centre Theorem (Meyer and Hall 1991) ensures that there exist
a one-parametric family of periodic orbits emanating from p0, with limiting period 2π/ω.
Unfortunately the Hamiltonian character of the set of equations when α = 0 is only true for
3 values of δ (δ = 0 that happens when the sail oriented perpendicular to the Sun–sail line
and δ = ±π/2 when the sail is aligned with the Sun–sail line and there is no sail effect). As
we will see in this section and the next one, the qualitative behaviour in these cases is the
same.

In any case, we have already mentioned that for α = 0 the RTBPS is time R-reversible by

R : (t, X, Y, Z , Ẋ , Ẏ , Ż) → (−t, X,−Y, Z ,−Ẋ , Ẏ ,−Ż).

It is known (Sevryuk 1986; Lamb and Roberts 1998), that under certain constraints a time
reversible system behave locally as Hamiltonian systems around an equilibrium point. In
particular, around such a point the Lyapunov Centre Theorem (Devaney 1976; Moser 1958;
Sevryuk 1986; Lamb and Roberts 1998) and KAM Theory (Sevryuk 1998; Lamb and Roberts
1998) also apply.

Theorem 1 (Devaney 1976) Let ẋ = f (x), with f ∈ C2 and x ∈ R
2n be an autonomous

R-reversible dynamical system, where dim(Fix(R)) = n. Let p0 be a fixed point such that
R(p0) = p0, and with ±iω,±λ2, . . . ,±λn as eigenvalues.

Then, if ∀λi we have that iω/λi /∈ Z, there exists a one-parametric family of periodic
orbits emanating from p0, where the period of these orbits tends to 2π/ω when approaching
p0.

This Theorem is commonly known as Devaney–Lyapunov Centre Theorem, for further details
see (Devaney 1976; Sevryuk 1986).

One can check that the only equilibrium points that remain fixed by R are the ones on
the F L1, F L2 and F L3 families. Hence, the local behaviour around these equilibria will be
Hamiltonian. Theorem 1 (Devaney 1976) assures that under non-resonant conditions between
the frequencies ω1, ω2 we have two families of periodic orbits emanating from the fixed point.

In this section we want to describe the two families of periodic orbits that appear around
an equilibrium point of the F L1 family. We distinguish the two families by their vertical
oscillation, the family related to ω2 has a wider vertical oscillation than the one emanating
from ω1. Then, we call the P-Lyapunov Family to the family of periodic orbits emanating
from p0 related to ω1 and the V-Lyapunov Family to the family emanating from p0 related
to ω2.

Due to the symmetric reversibility properties of the system, all these families of periodic
orbits are symmetric with respect to Y = 0. Furthermore, for δ small, the P-Lyapunov Family
cross transversally Y = 0 and the V-Lyapunov Family cross transversally Z = Z∗ just two
times. From now on, we will only consider δ > 0, as the systems is also symmetric by

S : (X, Y, Z , Ẋ , Ẏ , Ż , δ) → (X, Y,−Z , Ẋ , Ẏ , Ż ,−δ).

We start taking δ = 0 and studying the behaviour of the two families of periodic orbits, then
we see how these families vary when δ �= 0.

To compute the families of periodic orbits, we have designed our own routines for the
numerical computation and continuation of periodic orbits. For each of the families we have
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taken into account the transversality properties mentioned before. To deal with the instability
of the region and to avoid difficulties in the integration of the periodic orbits we have used
a multiple shooting method (Stoer and Bulirsch 2002) using two spatial sections. For the
P-Family we have taken the sections 	1 = {Y = 0, Ẏ > 0} and 	2 = {Y = 0, Ẏ > 0},
and for the V-Family we have taken the sections 
1 = {Z = Z∗, Ż > 0} and 
2 = {Z =
Z∗, Ż > 0}. As an initial guess for the continuation we can take the linear approximation of
the solutions of the flow. We must also mention that due to the symmetries on the equations,
if we take the cross section 	1 and 	2 we can save time by just integrating half of the period.

We have also computed the stability of the periodic orbits on each family. As we know,
if φt (x) is the flow associated to an ODE, the normal behaviour around a T -periodic orbit
through x0 is given by the monodromy matrix M = DφT (x0). As we are in a reversible
system, the eigenvalues come in pairs, hence

spect(M) = {1, 1, λ1, λ
−1
1 , λ2, λ

−1
2 }.

We define the stability parameters of the periodic orbit as si = λi + λ−1
i for i = 1, 2. We

use them to describe the stability of the periodic orbit. Each si is related to an invariant plane
by M , they can either be hyperbolic (si ∈ R, |si | > 2), elliptic (si ∈ R, |si | < 2), parabolic
(si ∈ R, |si | = 2) or complex unstable (si ∈ C \ R).

The periodic orbit has an hyperbolic direction if one of the si is hyperbolic and that it has
an elliptic direction if one of the si is elliptic. Notice that if s1 is complex unstable, then s2

is also complex unstable, in fact s2 = s1.

3.1 P-family of periodic orbits

In all the computations we have considered the X coordinate of the point where the orbit
crosses the section 	1 as the parameter of continuation.

When δ = 0 the periodic orbits that are born at the equilibrium point are totally contained
on the Z = 0 plane. In Fig. 6 we can see the continuation scheme, on the x-axis we have the
continuation parameter (X ) and on the y-axis the Z component of the point of the orbit on
the section 	1. When X reaches a critical value, a pitchfork bifurcation takes place, and two
new periodic orbits are born, commonly known as Halo orbits.

On the left-hand side of Fig. 6 we can see this bifurcation, the continous line corresponds
to those periodic orbits with one elliptic and hyperbolic direction, and the dashed line to those
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the planar family of periodic orbits (right)
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Fig. 8 Different projections on the XY Z space of the 3 different branches of periodic orbits for δ = 0.
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Fig. 9 Bifurcation diagram for the continuation of periodic orbits with respect to X of the P-Family of
periodic orbits for different sail orientations (δ). For δ = 0.001 (left). Evolution of the bifurcation diagram for
δ = 0, 0.001, 0.005, 0.01 (right)

orbits with two hyperbolic directions. On the right-hand side of Fig. 6 we have the evolution
on the stability parameters along the family.

On the left hand side of Fig. 7 we see the planar periodic orbits on the P-Family, before
and after the bifurcation point, this family is totally contained on the Z = 0 plane. In Fig. 7
(middle and right) we see different projections of one of the two families of Halo orbits. The
families of Halo-type orbits for a solar sail in the RTBP when the sail is perpendicular to
the Sun–sail line were found by McInnes (2000). There he studied the behaviour of these
families for different values of β around SL1 and SL2. The other family of Halo orbits is
symmetric to this one with respect to Z = 0. Finally, in Fig. 8 we have two different 3D
projections on the position space of the three branches of the periodic orbits on the family.

When δ �= 0, as we can see in Fig. 9 there is no longer a pitchfork bifurcation giving
rise to two Halo-type orbits as it happened for δ = 0. Now two of the branches have split,
leaving a family of periodic orbits with no change in the stability and another family with a
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Fig. 12 Different projections on the XY Z space of the 2 disconnected branches of periodic orbits for δ = 0.01

saddle-node bifurcation (Fig. 9 left). This is due to a symmetry breaking (Gulobitski et al.
1985; Crawford 1991) in the system. On the right-hand side of Fig. 9, we can see the evolu-
tion of the continuation scheme when we vary δ. Notice that the separation between the two
branches increases with δ.

In Figs. 10 and 11 we can see different projections of these two families for δ = 0.01.
In Fig. 10 we have the family that emanates from the equilibrium point. We can see how,
as the orbits amplitude increases, they gain Z amplitude ending up looking like Halo type
orbits. Here all the periodic orbits have one hyperbolic and one elliptic direction. In Fig. 11
we see the family of periodic orbits that appears after the saddle-node bifurcation. The orbits
on the other branch of the family that have less Z oscillation have two hyperbolic directions,
while the other ones have one hyperbolic and one elliptic direction. Finally, in Fig. 12 we
have different 3D projections, on the position space, of the two disconnected branches of the
P-Family of periodic orbits for δ = 0.01. We can see that qualitatively behaviour for δ �= 0
is not that different to the one for δ = 0, in both cases we find planar and Halo-type orbits.
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Fig. 13 For δ = 0. Different projections of the periodic orbits on the V-family. From left to right: XY
projection, X Z projection and Y Z projection
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Fig. 14 For δ = 0.01. Different projections of the periodic orbits on the V-family. From left to right: XY
projection, X Z projection and Y Z projection

3.2 V-family of periodic orbits

Now for all the computations we have considered the Ż coordinate of the point where the
orbit crosses the section 
1 as the parameter of continuation.

When δ = 0 the periodic orbits are symmetric with respect to the planes Z = 0 and
Y = 0. In Fig. 13 we have different projections of this family of periodic orbits. We can
see that these orbits have a bow tie shape. All of them have one hyperbolic and one elliptic
direction.

For δ �= 0 the family of periodic orbits is only symmetric with respect to the Y = 0 plane.
Periodic orbits that are born at the equilibrium point are seen as circles on the X Z projection.
As we move along the family, their shape changes and they also look like a bow tie, although
it is no longer symmetric. For small δ, the shape of most of the orbits in the family is still like
a bow tie. We can see that as δ increases there is more difference between the two loops on
the bow tie. In Fig. 14 we have different projections of this family for δ = 0.01. As before,
all of these periodic orbits have one hyperbolic and one elliptic direction.

Finally, in Fig. 15 we have 3D projections on the position space of these families for dif-
ferent values of δ. We can see clearly how these families get more asymmetric as δ increases.
In the picture we have δ = 0, 0.005, 0.01 and 0.03.

4 Quasi: periodic motion

In the previous section we have described the families of periodic orbits that appear around
the fixed points and studied their stability. Now we want to give a more detailed description
of the non-linear dynamics around the equilibrium point.

As we know, the linear dynamics of the fixed points on the F L1 family is the cross
product of a saddle and two complex directions with zero real part and we want to
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Fig. 15 Projections on the XY Z space of the V-Family of periodic orbits for different values of δ. From left
to right, top to bottom: δ = 0, δ = 0.005, δ = 0.01 and δ = 0.03

study the bounded motion around them. Due to the instability produced by the saddle,
taking arbitrary initial conditions and integrating them numerically to produce plots of
the orbits is not a good option as the trajectories will escape quickly. To get rid of the
instability produced by the saddle, we have performed the so-called reduction to the centre
manifold.

We call centre manifold to an invariant manifold that is tangent to linear subspace generated
by the different pairs of complex eigenvectors that correspond to the complex eigenvalues
with zero real part. We know that this invariant manifold might not be unique, although the
Taylor expansion of the graph of this invariant manifold at the equilibrium point is (Carr
1981; Sijbrand 1985; Vanderbauwhede 1989). The reduction to the centre manifold process
consists in finding a high order approximation of this invariant manifold and to restrict the
flow to it. The main idea to compute the manifold is to uncouple the saddle direction from
the other directions up to high order. Then, neglecting the reminder we obtain a high order
approximation of the flow on an invariant manifold that does not contain the saddle. In this
way we can do numerical integrations and study the motion around the equilibrium point on
the centre manifold.

If the system is Hamiltonian we can compute this manifold using a partial normal form
scheme on the Hamiltonian (Jorba 1999), but this is not the case, as the system is Hamilto-
nian only for a small set of parameters. To deal with this situation we have used the graph
transform method (Carr 1981; Simó 1990; Farrés and Jorba 2009). The idea is to compute,
formally, the power expansion of the graph of the centre manifold at the equilibrium point.
In Sect. 4.1 we give the main ideas of the algorithm that we have used to compute the graph
of the centre manifold y = v(x) in an efficient way, for further details on the algorithm see
(Farrés and Jorba 2009).

Finally, we have computed the centre manifold around several equilibrium points on the
F L1 family. For each one we have computed the Taylor series of the graph of the centre
manifold up to degree 16. In Sect. 4.2 we will use this manifold to study the local dynamics
around the different equilibrium point.
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4.1 Reduction to the centre manifold

Let ż = F(z) be an ordinary differential equation where z ∈ R
6 and has a fixed point of the

type centre × centre × saddle. Without loss of generality we can assume that the fixed point
is at the origin. It is well known that with an appropriate linear transformation, the equations
of motion can be written as:

ẋ = Ax + f (x, y),

ẏ = By + g(x, y),
(2)

where x ∈ R
4, y ∈ R

2, all the eigenvalues of the matrix A have zero real part and all the
eigenvalues of the matrix B are real. The functions f and g are sufficiently smooth and
satisfy,

f (0, 0) = 0, Dx,y f (0, 0) = 0, g(0, 0) = 0, Dx,y g(0, 0) = 0,

where Dx,y denotes the first derivative with respect to (x, y). Note that y = 0 is the linear
approximation to the centre manifold. We are interested in finding y = v(x) with v(0) = 0
and Dxv(0) = 0, the local expression of the centre manifold. If we substitute this on Eqs. 2,
we have that v(x) must satisfy:

Bv(x) + g(x, v(x)) = Dxv(x)[Ax + f (x, v(x))], (3)

and the flow restricted to the manifold is given by,

ẋ = Ax + f (x, v(x)). (4)

To fix notation, if x = (x1, . . . , x4) is a vector of complex numbers and k = (k1, . . . , k4)

a vector of integer numbers, we define |k| = k1 + · · · + k4 and denote xk = xk1
1 . . . xk4

4 (here
00 = 1).

Let us assume that ±λ,±iω1 and ±iω2 are the eigenvalues of Dz F , and that we have
performed a linear transformation such that A and B are in diagonal form. We want to
find y = v(x) that satisfies Eq. 3. We take v(x) = ∑

|k|≥2 vk xk , with vk ∈ R
2, the power

expansion of v(x) around the origin and we want to find the values vk = (v1
k , v2

k ) up to high
order. This way we have a good approximation of the centre manifold, for instance, if we
have v̂(x)= ∑N

|k| = 2 vk xk that satisfies Eq. 3 up to order N , then v̂(x) approximates the

graph of the centre manifold up to the same order, i.e. ||v(x) − v̂(x)|| = O(||x ||N ). And
ẋ = Ax + f (x, v̂(x)) is a high order approximation of the flow on the centre manifold.

Notice that Eq. 3 can be rewritten as,

Dxv(x)Ax − Bv(x) = g(x, v(x)) − Dxv(x) f (x, v(x)), (5)

where the left-hand side of this equation is a linear operator with respect to v(x) and the
right-hand side a non-linear one. As A and B are in diagonal form, then the left-hand side of
Eq. 5 takes the diagonal form,

Dxv(x)Ax − Bv(x) =

⎛
⎜⎜⎜⎜⎝

∑
|k|≥2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 − λ) v1
k xk

∑
|k|≥2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 + λ) v2
k xk

⎞
⎟⎟⎟⎟⎠ . (6)

Let h(x) = g(x, v(x)) − Dxv(x) f (x, v(x)) be the right hand side of Eq. 5. We take its
expansion h(x) = ∑

|k|≥2 hk xk around the origin (hk = (h1
k, h2

k)), where the coefficients
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hk depend on the coefficient of vk in a known way. It can be seen that the coefficients hk

for |k| = n depend on vk with |k| < n (see Farrés and Jorba 2009). Hence, we can find the
coefficients vk up to degree N in an iterative way. We already know that vk = 0 for |k| = 0, 1,
as v(0) = 0 and Dxv(0) = 0. Then we can compute vk for |k| = 2, . . . , N by solving at
each step the diagonal linear system in Eq. 5.

This process is carried out up to a sufficiently high order N . Finally, we have the expansion
up to degree N of the local central manifold,

v̂(x) =
N∑

|k|≥2

vk xk .

Once this is done, we are ready to explore the phase space. We will use ẋ = Ax + f (x, v̂(x))

to integrate the flow and have a good description of the motion on the centre manifold.

Remark 1 To have an efficient algorithm, we need to find an efficient way to compute the
coefficients hk . As we know they come from the expansion around the origin of

h(x) = g(x, v(x)) − Dxv(x) f (x, v(x)).

Expanding g(x, y) and f (x, y) and then composing with v(x) is NOT a good option, as it is
very hard in terms of computational time. To obtain a more efficient algorithm we propose to
find a recurrent expressions for the expansion of the non-linear terms and use these expres-
sions to compute the composition of these functions with v(x). For more details on how to
use these recurrent expression see (Farrés and Jorba 2009).

Remark 2 It is not necessary to have A and B in their diagonal form, but then the linear part
of Eq. 5 will not take a diagonal form. Then, as we increase the degree, the dimension of
the linear system we have to solve increases and so does the computational cost and error
propagation while solving it.

The linear system can be solved if and only if

iω1(k1 − k2) + iω2(k3 − k4) ∓ λ �= 0.

This is always true as λ ∈ R \ {0} and iω1,iω2 are pure imaginary numbers.

4.2 Dynamics on the centre manifold

Using the algorithm explained before we have computed the centre manifold around several
equilibrium points of the F L1 family (i.e. different sail orientations). For each one we have
computed the Taylor series up to degree 16 of the graph of the centre manifold, y = v(x).
Using an Intel Xeon CPU at 3.40 GHz this takes around 22 s of CPU time.

Once we have reduced to the centre manifold, we are on a 4D phase space. Let
(x1, x2, x3, x4) be the local coordinates on the centre manifold. A 4D phase space is dif-
ficult to visualise, so we need to perform suitable Poincaré sections to reduce the phase space
dimension.

4.2.1 When the sail is perpendicular

As we have already said, when δ = 0, the system is still Hamiltonian. We take advantage of
this to help us visualise the phase space. As we know, the Jacobi constant

JC = (Ẋ2 + Ẏ 2 + Ż2) − 2�̂(X, Y, Z),
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Fig. 16 For δ = 0; Poincaré section x3 = 0 for different energy levels. From left to right, top to bottom
JC = −2.895937,−2.895920,−2.895904,−2.895889

with the modified potential �̂(X, Y, Z) = 1

2
(X2 + Y 2) + (1 − μ)(1 − β)

rP S
+ μ

rP E
, is a first

integral of the system. Hence it remains constant along time for a given trajectory. We group
the trajectories on the phase space by the value of the Jacobi constant (JC ).

To visualise the dynamics on the centre manifold, we first take the Poincaré section x3 = 0
and fix JC to determine x4. One can check that taking x3 = 0 is the same as to take z = 0
and that x4 is related to ż. Hence, x1, x2 are a linear transformation of the {x, y}-plane. For
each JC we take several initial conditions and compute 500 iterates on the Poincaré sections.
Figure 16 shows the results for JC = −2.895937,−2.895920,−2.895904 and −2.895889.
We can see that for a fixed JC , the motion on the section is bounded by the Planar Lyapunov
orbit, which is fully contained on this section. The Vertical Lyapunov orbit is the central fixed
point, as it crosses transversally this section close to the origin.

For small values of JC , the coupling of the two frequencies, ω1 and ω2, gives rise to a
family of invariant tori. As JC varies, the Planar Lyapunov orbit changes its stability and the
well know Halo orbits appear (see Sect. 3.1). These orbits correspond to the two new fixed
points on the section, as the Halo orbits also cross transversally this section. We still see
families of invariant tori around the fixed points and around the two Halo orbits.

Notice that x3 = 0 is not the only Poincaré section that we can do. We chose this one
for classical reasons, and because we know that Z = 0 is a cross section and the motion is
symmetric with respect to this plane. But we could chose another one, for instance Y = 0 is
also a cross section and a symmetry plane.

Now taking x2 = 0 is similar to taking Y = 0. Then we determine x1 from the JC , that
is similar to taking Ẏ . Now we repeat the same process as before, take a value for JC and
several initial conditions x3, x4 and compute 500 Poincaré sections for each one. Figure 17
shows the results for the same energy levels as before.
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Fig. 17 For δ = 0; Poincaré section for x2 = 0 for different energy levels. From left to right, top to bottom
JC = −2.895937,−2.895920,−2.895904,−2.895889

Now the Planar Lyapunov orbit is the central fixed point. As before, we can see that for
small values of the energies, we have a family of invariant tori due to the coupling of the two
frequencies. As the energy level increases the Planar Lyapunov orbit changes its stability and
the two Halo orbits appear. Here we can clearly appreciate the pitchfork bifurcation of the
Planar Lyapunov orbit that gives rise to the Halo orbits that was mentioned in Sect. 3.

We note that the behaviour here is qualitatively the same as for the RTBP close to the
collinear points. Now we want to see how this varies when the sail is no longer perpendicular
to the Sun–line (i.e. when δ �= 0).

4.2.2 When the sail is not perpendicular

Now we take different values for the sail orientation δ1 = 0.005 and δ2 = 0.01 and do the
same analysis. The main difference is that now the system is not Hamiltonian, hence we do
not have a first integral to help us reduce the phase space dimension. Nevertheless, we use
the quantity:

J̃C = (Ẋ2 + Ẏ 2 + Ż2) − 2�̂(X, Y, Z) + 2β(1 − μ)
Zr2

r3
P S

cos2 δ sin2 δ.

Notice that for δ = 0, J̃C is the Jacobi constant that we have used before. This value varies
little along the trajectories, we will use it as an “approximated energy level” and will help us
to compare the Hamiltonian behaviour with this non-Hamiltonian one.

When the system is Hamiltonian and we take several initial conditions with the same
energy level, their trajectories are in the same surface of fixed energy. Hence, we are reduc-
ing in one the phase space dimension. When the system is not Hamiltonian and we take
several initial conditions with the same J̃C , the “approximated energy level”, the value J̃C
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Fig. 18 For δ = 0.005; Poincaré section for x3 = 0 for different ĴC . From left to right, top to bottom
J̃C = −2.895937,−2.895920,−2.895904,−2.895889

does not remain fixed for all of the points on the trajectories. But it can be seen that close to the
equilibrium point, J̃C varies slightly. We can say that the orbits are on a thin neighbourhood
of the surface J̃C = constant . Then, the projection of the trajectories on a fixed surface of
fixed J̃C should be good enough.

As before we first perform the Poincaré section x3 = 0. Now this is like taking the cross
section Z = Z∗. We use the J̃C to determine x4, that is related to Ż . We now take different
initial conditions (x1, x2) and perform 500 iterates on the Poincaré section for different J̃C .
Figures 18 and 19 show, for δ = 0.005 and δ = 0.01, respectively, these Poincaré sections for
J̃C = −2.895937,−2.895920,−2.895904 and −2.895889. As before, we see that for small
energy levels the coupling between the two frequencies gives rise to families of invariant
tori around the equilibrium point. Now the central fixed point corresponds to the Vertical
Lyapunov periodic orbit, that crosses transversally this section, and the Planar Lyapunov
orbit bounds the motion on the section. As J̃C varies, one Halo orbit appears, seen as the
fixed point that appears on the right hand side of the Poincaré sections. If we remember
the behaviour of the P-Family of periodic orbits for δ �= 0 in Sect. 3.1, this family starts
with a small Ż amplitude. There is a point close to the saddle node bifurcation where the
Ż amplitude starts to grow significantly, having Halo-type type orbit. When the orbit gains
Z amplitude, it is transversal to this Poincaré section, and we see it appear as a new fixed
point. When the saddle-node bifurcation takes place, another Halo-type orbit appear, as can
be seen in Figs. 18 and 19. We can see that the two Halo orbits are no longer symmetric to
each other, as well as the behaviour around them.

Now we take the Poincaré section x2 = 0, which is at first order equivalent to Y = 0, and
we fix J̃C to determine x1. As before we take several initial conditions (x3, x4) and perform
500 iterates on the Poincaré section for different J̃C . Figures. 20 and 21 show, for δ = 0.005
and δ = 0.01, respectively, the Poincaré section x2 = 0 for different values for J̃C .
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Fig. 19 For δ = 0.01; Poincaré sections for x3 = 0 for different ĴC . From left to right, top to bottom
J̃C = −2.895937,−2.895920,−2.895904,−2.895889
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Fig. 20 For δ = 0.005; Poincaré sections for x2 = 0 for different ĴC . From left to right, top to bottom
J̃C = −2.895937,−2.895920,−2.895904,−2.895889
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Fig. 21 For δ = 0.01; Poincaré sections for x2 = 0 for different ĴC . From left to right, top to bottom
J̃C = −2.895937,−2.895920,−2.895904,−2.895889

Now the fixed point in the centre corresponds to an orbit of the P-Family. For small values
of J̃C we just see the families of invariant tori around the fixed point. As this energy increases,
we can see how the fixed point, i.e. Planar Lyapunov Orbit, shifts to the left, and two new
periodic orbits appear, one stable and one unstable, giving rise to the new Halo-type orbit.
Here we can clearly appreciate the saddle-node bifurcation on the family of periodic orbits
that was seen in Sect. 3.1.

If we remember Fig. 17, we saw that the planar family of periodic orbits experiences a
pitchfork bifurcation as the energy level increases, which gives rise to the Halo orbits. Now
in Figs. 20 and 21 we can see how for δ �= 0, due to the symmetry breaking on the equations
motion, this bifurcation is replaced by a saddle-node bifurcation.

The main different between the behaviour for δ = 0.005 or δ = 0.01 is that the phase
space is less symmetric as δ increases.

5 Conclusion

In this paper we have focused on the understanding of the non-linear dynamics for different
equilibrium points close to the displaced collinear point SL1. We have restricted to the par-
ticular case α = 0 to take advantage of the reversible character of the system, as it ensures
the existence of families of periodic orbits and invariant tori.

For this study we have computed the families of periodic orbits by means of a continuation
method. Furthermore, we have performed the reduction to the centre manifold using the graph
transform method around the different equilibrium points to have a better understanding of
the bounded motion.
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We find that when the sail is perpendicular to the Sun–line the system behaves qualita-
tively as the RTBP. The two frequencies defining the centre motion give rise to two families
of periodic orbits, a planar and a vertical family, and we find families of invariant tori due to
the coupling of the two frequencies. As we move along the planar family of periodic orbits
a pitchfork bifurcation takes place, and two families of Halo-type orbits appear.

When the sail is no longer perpendicular to the Sun–line (δ �= 0) this behaviour varies
slightly. We still have two families of periodic orbits emanating from the two fixed points,
each one related to one of the two frequencies defining the centre motion. We no longer have
a pitchfork bifurcation that gives rise to the Halo-type orbits, this one has been replaced by
a saddle-node bifurcation due to the symmetry breaking of the system. Finally, we also find
families of invariant tori due to the interaction between the two frequencies.

The applicability of these new families of periodic orbits is yet to be discussed. But
for instance, a mission in the philosophy of “Geostorm” could be considered, where the sail
would orbit around a Halo orbit for a solar sail perpendicular to the Sun–sail line. These orbits
are closer to the Sun than a Halo orbit of the RTBP and would also allow early enhanced
warning of the Sun’s geomagnetic storms. A study on the controllability of these orbits and
a comparison on the advantages of maintaining a sail around these orbits should be done to
make further conclusions. Another interesting application, would be to consider a periodic
orbit high above the ecliptic plane, with the same period as the Earth’s rotation axis. With
such an orbit it would be able to track a certain region of the Earth’s pole (Waters and McInnes
2007).

Finally, let us mention that in a real application one should also consider other effects
(planets, variations in the solar radiation pressure, etc), including errors in the position and
orientation of the sail (for instance, α cannot be exactly zero as needed for the orbits in this
paper). This, jointly with the natural instability of these orbits, implies the use of a station
keeping strategy.
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